CSE 105
THEORY OF COMPUTATION

Spring 2016

http://cseweb.ucsd.edu/classes/sp16/cse105-ab/
Today's learning goals

- Decide whether or not a string is described by a given regular expression
- Design a regular expression to describe a given language
- Convert between regular expressions and automata
- Give an example of a non-regular language
- Outline two strategies for proving that there are non-regular languages
Reminders

• **HW 3** due Friday

• **Exam 1** next week
 - Wednesday April 20 evening
 - 8pm-9:50pm
 - **SOLIS 107** (seating chart will be released shortly)
 - One (double-sided) handwritten 3" by 5" index card for notes

• **Review session for exam 1 on Monday April 18, Peterson 108, 8-10**
Proofs of correctness

- Is w in $L(M)$?
- Need to consider sequence of states visited by machine
Proofs of correctness

For $M = (Q, \Sigma, \delta, q_0, F)$ a DFA, with $\delta : Q \times \Sigma \rightarrow Q$ its transition function, define $\delta^* : Q \times \Sigma^+ \rightarrow Q$ recursively as

$$\delta^*(q, a) = \delta(q, a) \quad \text{for } a \in \Sigma$$
$$\delta^*(q, aw) = \delta(\delta(q, a), w) \quad \text{for } a \in \Sigma, w \in \Sigma^+$$

"A nonempty string w is accepted by M iff $\delta^*(q_0, w) \in F$"

A. True
B. False
C. I don't know.
Regular languages

To prove that a set of strings over the alphabet Σ is regular,

- Build a **DFA** whose language is this set.
- Build an **NFA** whose language is this set.
- Use the **closure properties** of the class of regular languages to construct this set from others known to be regular.
 - Union
 - Intersection
 - Complementation
 - Concatenation
 - Flip bits
 - Kleene star
Inductive application of closure

R is a regular expression over Σ if

1. $R = a$, where $a \in \Sigma$
2. $R = \varepsilon$
3. $R = \emptyset$
4. $R = (R_1 \cup R_2)$, where R_1, R_2 are themselves regular expressions
5. $R = (R_1 \circ R_2)$, where R_1, R_2 are themselves regular expressions
6. (R_1^*), where R_1 is a regular expression.

Watch out for overloaded symbols!
Regular expressions

Conventions:
- Σ is shorthand for $\{0, 1\}$ if $\Sigma = \{0, 1\}$
- Parentheses may be omitted
- Precedence: star, then concatenation, then union
- R^+ is shorthand for RR^*, R^k is shorthand for R concatenated with itself k times
- Circle indicated concatenation may be omitted

Which of the following is not a regular expression over $\{0, 1\}$?
A. $(\Sigma \Sigma \Sigma \Sigma)^*$
B. $\Sigma \cap 1$
C. $1^* \emptyset 0$
D. $\varepsilon \varepsilon$
E. I don't know
Syntax \rightarrow Languages

The language described by a regular expression, L(R):

- $L\left(\frac{1}{2}0\frac{1}{2}0\frac{1}{2}0\frac{1}{2}\right) = \{0110, 01\overline{1}0111, \varepsilon\overline{3} = \{w | w_1 = 4k, k \in \mathbb{Z}_{\geq 0}\} \}
- $L\left((3 \cdot 3) \right) = \{ \varepsilon \neq \phi, \varepsilon \}
- $L\left(1^* \phi 0 \right) = \{ \varepsilon = \phi = L(\phi) \}
- $L\left(\overline{1} \right) = \{ \}$
L(R)

Which of the following strings is **not** in the language described by

\[
(((00)^* (11)) \cup 01)^*
\]

A. 00
B. 01
C. 1101
D. ε
E. I don't know
Let \(L \) be the language over \(\{a, b\} \) described by the regular expression

\[
((a \cup \emptyset) b^*)^*
\]

Which of the following is not true about \(L \)?

A. Some strings in \(L \) have equal numbers of a's and b's
B. \(L \) contains the string aaaaaa
C. a's never follow b's in any string in \(L \)
D. \(L \) can also be represented by the regular expression \((ab^*)^*\)
E. More than one of the above.
Regular expressions in practice

- **Compilers**: first phase of compiling transforms Strings to Tokens *keywords, operators, identifiers, literals*
 - One regular expression for each token type

- **Other software tools**: grep, Perl, Python, Java, Ruby, …
"Regular = regular"

Theorem: A language is regular if and only if some regular expression describes it.

Lemma 1.55: If a language is described by a regular expression, then it is regular.

Lemma 1.60: If a language is regular, then it is described by some regular expression.
L(R) to NFA (to DFA)

- Idea: basic regular expressions are easy to implement as DFA, for inductive step of definition, use closure under regular operations.
- E.g.: build NFA recognizing the language described by $(00 \cup 11)^*$
DFA to regular expression

- Idea: use intermediate model **GNFA** whose labels are regular expressions

- E.g.: build regular expression describing language recognized by

\[0^* (0u1)^* \]
All roads lead to … regular sets?

Are there any languages over \(\{0,1\} \) that are not regular?

A. Yes: a language that is recognized by an NFA but not any DFA.

A. Yes: there is some infinite language of strings over \(\{0,1\} \) that is not described by any regular expression.

B. No: all languages over \(\{0,1\} \) are regular because that's what it means to be a language.

C. No: for each set of strings over \(\{0,1\} \), some DFA recognizes that set.

A. I don't know.
Reminders

- **HW 3** due Friday
- **Exam 1** next week
 - Wednesday April 20 evening
 - 8pm-9:50pm
 - **SOLIS 107** (seating chart will be released shortly)
 - One (double-sided) handwritten 3" by 5" index card for notes

- **Review session for exam 1 on Monday April 18, Peterson 108, 8-10**