1 NCC / NSSD Equivalence Proof

Theorem 1. Maximizing the normalized cross correlation (NCC) is equivalent to minimizing the normalized sum of squared differences (NSSD).

Proof. Let \mathbf{w}_1 and \mathbf{w}_2 be two equal-length vectors and define $\tilde{\mathbf{w}}_1 = \frac{\mathbf{w}_1 - \mathbf{w}}{\sqrt{(\mathbf{w}_1 - \mathbf{w})(\mathbf{w}_1 - \mathbf{w})^T}}$ and $\tilde{\mathbf{w}}_2 = \frac{\mathbf{w}_2 - \mathbf{w}}{\sqrt{(\mathbf{w}_2 - \mathbf{w})(\mathbf{w}_2 - \mathbf{w})^T}}$.

The NCC cost metric is $c_{NCC} = \tilde{\mathbf{w}}_1^T \tilde{\mathbf{w}}_2$. We now relate c_{NSSD} to c_{NCC},

$$c_{NSSD} = (\tilde{\mathbf{w}}_1 - \tilde{\mathbf{w}}_2)^T (\tilde{\mathbf{w}}_1 - \tilde{\mathbf{w}}_2)$$

$$= \tilde{\mathbf{w}}_1^T \tilde{\mathbf{w}}_1 + \tilde{\mathbf{w}}_2^T \tilde{\mathbf{w}}_2 - 2 \tilde{\mathbf{w}}_1^T \tilde{\mathbf{w}}_2$$

$$= 2 - 2 \tilde{\mathbf{w}}_1^T \tilde{\mathbf{w}}_2$$ (since $\tilde{\mathbf{w}}_1^T \tilde{\mathbf{w}}_1 = \tilde{\mathbf{w}}_2^T \tilde{\mathbf{w}}_2 = 1$)

$$= 2 - 2c_{NCC}.$$ (4)

Since the derivative of c_{NSSD} is equal to -2 times the derivative of c_{NCC} (with respect to any variable), this implies that maxima of c_{NCC} occur at minima of c_{NSSD}. □