CSE 105
Theory of Computation

- Professor Jeanne Ferrante
Today’s Agenda

- Undecidability
 - Review and More Problems
 - A Non-TR Language

Reminders and announcements:
- HW 7 (Last!!) due Fri May 27 by 11:59 pm
- Reading Quiz 9 (Last!!) due Mon May 30 by 11:59 pm
- REVIEW SESSIONS (Nathan Speidel):
 - Wed May 25 8 pm - 9:20 pm in WLH 2001
 - Thurs Jun 2 7 pm - 8:50 pm in Peterson 108
- Final Exam: If you need a LEFT handed seat, make a private post to instructors on Piazza
Status: Language Hierarchy

- **Regular**
- **Context-Free**
- **Decidable**
- **Turing-Recognizable**

CF but not Regular:
\(\{0^n1^n | n > 0\} \) By pumping lemma (Regular)

Decidable but not CF:
\(\{ a^n b^n c^n | n > 0\} \) By pumping lemma (CF)

Turing-Recognizable but Not Decidable:
\(A_{TM} \)
\(\text{HALT}_{TM}, E_{TM} \)
\(\text{REGULAR}_{TM} \) By Diagonalization

Not Turing Recognizable:
\(? \) By counting
Decidable Or Undecidable?

Decidable languages:
Construct a Decider!

- A_{DFA}
- E_{DFA}
- EQ_{DFA}
- ALL_{DFA}
- A_{CFG}
- E_{CFG}
- Any CFL

Undecidable languages:
By Diag. (D) or Reduction

- A_{TM} (D)
- E_{TM}
- EQ_{TM}
- $HALT_{TM}$
- $REGULAR_{TM}$
- $T = \{ <M> \mid M \text{ is a TM and if } M \text{ accepts } w \text{ then it also accepts } w^R \}$
Ex: \(T = \{ <M> \mid M \text{ is a TM and if } M \text{ accepts } w \text{ then it also accepts } w^R \} \) is undecidable

We show that \(A_{TM} \) reduces to \(T \).

Proof: By Contradiction. Assume that \(T \) decidable, with TM \(R_T \). We show that \(A_{TM} \) is decidable, a contradiction.

• Construct a TM \(M_{ATM} \) that decides \(A_{TM} \):

\[
M_{ATM} = \begin{cases}
\text{On input } <M, w>:\n1. \text{Construct } X = \text{On input } w: \n2. \text{Run } R_T \text{ with input } <X>; \text{ If } R_T \text{ accepts, then accept. If } R_T \text{ rejects, reject.} \end{cases}
\]

Correctness: \(M_{ATM} \) is a decider since \(R_T \) is, and accepts \(<M, w> \) iff \(R_T \) accepts \(<X> \) iff \(M \) accepts \(w \). So \(L(M_{ATM}) = A_{TM} \).

• But \(A_{TM} \) is undecidable, a contradiction. So the assumption is false and \(E_{TM} \) is undecidable.
How do we construct X?

Choose very simple X!

We construct X so that

- $L(X) = \{01, 10\}$ if M accepts w OR $L(X) = \{01\}$ if M does not accept w

- Note the *subset* relationship between these 2

- If M accepts w, can add more strings to $L(X)$!

- $X =$ “On input y:
 1. If $y \neq 01$ or 10, reject.
 2. If $y = 01$, accept
 3. If $y = 10$, run M on w. If it accepts, accept”

- Then within M_{ATM} run M_T with input $<X>$ to distinguish between these 2, and decide A_{TM}
Ex: $T = \{<M> \mid M$ is a TM and if M accepts w then it also accepts $w^R\}$ is undecidable

We show that A_{TM} reduces to T.

Proof: By Contradiction. Assume that T decidable, with TM R_T. We show that A_{TM} is decidable, a contradiction.

• Construct a TM M_{ATM} that decides A_{TM}:

$M_{ATM} = "$ On input $<M,w>$:
1. Construct $X = "$ On input w: // $L(X) = \{01, 10\}$ iff M accepts w
 1. If $w \neq 01$ or 10, reject.
 2. If $w = 01$, accept
 3. If $w = 10$, run M on w. If it accepts, accept"

2. Run R_T with input $<X>$; If R_T accepts, then accept. If R_T rejects, then reject. ”

Correctness: M_{ATM} is a decider since R_T is, and accepts $<M,w>$ iff R_T accepts $<X>$ iff $L(X) = \{01, 10\}$ iff M accepts w iff $L(M_{ATM}) = A_{TM}$.

But A_{TM} is undecidable, a contradiction. So the assumption is false and E_{TM} is undecidable.
We just did a Reduction

• For 2 problems P_1 and P_2, P_1 reduces to P_2 if any solution for P_2 can be used to solve P_1.

Suppose P_1 reduces to P_2, then which of the following are true?

- **A.** If P_2 is decidable, then P_1 is also decidable.
- **X.** If P_1 is decidable, then P_2 is also decidable.
- **✓.** If P_1 is undecidable, then P_2 is also undecidable.
- **✓.** None or more than one of the above are true.
Example. \(\text{INF}_{TM} = \{<M> \mid M \text{ a TM and } L(M) \text{ is infinite}\} \) is undecidable

We show that \(A_{TM} \) reduces to \(\text{INF}_{TM} \).

Proof: By contradiction. Assume that \(\text{INF}_{TM} \) is decidable, with TM \(R \). We show then that \(A_{TM} \) is decidable, a contradiction.

Construct TM \(M_{ATM} \) that decides \(A_{TM} \):

\(M_{ATM} = " \text{On input } <M,w>: \)

1. Construct TM \(X \):

2. Run \(R \) on \(<X> \). If \(R \) accepts, accept. If \(R \) rejects, reject. "

- Correctness: \(M_{ATM} \) is a decider since \(R \) is, and accepts \(<M,w> \) iff \(R \) accepts \(<X> \) iff iff \(M \) accepts \(w \).
- But \(A_{TM} \) is undecidable, a contradiction. So the assumption is false and \(\text{INF}_{TM} \) is undecidable.
What should X do?

• If M accepts w, then \(L(X) \) should be infinite
 – Pick one! Let’s make it easy and choose \{0,1\}*
• If M rejects w, then \(L(X) \) must be finite
 – Pick one! \{0\}

\(X(z) = \) “1. If \(z = 0 \), accept.
 2. If \(z \neq 0 \), then run M on w. If M accepts w, then accept z”

Qu: What is \(L(X) \) if M accepts w?

A. \(L(X) = \{0\} \)
B. \(L(X) = \{z\} \)
C. \(L(X) = \{0,1\}^* \)
D. \(L(X) = \{ w \in \{0,1\}^* \mid w \neq 0 \} \)
E. None of the above
What should X do?

• If M accepts w, then \(L(X) \) should be infinite
 – Pick one! Let’s make it easy and choose \(\{0,1\}^* \)

• If M rejects w, then \(L(X) \) must be finite
 – Pick one! \(\{0\} \)

\(X(z) = \) “1. If \(z = 0 \), accept.

2. If \(z \) is \(\neq 0 \), then run M on w. If M accepts w, then accept z”

Qu: What is \(L(X) \) if M does not accept w?

A. \(L(X) = \{0\} \)
B. \(L(X) = \{z\} \)
C. \(L(X) = \{0,1\}^* \)
D. \(L(X) = \{ w \in \{0, 1\}^* \mid w \neq 0 \} \)
E. None of the above
Ex. \(\text{INF}_{\text{TM}} = \{<M> \mid M \text{ a TM and } L(M) \text{ is infinite}\} \) is undecidable

We show that \(A_{\text{TM}} \) reduces to \(\text{INF}_{\text{TM}} \).

Proof: By contradiction. Assume that \(\text{INF}_{\text{TM}} \) is decidable, with TM R. We show then that \(A_{\text{TM}} \) is decidable, a contradiction.

Construct TM \(M_{\text{ATM}} \) that decides \(A_{\text{TM}} \):

\[
M_{\text{ATM}} = \text{"On input } <M,w>:\n\]

1. Construct TM X: X (z) = “
 a) If z = 0, accept. // X accepts only string 0 if M does not accept w
 b) If z \neq 0, then run M on w. If M accepts w, then accept z
 // X accepts all strings if M accepts w”

2. Run R on <X>. If R accepts, accept. If R rejects, reject. “

 • Correctness: \(M_{\text{ATM}} \) is a decider since R is, and accepts <M,w> iff R accepts <X> iff \(L(X) \) is infinite iff M accepts w.

 • But \(A_{\text{TM}} \) is undecidable, a contradiction. So the assumption is false and \(\text{INF}_{\text{TM}} \) is undecidable.
Many Undecidability proofs follow a common pattern:

- Always a proof by contradiction
 - Assume T is decidable by TM M_T
 - T checks for condition P, and always halts with accept or reject
- Use M_T to construct TM $M_{ATM}(<M,w>)$ to decide A_{TM}
- **Within** M_{ATM}, construct special TM X such that
 1. If M accepts w, then $L(X)$ has property P
 2. If M does not accept w, then $L(X)$ has **property not P**

Run M_T with input $<X>$ to distinguish between P or not P for $L(X)$, to decide if M accepts w

- Show that M_{ATM} decides A_{TM} for the contradiction

Note: sometimes easier to build X so that X has P iff w not in $L(M)$
$\text{ODD}_T = \{<M> \mid M \text{ is a TM and } L(M) \text{ consists of strings of odd length}\}$ is undecidable

We show A_T reduces to ODD_T

Proof: Assume that ODD_T is decidable, with TM R. We show that A_T is decidable, a contradiction.

- Construct a TM M_{ATM} that decides A_T:

 $M_{ATM} = \text{“On input } <M,w>:\text{”}$

 1. Construct TM X as follows:

 $X = \text{“On input } y:\text{”}$

 If $y = 0$ then run M on w. If M accepts, accept

 2. Run R on $<X>$. If R accepts, accept. If R rejects, reject. “

- Correctness: M_{ATM} is a decider since R is, and R accepts $<X>$ iff $L(X) = \{0\}$ iff M accepts w.

- But A_T is undecidable, a contradiction. So the assumption is false and ODD_T is undecidable.

What is $L(X)$ if M does not accept w?

A. A_T
B. $\{0\}$
\[\text{C. } \phi\]
D. 0
E. None of the above
Why this X??

Want X to be such that

- $L(X)$ consists of strings of odd length if M accepts w
- $L(X)$ does not consist of strings of odd length if M does not accept w

$X = \text{“On input } y:\n1. \text{If } y = 0 \text{ then run } M \text{ on } w. \text{ If } M \text{ accepts, accept”}$
Recall: There are exceptions!

No “special X” construction needed for:

• A_{TM} \textit{directly} reduces to $HALT_{TM}$

Define $M_{ATM}(<M,w>):$

1. Run $M_{HALT}(<M,w>)$ If M_{HALT} rejects, then reject.
2. Else, run $M(w)$; If it accepts, then accept.
 If it rejects, then reject.

• And we don’t need to use only A_{TM} to get our contradiction!
Proof INF_{TM} undecidable using M_{HALT}

Let R decide
$\text{INF}_{\text{TM}} = \{ <M> \mid M \text{ is TM and } L(M) \text{ is infinite}\}$

Show there is a decider for M_{HALT}

M_{HALT}: "On input $<M,w>$
1. Build X such that $L(X)$ is infinite iff M halts on w.

2. Run R on $<X>$. If R accepts, accept; if R rejects, reject."

X: "On input y
1. Run M on w. If M halts on w."

Review: Thm 5.4: $\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ is undecidable.

We show E_{TM} directly reduces to EQ_{TM}

Proof: By contradiction.

- Assume that EQ_{TM} is decidable, and some TM M_{EQ} decides it.

- Construct a TM M_{E} that decides E_{TM}:
 - $M_{\text{E}}(\langle M \rangle)$: “
 1. Run $M_{\text{EQ}}(\langle M, \Phi \rangle)$ // Where Φ is the TM that accepts empty set
 2. If M_{EQ} accepts, then accept. If it rejects, then reject. “

- But E_{TM} is undecidable, a contradiction. So the assumption is false and EQ_{TM} is undecidable.
We have examples of languages that are not decidable...

ARE THERE LANGUAGES THAT ARE NOT TURING-RECOGNIZABLE?
Could A_{TM} be not Turing Recognizable?

$A_{TM} = \{<M,w> \mid M \text{ is a TM, } M \text{ accepts } w\}$

- No. We proved it was TR earlier by making this TM:
 - $M_{ATM-Rec}(<M,w>):$
 - Run $M(w)$ and accept if it accepts, reject if it rejects
 - (If it loops that’s ok since this isn’t supposed to be a decider)

- But...what about the complement of A_{TM}?
 - Lets assume (for contradiction) that it is also TR, and has a TM $M_{Co-ATM-Rec}$ that recognizes it
 - Could we use $M_{ATM-Rec}$ and $M_{Co-ATM-Rec}$ to build a decider(!) for A_{TM}?
Thm.: $\overline{A_{TM}}$ is not Turing-recognizable

Proof by contradiction

- Assume $\overline{A_{TM}}$ is TR, and so some TM $M_{Co-ATM-Rec}$ recognizes it.

- We know that A_{TM} is TR, so let $M_{ATM-Rec}$ be a TM that recognizes it.

- We define $M_{ATM-Decider} (<M, w>):$
 1. Run $M_{ATM-Rec} (<M, w>)$ and $M_{Co-ATM-Rec} (<M, w>)$ in parallel.
 2. If $M_{ATM-Rec}$ accepts then accept. If $M_{Co-ATM-Rec}$ accepts, then reject.

Is $M_{ATM-Decider}$ a decider?

A. No

B. Yes, because $M_{ATM-Rec}$ and $M_{Co-ATM-Rec}$ are deciders

C. Yes, since $\overline{A_{TM}}$ is the complement of A_{TM}
Thm.: $\overline{A_{TM}}$ is not Turing-recognizable
Proof by contradiction

• Assume $\overline{A_{TM}}$ is TR, and so some TM $M_{\text{Co-ATM-Rec}}$ recognizes it.

• We know that A_{TM} is TR, so let $M_{\text{ATM-Rec}}$ be a TM that recognizes it.

• We define $M_{\text{ATM-Decider}}(\langle M, w \rangle)$:
 1. Run $M_{\text{ATM-Rec}}(\langle M, w \rangle)$ and $M_{\text{Co-ATM-Rec}}(\langle M, w \rangle)$ in parallel.
 2. If $M_{\text{ATM-Rec}}$ accepts then accept. If $M_{\text{Co-ATM-Rec}}$ accepts, then reject.

• One of the subroutines is guaranteed to accept, by definition of complement, so this machine is a decider for A_{TM}.

• But A_{TM} is undecidable, a contradiction. So the assumption is false and $\overline{A_{TM}}$ is not TR.
Theorem 4.22: A language \(L \) is decidable iff \(L \) is both TR and co-TR

- **L Decidable -> TR and co-TR**
 - Easy proof! Just use the decider to recognize \(L \), so it is TR. Then use the decider again to build a recognizer for \(\overline{L} \), by flipping the accept/reject result.

- **L TR and co-TR -> Decidable**
 - We can use the same run-in-parallel method we did for \(A_{TM} \) and \(\overline{A}_{TM} \) to build a decider for \(L \):
 - Run recognizer TM’s for \(L \) and \(\overline{L} \) in parallel
 - If the TM for \(L \) accepts, accept. If the TM for \(\overline{L} \) accepts, reject.
 - One of these must accept, so we can conclude this is a decider, and accepts \(A_{TM} \) .
Status: Language Hierarchy

- **Regular**
- **Context-Free Decidable**
- **Turing-Recognizable**

CF but not Regular: \(\{0^n1^n \mid n > 0\} \)
 - By pumping lemma (Regular)

Decidable but not CF: \(\{ a^n b^n c^n \mid n > 0\} \)
 - By pumping lemma (CF)

Turing-Recognizable but Not Decidable: \(A_{TM} \)
 - By Diagonalization
 - By Reduction

Not Turing Recognizable: \(\overline{A_{TM}} \)
 - TH 4.22