CSE 105
Theory of Computation

- Professor Jeanne Ferrante
Today’s Agenda

– Descriptions of TM’s
– A Variant of TM’s: Enumerators

Announcements and Reminders:
• HW 5 Due Fri May 6, 11:59 pm
• RQ 6 Due Mon May 9, 11:59 pm
• Exam 2 Review Session Mon May 9, 8 pm - 9:50 pm in Peterson 108
• Exam 2 on Wed May 11, 8:00 pm - 9:50 pm, emphasizing all material since Exam 1
 • Study guide will be out tomorrow
 • Not in your usual classroom: WLH 2001
 • We’ll have BETTER seat assignments!
Review: The Turing Machine

- Given a current state q, current tape symbol a, $\delta \rightarrow$ new state q', new tape symbol z (replaces a), and after write, move “head” L or R (unless try to move off left end of tape)

- On input w, M either:
 1. Enters the accept state q_{acc} and accepts w, or
 2. Enters the reject state q_{rej} and rejects w, or
 3. Does neither 1 nor 2, in which case we say M does not halt on input w, and the input is not accepted

- Language of $M = \{ w \mid w \text{ is accepted by } M \}$

- If a TM always halts, it’s a decider.
Review: Formal Definition of TM

$TM \ M$ is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})$:

• Q is a finite set of states
• Σ is a finite input alphabet (no blank \square)
• Γ is a finite tape alphabet (includes blank \square) with $\Sigma \subseteq \Gamma$
• $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$ transition function
• q_0 is the start state
• q_{acc} is the accept state
• $q_{\text{rej}} (\neq q_{\text{acc}})$ is the reject state
Using the previous definition: Are TM’s as defined Deterministic or Nondeterministic?

A. Deterministic
B. Nondeterministic
C. Sometimes Deterministic
D. Neither Deterministic nor Nondeterministic
E. Don’t Know
Review: Configurations of TM

• A configuration of M is a string uqv where
 – q is a state in Q
 – String uv is the current (nonblank) tape contents
 – M’s head is reading the first symbol of v

• Start configuration: q_0w (w the input)

• Accepting configuration: $uq_{acc}v$

• Rejecting configuration: $uq_{rej}v$

• A halting configuration is an accepting or rejecting configuration
Executing a Transition
Suppose we have at TM with

• \(\Gamma = \{a, \ b, \ c, \ d, \ \square \} \)
• \(Q = \{q_1, \ q_2, \ q_3, \ q_4, q_{\text{acc}}, q_{\text{rej}}\} \)
• \(\delta(q_2, c) = (q_3, d, R) \) and \(\delta(q_2, d) = (q_3, c, L) \).

Let strings \(u, v, x, y \) be in \(\Gamma^* \). Which configuration does the current configuration, \(xqcq_2dy \), yield?

A. \(xq_3ddy \)
B. \(xcdq_3y \)
C. \(xq_3ccy \)
D. \(xq_3ccdy \)
E. None of the above or more than one of the above
Review: Acceptance of a TM

TM M accepts input w if there is a sequence of configurations $c_1 \ldots c_k$ with

1. c_1 is the start configuration
2. c_i yields c_{i+1} by following δ one step
3. c_k is an accepting configuration

Note that all the input w need not be read in order to accept w

$L(M) = \{ w \mid M$ accepts $w\}$
Review: Deciders and Recognizers

• A is *Turing-recognizable* if $A = L(M)$ for some TM M

• If M always halts, M is a *decider*

• A is *decidable* if $A = L(M)$ for a decider TM M. We say M *decides* A.
The Turing-Recognizable Languages are Countable.

A. True

B. False

C. Don’t Know
Some TM’s don’t stop!

TURING MACHINE DESCRIPTIONS
Turing Machine Descriptions

• For Turing Machines, we will often omit the state-transition diagram, or fully specifying the transition function.

• Alternative: An implementation-level description (in words) of how the machine functions.
TM Descriptions

• A *formal* description gives the states, transition function, etc.

• An *implementation-level* description is an English description of how the TM moves its head, stores data on tape, accepts, rejects.

• We’ll be using *implementation-level* descriptions of TM’s often.
Formal Description of TM $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{acc}}, q_{\text{rej}})$

$Q = \{q_{\text{acc}}, q_{\text{rej}}, q_1, \ldots q_{14}\}$

$\Sigma = \{0, 1, \#\}$

$\Gamma = \{0, 1, \#, x, _\}$

δ is given* by diagram

q_1 is the start state

q_{acc}, q_{rej} the accept and reject states

* The diagram is missing the state q_{rej} and transitions to it

FIGURE 3.10
State diagram for Turing machine M_1
Implementation-level description of TM M1

M1 = “On input w:

1. Scan the input from left to right to check whether it is of form \{0,1\}^*\#\{0,1\}^*. If not, *reject*. If the input consists of only #, *accept*.

2. Return the head to the left hand end of tape.

3. Zig-zag across the tape, checking that the first unmarked symbol to the left of the # is the same as the corresponding unmarked symbol following #. If the corresponding symbols do not match, or there is no unmarked symbol left after the #, *reject*. Otherwise if the symbols match, mark them and continue.

4. If all symbols to the left of # have been marked, check for unmarked symbols after the #. If any unmarked symbols remain to the right of the #, *reject*; if none are found, *accept*. ”
Qu: What is $L(M_1)$?

$M_1 = \text{“On input } w:\text{ “}

1. Scan the input from left to right to check whether it is of form $\{0,1\}^*#\{0,1\}^*$. If not, reject. If the input consists of only #, accept.

2. Return the head to the left hand end of tape.

3. Zig-zag across the tape, checking that the first unmarked symbol to the left of the # is the same as the corresponding unmarked symbol following #. If the corresponding symbols do not match, or there is no unmarked symbol left after the #, reject. Otherwise if the symbols match, mark them and continue.

4. If all symbols to the left of # have been marked, check for unmarked symbols after the #. If any unmarked symbols remain to the right of the #, reject; if none are found, accept.”

A. $\{0,1\}^*#\{0,1\}^*$

B. $\{w#w | w \text{ in } \{0,1\}^*\}$

C. $\{#\}^*$

D. $\{0^n#1^n | n \geq 0\}$

E. None of the above
TM M that accepts $\{0,1\}^*$

An implementation-level description is given by $M = \text{“On input } w:\text{”}$

A. Accept w

B. Sweep left across the tape, checking for the condition that w consists of only 0’s and 1’s, until a blank is reached. If the condition is satisfied, accept w, otherwise reject w

C. If the first tape symbol is blank, accept. If not, sweep right across the tape, checking that for the condition that w consists of only 0’s and 1’s. If so accept w; if not, reject w

D. None of the above
TM’s: High-level Descriptions

• As part of a high-level description of a TM M, M can call and run another already defined TM N as a subroutine (procedure)
• The input to TM N inside M should be specified, and should match what is expected by N
• You can also use FA’s and PDA’s as subroutines
The Decidable Languages are closed under Union.

Proof: Let \(M_1 \) and \(M_2 \) be deciders for \(L_1 \) and \(L_2 \). We show there is a decider \(M \) that decides \(L_1 \cup L_2 \) by giving a \textit{high-level} description of TM \(M \).

Construction: Let \(M = \) “On input \(w \):
1. Run \(M_1 \) on \(w \). If \(M_1 \) accepts \(w \), accept. If \(M_1 \) rejects \(w \), then go to 2.
2. Run \(M_2 \) on \(w \). If \(M_2 \) accepts \(w \), accept. If \(M_2 \) rejects \(w \), reject.”

• Correctness: Show \(M \) accepts \(w \) IFF \(M_1 \) accepts \(w \) or \(M_2 \) accepts \(w \)
• Conclusion: \(M \) is a TM that decides \(L_1 \cup L_2 \), therefore the Turing-decidable languages are closed under union. QED.
The Decidable Languages are closed under Intersection.

Proof: Let M_1 and M_2 be deciders for L_1 and L_2. We show there is a decider M that decides $L_1 \cap L_2$ by giving a high-level description of TM M.

Construction: Let $M =$ “On input w:
1. Run M_1 on w. If M_1 accepts w, go to 2. If M_1 rejects w, then reject.
2. Run M_2 on w. If M_2 accepts w, accept. If M_2 rejects w, accept.”

• Correctness: M accepts w IFF M_1 accepts w and M_2 accepts w

• Conclusion: M is a TM that decides $L_1 \cap L_2$, therefore the Turing-decidable languages are closed under \cap. QED.

A. This proof is:
B. Correct
C. Incorrect
D. Don’t know
Are we there yet?

INFINITE LOOPS
A Given Turing Machine M, run on a given string w, has 3 possible outcomes:

1. M accepts w
2. M rejects w
3. M never halts on w, i.e., it “loops” forever

• Why do we have this 3$^{\text{rd}}$ behavior now, but didn’t with DFAs, NFAs nor PDAs?
Group exercise: Construct a TM that NEVER halts

1. Explain what it does in words, giving an implementation-level description.

2. Construct a state diagram.
Smart Printers

ENUMERATORS
Enumerators

TM with attached “printer”

- TM that starts with blank tape
- At any point, it may send string to printer to print
- \(L(E) = \) the set of strings that \(E \) eventually prints out
 - Strings may be printed in any order, and with repetitions
- If \(E \) does not halt, its language may be infinite
True or False?

• There is an enumerator E' whose language is the set of all strings of Σ, for any alphabet Σ.

 a) TRUE
 b) FALSE
 c) Don’t know
Th. 3.21. A language L is Turing-recognizable iff some enumerator enumerates L.

To Show if and only if:

1. If a language L is Turing-recognizable then some enumerator enumerates L.

2. If enumerator E enumerates language L then L is Turing-recognizable.