So far

Combinational

CLK

Logic-level analysis
This lecture …

- Our seemingly logically correct design can go wrong
- How can we design a circuit that works under real constraints?
A typical sequential network has combinational circuit between registers (R1 to R2).
The registers are synchronized by clocks (CLK1 to CLK2).
Timing is set between clocks (CLK1 and CLK2).
The beauty of the synchronized design is that we need only to take care of the timing of the regions separated by the registers.
Timing Constraints of flip flops

- What happens if the input to the flip-flop changes just as the clock is transitioning from low to high?

- The input to a flip-flop should be stable for a period of time around the rising edge of the clock.

\[D \rightarrow Q \leftarrow Q' \leftarrow CLK \]

\[D \text{ should stay stable} \]

\[\text{Can lead to metastability at the output} \]
Input Constraints: Set up and hold time

I. Setup time: \(t_{\text{setup}} \)
 Time \textit{before} the clock edge that data must be stable (i.e. not change)

II. Hold time: \(t_{\text{hold}} \)
 Time \textit{after} the clock edge that data must be stable

Aperture time: \(t_a \)
Time around clock edge that data must be stable \((t_a = t_{\text{setup}} + t_{\text{hold}}) \)
PIQ: The timing of which of the following signals can cause a setup-time violation?

A. The input signal D(t)
B. The output signal Q(t)
C. Both of the above
D. None of the above
Why timing in Sequential Circuits can go wrong?

• Input to a flip-flop comes from the output of another flip flop, through a combinational circuit
• The flipflop and combinational circuit have a min and max delay

Which of the following violations would occur if the min delay of R1 was 0 and the combinational circuit was just a wire?

A. Hold time violation for R2
B. Setup violation for R2
C. Hold time violation for R1
D. Setup violation for R1
E. None of the above
Meeting the hold time constraint

- Input to a flip-flop comes from the output of another flip flop, through a combinational circuit
- The flipflop and combinational circuit have a min and max delay

To meet the hold time constraint:

\[t_{\text{hold}} < \left(\min \text{ delay(flipflop)} + \min \text{ delay(combinational)} \right) \]
Why timing in Sequential Circuits can go wrong?

- Input to a flip-flop comes from the output of another flip flop, through a combinational circuit
- The flipflop and combinational circuit have a min and max delay

Which of the following violations would occur if the max delay of R1 was 0 and the max delay of the combinational circuit was equal to the clock period?

A. Hold time violation for R2
B. Setup violation for R2
C. Hold time violation for R1
D. Setup violation for R1
E. None of the above
Meeting the setup time constraint

- Input to a flip-flop comes from the output of another flip flop, through a combinational circuit
- The flipflop and combinational circuit have a min and max delay

To meet the setup time constraint:

\[T_c \geq \text{max delay(flipflop)} + \text{max delay(combinational)} + t_{\text{setup}} \]
I. Min delay of flip flop, also called Contamination delay or min CLK to Q delay: t_{ccq}
 Time after clock edge that Q might be unstable (i.e., start changing)

II. Max delay of flip flop, also called Propagation delay or maximum CLK to Q delay: t_{pcq}
 Time after clock edge that the output Q is guaranteed to be stable (i.e., to stop changing)
Fact 1: Once a flip flop has been ‘built’ we are stuck with its timing characteristics: \(t_{\text{setup}}\), \(t_{\text{hold}}\), \(t_{\text{ccq}}\), \(t_{\text{pcq}}\).

Now let’s look at the timing characteristics of the combinational part.
I. Min delay of a gate, also called Contamination delay: t_{cd}
Minimum time from when an input changes until the output starts to change

II. Max delay of a gate, also called Propagation delay: t_{pd}
Maximum time from when an input changes until the output is guaranteed to reach its final value (i.e., stop changing)
PI Q: Which path in the above circuit determines the contamination delay of the circuit (assuming the delay of all the gates is the same)?

A. Green path
B. Red path
C. Both
D. Neither
PI Q: Which path in the above circuit determines the propagation delay of the circuit (assuming the delay of all the gates is the same)?

A. Green path
B. Red path
C. Both
D. Neither
Formalizing the hold time constraint in Sequential Circuits

To meet the hold time constraint:

\[t_{\text{hold}} < \min \text{ delay(flipflop)} + \min \text{ delay(combinational)} \]

\[t_{\text{hold}} < t_{\text{ccq}} + t_{\text{cd}} \]
Formalizing the setup time constraints in Sequential Circuits

To meet the setup time constraint:

\[T_c \geq \text{max delay(flipflop)} + \text{max delay(combinational)} + t_{\text{setup}} \]

\[T_c \geq t_{pcq} + t_{pd} + t_{\text{setup}} \]
Timing Analysis

Timing Characteristics

- $t_{ccq} = 30 \text{ ps}$
- $t_{pcq} = 50 \text{ ps}$
- $t_{setup} = 60 \text{ ps}$
- $t_{hold} = 70 \text{ ps}$
- $t_{pd} = 35 \text{ ps}$
- $t_{cd} = 25 \text{ ps}$

Setup time constraint:

$T_c \geq \frac{1}{f_c} = \frac{1}{T_c}$

Hold time constraint:

$t_{ccq} + t_{pd} > t_{hold}$?
Timing Analysis

Timing Characteristics

\[t_{ccq} = 30 \text{ ps} \]
\[t_{pcq} = 50 \text{ ps} \]
\[t_{setup} = 60 \text{ ps} \]
\[t_{hold} = 70 \text{ ps} \]
\[t_{pd} = 35 \text{ ps} \]
\[t_{cd} = 25 \text{ ps} \]

\[t_{pd} = 3 \times 35 \text{ ps} = 105 \text{ ps} \]
\[t_{cd} = 25 \text{ ps} \]

Setup time constraint:
\[T_c \geq (50 + 105 + 60) \text{ ps} = 215 \text{ ps} \]
\[f_c = \frac{1}{T_c} = 4.65 \text{ GHz} \]

Hold time constraint:
\[t_{ccq} + t_{cd} > t_{hold} \]?
\[(30 + 25) \text{ ps} > 70 \text{ ps} \] No!
Fixing Hold Time Violation

Add buffers to the short paths:

Timing Characteristics

\[t_{ccq} = 30 \text{ ps} \]
\[t_{pcq} = 50 \text{ ps} \]
\[t_{\text{setup}} = 60 \text{ ps} \]
\[t_{\text{hold}} = 70 \text{ ps} \]
\[t_{pd} = 35 \text{ ps} \]
\[t_{cd} = 25 \text{ ps} \]

Setup time constraint:
\[T_c \geq \]
\[f_c = \]

Hold time constraint:
\[t_{ccq} + t_{pd} > t_{\text{hold}} ? \]
Fixing Hold Time Violation

Add buffers to the short paths:

Timing Characteristics

- $t_{ccq} = 30$ ps
- $t_{pcq} = 50$ ps
- $t_{setup} = 60$ ps
- $t_{hold} = 70$ ps
- $t_{pd} = 35$ ps
- $t_{cd} = 25$ ps

Setup time constraint:

$$T_c \geq (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

$$f_c = \frac{1}{T_c} = 4.65 \text{ GHz}$$

Hold time constraint:

$$t_{ccq} + t_{cd} > t_{hold} \text{ ?}$$

$$(30 + 50) \text{ ps} > 70 \text{ ps} \text{ ?} \quad \text{Yes!}$$