Today's learning goals

• Use counting arguments to prove the existence of unrecognizable (undecidable) languages.
• Determine and prove whether sets are countable.
• Use diagonalization in a proof of uncountability.
• Use diagonalization in a proof of undecidability.

Exam 2?
A. Easier than exam 1.
B. Harder than exam 1.
C. About what you expected.
Regular

Context-Free

Decidable

Turing-Recognizable

\{a^n b^n | n \geq 0\}

\{a^n b^n a^n | n \geq 0\}
Counting arguments

Before we proved the Pumping Lemma …

We proved there was a set that was not regular because
Counting arguments

Recall: sets A and B have the same size, \(|A| = |B|\) means there is a one-to-one and onto function between them.

A set is countable iff it is either

• finite (has the same size as \(\{0, 1, \ldots, n\}\) for some nonnegative integer \(n\)), or

• has the same size as \(\mathbb{N}\) (can list all and only the elements of the list in a sequence)

OTHERWISE: i.e. uncountable, infinite \& \(|\mathbb{N}|\neq\mathbb{N}|\)
Counting arguments

Which of the following is true?

A. Any two infinite sets have the same size.
B. If A is a strict subset of B and then A and B do not have the same size.
C. If A is a subset of B and B is countable, then A is countable.
D. If A is countable then AxA is not countable.
E. I don't know.
Countable sets

Some examples:

\(\mathbb{N}\)

\(\mathbb{Z}\)

\(\mathbb{Q}\)

\(\{0,1\}^*\)

\(\Sigma^*\) for any alphabet \(\Sigma\)

Corollary: The set of all TMs is countable.

Proof Idea: \(|\{M: M \text{ is a TM}\}| = |\{<M>: M \text{ is a TM}\}|\) and \(<M>\) is a string over the alphabet \(\{0,1,_,(,),\ldots\}\).

Cor: The set of all TM-recognizable langs is countable.
Uncountable sets

Some examples:

- \(\mathbb{R} \)
- \([0,1]\)
- \(\{ \text{infinite sequences of 0s and 1s} \} \)
- \(P(\{0,1\}^*) \).

Diagonalization Proof: Assume towards a contradiction that the set is countable. This gives a correspondence with \(\mathbb{N} \), but we can derive a contradiction.
Proof that $P(\{0,1\}^*)$ not countable

Diagonalization Proof: Assume *towards a contradiction that the set is countable*. This gives a correspondence with \mathbb{N}, but we can derive a contradiction.

<table>
<thead>
<tr>
<th>n</th>
<th>f(n)</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A_1</td>
<td>0 in A iff 0 is not in A_1</td>
</tr>
<tr>
<td>2</td>
<td>A_2</td>
<td>00 in A iff 00 is not in A_2</td>
</tr>
<tr>
<td>3</td>
<td>A_3</td>
<td>0^3 in A iff 0^3 is not in A_3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Given the function f

Define A so it couldn't be in the image of f
Proof that $P(\{0,1\}^*)$ not countable

Given the function f

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
<th>A_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A_1</td>
<td>$0 \in A \iff 0 \not\in A_1$</td>
</tr>
<tr>
<td>2</td>
<td>A_2</td>
<td>$00 \in A \iff 00 \not\in A_2$</td>
</tr>
<tr>
<td>3</td>
<td>A_3</td>
<td>$0^3 \in A \iff 0^3 \not\in A_3$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

A is defined by "$0^n \in A \iff 0^n \not\in A_n$"

BUT since A is a set of strings, it is the image of some int c.

Is $0^c \in A$?
Proof that $P(\{0,1\}^*)$ not countable

A is defined by "0^n in A iff 0^n is not in A_n"

BUT since A is a set of strings, it is the image of some int c.

Is 0^c in A?

Diagonalization???

Self-reference

"Is 0^c an element of $f(c)$?"
Why is the set of Turing-recognizable languages countable?

A. It's equal to the set of all TMs, which we showed is countable.
B. It's a subset of the set of all TMs, which we showed in countable.
C. Each Turing-recognizable language is associated with a TM, so there can be no more Turing-recognizable languages than TMs.
D. More than one of the above.
E. I don't know.
What's the "size" of the set of Turing-decidable languages over fixed Σ?

A. It is finite.
B. It must be countable.
C. It must be uncountable.
D. We haven't proved anything about it yet.
E. I don't know.
Satisfied?

• Maybe not …

• What's a specific example of a language that is not Turing-recognizable? or not Turing-decidable?

• Idea: consider set that, were it to be Turing-decidable, would have to "talk" about itself.
A_{TM}

Recall A_{DFA} = \{<B,w>|B \text{ is a DFA and } w \text{ is in } L(B)\}

A_{TM} = \{<M,w>|M \text{ is a TM and } w \text{ is in } L(M)\}

What is A_{TM}?
A. A Turing machine whose input is codes of TMs and strings.
B. A set of pairs of TMs and strings.
C. A set of strings that encode TMs and strings.
D. Not well defined.
E. I don't know.
Define the TM \(N \):

1. Simulate \(M \) on \(w \).
2. If \(M \) accepts, accept. If \(M \) rejects, reject.
Define the TM \(N = \) "On input \(<M,w> \):
1. Simulate \(M \) on \(w \).
2. If \(M \) accepts, accept. If \(M \) rejects, reject."

What is \(L(N) \)?
A. \(A_{TM} \)
B. Some superset of \(A_{TM} \)
C. \(\{<M,w> \mid M \text{ is a TM and } w \text{ is a string}\} \)
D. I don't know.
\(A_{TM} \)

\[A_{TM} = \{<M,w> \mid M \text{ is a TM and } w \text{ is in } L(M) \} \]

Define the TM \(N = \) "On input \(<M,w> \):
1. Simulate \(M \) on \(w \).
2. If \(M \) accepts, accept. If \(M \) rejects, reject."

Which statement is true?
A. \(N \) decides \(A_{TM} \)
B. \(N \) recognizes \(A_{TM} \)
C. \(N \) always halts
D. I don't know.
A_{TM}

$A_{TM} = \{ <M,w> \mid M \text{ is a TM and } w \text{ is in } L(M) \}$

Define the TM $N = "\text{On input } <M,w>:\n1. Simulate } M \text{ on } w.\n2. If } M \text{ accepts, accept. If } M \text{ rejects, reject."}$

Conclude: A_{TM} is Turing-recognizable.

Is it decidable?
Diagonalization proof: A_{TM} not decidable \textit{Sipser 4.11}

Assume, towards a contradiction, that it is.

I.e. let M_{ATM} be a Turing machine such that for every TM M and every string w,

- Computation of M_{ATM} on $<M,w>$ halts and accepts if w is in $L(M)$.
- Computation of M_{ATM} on $<M,w>$ halts and rejects if w is not in $L(M)$.

Diagonalization proof: A_{TM} not decidable \textit{Sipser 4.11}

Assume, towards a contradiction, that it is.

I.e. let M_{ATM} be a Turing machine such that for every TM M and every string w,

- Computation of M_{ATM} on $<M,w>$ halts and accepts if w is in $L(M)$.
- Computation of M_{ATM} on $<M,w>$ halts and rejects if w is not in $L(M)$.

If N is TM with $L(N) = \{ w \mid w \text{ starts with 0} \}$ and N does not halt on all strings not in $L(N)$, what is result of computation of M_{ATM} on $<N, 11>$?

A. M_{ATM} halts and accepts.
B. M_{ATM} halts and rejects.
C. M_{ATM} loops.
D. I don't know.
Diagonalization proof: A_{TM} not decidable

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM $D = "\text{On input } <M>:"
1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."
Diagonalization proof: A_{TM} not decidable \textit{Sipser 4.11}

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM $D =$ "On input $<M>$:
1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."

Is D a decider?
A. Yes: it's a TM that always halts.
B. No: it's a well-defined TM but may loop.
C. No: it's not even a well-defined TM.
D. I don't know.
Diagonalization proof: A_{TM} not decidable

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM $D = "On input <M>:"

1. Run M_{ATM} on $<M, <M>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept.

If M_0 is a TM with $L(M_0) = \emptyset$, what is result of computation of D with input $<M_0>$?

A. Halt and accept.
B. Halt and reject.
C. Loop.
D. I don't know.
Diagonalization proof: A_{TM} not decidable

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM $D = \text{"On input } <M>:\n$
1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept.

If M_1 is a TM with $L(M_1) = \Sigma^*$, what is result of computation of D with input $<M_1>$?
A. Halt and accept.
B. Halt and reject.
C. Loop.
D. I don't know.
Diagonalization proof: A_{TM} not decidable

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM $D = "On input <M>:"

1. Run M_{ATM} on <M, <M>>.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept.

Consider running D on input <D>. Because D is a decider:

- either computation halts and accepts …
- or computation halts and rejects …
{a^n b^n | n ≥ 0}

{a^n b^n a^n | n ≥ 0}

A_{TM}

Regular

Context-Free

Decidable

Turing-Recognizable
Do we have to diagonalize?

• Next time: undecidability proofs without diagonalization (or counting).