Vehicle Localization based on Lane Marking Detection

Yuncong Chen
UCSD
HRI intern 2014
Overview

Input

- Odometry (noisy GPS / IMU for now)
- Monocular camera
- Lane level map

Goal

- lateral localization on highway
- give correct estimate on merge / split points

Assumptions

- road surface is flat
Coordinate System

GPS
Longitude / Latitude

Map
California State Plane

Algorithm
North / East / Down

Local plane origin = first gps position
Map

no semantic information, interpolate
Particle Filter

- **Motion model**
 \[P(x_t|x_{t-1}, u_t) \]
 - previous pose
 - current pose
 - GPS / odometry

- **Observation model**
 \[P(o_t|x_t, m) \]
 - current image
 - map

\(\text{pose} = (\text{north, east, yaw}) \)
\(\text{map} = \text{a set of points labeled by marking groups} \)
Particle Filter

- **propagate** using motion model
- weight each particle by its likelihood computed from observation model
- resample particles according to their weights

all with same weight here
Motion Model \[P(x_t | x_{t-1}, u_t) \]

- rotations and translation computed from odometry
Observation Model $P(o_t | x_t, m)$

project map points to bird’s-eye view

Given the vehicle pose, our bird’- eye view image is expected to look like this ...
Observation Model \[P(o_t | x_t, m) \]

project map points to bird’s-eye view

Given the vehicle pose, our bird’- eye view image is expected to look like this ...
Observation Model \(P(o_t | x_t, m) \)

... while what we really observe is ...

inverse perspective transform \[\rightarrow \]

filter \[\rightarrow \]

Hough line fitting
Observation Model \(P(o_t|x_t, m) \)
Maximum Bipartite Matching

expected

observed
... not so simple

some map lines may not be detected in the image

order must be consistent

matches cannot be too far away

candidate matchings
Likelihood Score

$$P(\text{detected lines} \mid \text{map lines}) = \prod_{i \in \text{matched}} P(l_i \mid m_i) \cdot \prod_{i \in \text{unmatched}} p_0$$

$$P(l_i \mid m_i) = e^{-\eta d(l_i,m_i)}$$

score = $\frac{1}{m} \log P(\text{detected lines} \mid \text{map lines})$
Speed Up Matching

- Sample to obtain a very small set of candidate matchings
- For the rest of the particles, only evaluate these candidate matchings
- Exploit spatial correlation of matchings among nearby particles
- Preferable to sample particles spread out in space.
Speed Up Matching search in previous map lines’ extent

- Keep track of extent of every map line
- For a new set of detected lines, search matchings for each map line only within its extent
- Exploit **temporal invariance** of matchings for a single particle at different times
Process Images

$P(o_t | x_t, m)$

- inverse perspective transform
- filter
- Hough line fitting
Inverse Perspective Mapping

Lane Map, NED coordinate system

pitch

height

yaw

measured by hand
Inverse Perspective Mapping
Inverse Perspective Mapping
Inverse Perspective Mapping
Top-hat Filter

high response if one side of an edge is very dark
Top-hat Filter

- High response if one side of an edge is very dark.
- More robust for detecting dark-bright-dark patterns.

Threshold &
Steerable Filter Second derivative of Gaussian

\[G_\theta = \cos^2(\theta) \cdot \frac{\partial^2 G}{\partial x^2} + \sin^2(\theta) \cdot \frac{\partial^2 G}{\partial y^2} - 2\cos(\theta)\sin(\theta) \cdot \frac{\partial^2 G}{\partial x \partial y} \]
Map-guided Filtering

SC

logic OR
Steerable vs. Top-hat noisy image
Take Advantage of Map

Observation model
- map-guided image filtering
- map-guided line fitting

Motion model
- more likely to go along the current lane
- cannot move beyond road edges
Hough Transform Line Fitting

25 line segments detected by OpenCV’s probabilistic Hough transform

6 lines remains after merging
Experiments on straight lanes

avg lateral error: 0.22, max: 1.35
Straight lanes
Deal with Curved Lanes

avg lateral error: 0.25, max: 0.98
Deal with Curved Lanes

- detect whether the line is a curve (i.e. residual of a linear regression is large)
- if so, match only the bottom segment
Steerable vs. Top-hat

Steerable
- Avg lateral error: 0.23
- Max lateral error: 1.15

Top-hat
- Avg lateral error: 0.2
- Max lateral error: 0.86
Steerable vs. Top-hat

Steerable
- Avg lateral error: 0.3, max 0.79
- Avg lon. error: 0.7, max 1.55

Top-hat
- Avg lateral error: 0.47, max 1.8
- Avg lon. error: 0.67, max 2.83
Effect of the Number of Particles
Issues and Extensions

- shadows
- more general markings (urban environment)
 - stop-lines (longitudinal correction)
 - curved lanes
 - model-free
- investigate how number of particle affects performance