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ABSTRACT

This paper explores a novel large margin approach to learning a lin-
ear transform for dimensionality reduction in speech recognition.
The method assumes a trained Gaussian mixture model for each
class to be discriminated and trains a dimensionality-reducing lin-
ear transform with respect to the fixed model, optimizing a hinge
loss on the difference between the distance to the nearest in- and
out-of-class Gaussians using stochastic gradient descent. Results are
presented showing that the learnt transform improves state classifi-
cation for individual frames and reduces word error rate compared
to Linear Discriminant Analysis (LDA) in a large vocabulary speech
recognition problem even after discriminative training.

Index Terms— Linear discriminant analysis, LDA, speech fea-
ture transformation, margin Mahalanobis distance, stochastic gradi-
ent descent.

1. INTRODUCTION

Dimensionality reduction is a fundamental aspect of many machine
learning and pattern recognition tasks. Many researchers have inves-
tigated methods of reducing the dimensionality of high-dimensional
data to avoid the curse of dimensionality and improve modelling
fidelity. Large vocabulary speech recognition is one problem for
which dimensionality reduction is a standard technique. Although
many variants have been proposed, linear discriminant analysis
(LDA) is still widely used to project speech features from a high-
dimensionality space to one with fewer dimensions where proba-
bility densities can be better modelled by mixtures of multivariate
Gaussian distributions [1]. Since LDA makes the assumption that
each class can be modelled by a single Gaussian, with common co-
variance, which is not valid empirically, we are interested in investi-
gating better methods of dimensionality reduction.

In this paper we investigate a new way of constructing a
dimensionality-reducing linear projection to improve the modelling
of the mixtures of Gaussians in a speech recognition system.

2. PREVIOUS WORK

Linear discriminant analysis (LDA) [2] is a fundamental technique
which has spawned many variants. LDA calculates a dimensionality-
reducing linear projection that maximizes a class separation criterion
by solving a generalised eigen system. Heteroscedastic linear dis-
criminant analysis (HLDA) [3] relaxes the equal-covariance assump-
tion of LDA by taking into account the covariance of each class,
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but still assumes that each class is Gaussian-distributed. A mixture
of Gaussians has been used to train LDA [4], but this work simply
treated each mixture component as a separate class and found per-
formance to be worse than treating HMM states as separate classes.
Demuynck et al. [5] show failure modes of HLDA and describe
MMI and MCE criteria for linear discriminant analysis.

The technique of Semi-tied covariance (STC) matrices [6] com-
putes an optimal rotation of the feature space for the model, aligning
the space so that diagonal covariance matrices model the data well.
STC is not a dimensionality reduction technique, since it finds a ro-
tation within a given subspace, but in conjunction with STC, LDA is
found to perform nearly as well as HLDA with STC.

There has also been work on modifying LDA to weight the sum
of the between-class scatter matrices in the LDA eigen system, in-
cluding weighting by distance and weighting according to pairwise
classification error [7]. Hastie et al. [8] have described a regular-
ized version of LDA called Penalized Discriminant Analysis. De la
Torre [9] relates LDA to PCA and a variety of other techniques as
examples of a least squares weighted kernel reduced rank regression
(LS-WKRRR) formulation. Other authors have used neural network
architectures, particularly bottle-neck autoencoders [10] for nonlin-
ear dimensionality reduction of speech features.

In contrast to these methods, our model takes into account our
assumption that each class can be modelled with a mixture of Gaus-
sians, (as opposed to a single Gaussian) which is exactly the model
that is trained affer dimensionality reduction. While some work has
used a mixture of Gaussians in training dimensionality reduction
transformations, this has focused on classification problems without
the scale and time-dependence of speech recognition, for instance
Peltonen et al. [11] maximize the likelihood of the training data by
alternately optimizing the subspace and (by Expectation Maximiza-
tion) the mixture model parameters. Torkkola [12] maximizes a Mu-
tual Information criterion and uses a GMM represenation to reduce
the computation.

Many algorithms have been proposed in the more general class
of distance metric learning algorithms. Here, the goal is to trans-
form, either linearly or nonlinearly, the feature representation of an
object such that pairs of objects in the derived space have more se-
mantically meaningful distances. If one constrains the transforma-
tion to be a mapping into a lower dimensional space than the original
one, then this can be used as a dimensionality reduction technique, as
in LDA. However, many methods [13, 14] learn a Mahalanobis dis-
tance so the dimensionality stays the same. Other nonlinear methods
such as LLE [15] do learn a low-dimensional map, but it only applies
to the data that it was trained on and does not readily generalize to
out-of-sample points. In constrast to LDA the interesting thing about
many of these metric learning approaches is that they do not make



a single Gaussian per-class assumption. Typically, metric learning
trains on pairs of examples, and concentrates not on all pairs of dis-
tances, but only enforcing that points in the same class that are also
near each other (by finding the k nearest neighbors in input space)
should be mapped close to each other. As we will see, this approach
is related to the method we use in this work.

3. ALGORITHM

Contrary to LDA, we start with the assumption that each class in
our labeled training set will be modelled with a mixture of Gaus-
sians. Our aim is to find an optimal linear mapping A € R*P
from the original D-dimensional space to the lower d-dimensional
space where Gaussian mixture modelling will be performed. To do
this, we first assume that we already have an initial matrix A° (from
LDA+STC) and a trained Gaussian mixture model. Our goal will
then be to improve the parameters A (compared to A®) with respect
to the mixture model parameters. Subsequently, we can then try
to improve the mixture model parameters with respect to A. We
denote the Gaussian mixture model parameters as having means

C = {c; € R%} and inverse covariance matrices ¥; € R**¢,
t = 1,...,|C| where there are |C| Gaussians overall, and each
Gaussian is assigned to a class label Y; € {1,...,k}.

For a Gaussian mixture model with good discriminative ability,
for a given example frame x with known label y we should expect
that:
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That is, the closest Gaussian to the example belongs to the same
class as the example’s label. If we can learn the parameters A such
that as many of these constraints are fulfilled as possible, then we
are in effect learning a linear transform that takes into account the
assumption that our classes should be modelled by the mixture of
Gaussians.

We thus write the objective function of our dimensionality re-
duction criterion as follows:
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where we have a training set (2;, ¥:)i=1,....m € RP x {1,...,k}of

labeled examples, and 7 is the margin (a hyperparameter chosen in
advance). Here, we have approximated counting the constraints (1)
using the margin-based hinge loss, which is a well-known technique
[13, 14].

We define F'(z;,y;) to be the set of candidate Gaussians of the
same class (“friends”™) and E(x;, y;) to be the set of candidate Gaus-
sians of differing classes (“enemies”) which the minimums operate
over. Following Equation 1 we would define F(z;,y;) = {j : Y; =
yi} and E(zi,y;) = {j : Y; # yi} however as we shall see this
makes the optimization problem too expensive as large-scale speech
systems can have hundreds of thousands of Gaussians. Hence, we
make the following choice instead: F'(x;,y;) is defined as a “short-
list” of the closest . Gaussians to A%z; (precomputed using the ini-
tial linear transform) that belong to class y; and E(z;,y;) is simi-
larly the closest 7 Gaussians to A%z; that do not belong to class ;.
We choose n to be small (e.g. 40), and because we use A® we can
compute this fixed set in advance (before we optimize the parameters
using our objective function). During optimization, we still search

Algorithm 1 Online LTGMM Optimization

Input: labeled data (z;, y;), Gaussian mixture model (C, ¥,Y"),
initial matrix A°, margin 7 and learning rate 7.
fori =1tomdo
Compute shortlists E(x;,y;) and F(x;,y;) using C, ¥, Y and
A°.
end for
Initialize A + A°.
repeat
Pick a random labeled example (z;, y;)
Compute closest “friend” and “enemy”” Gaussians:
7 =argmingcp,, . (Azi — cr) "V (Axi — cy)
e* = argmineeE(zi,yi)(A:ci — ce)T\IJe(Axi —ce)
if 7+ (Azi — cpe) " Ups (Amy — cpe ) —
(A — cox) " Wor (A — cox) > 0 then
Make a gradient step:
A+ A—n (\I!f* (Az; — ¢ ) — Wex (Azy — ce*))a:iT
end if
until validation error does not improve.

for the closest Gaussians with respect to the current parameters A,
but searching over the shortlists rather than all Gaussians is much
faster.

We note that one might ask how important it is to have a good
approximation of these minima, given that they are expensive to
compute? Indeed, other algorithms for example for metric learn-
ing [13, 14] methods are faced with a similar problem (see Section
2) but their approximations avoid computing minimums altogether.
We will show in our experiments that such coarse approximations do
not work well for our task, and in fact attempting to find the closest
Gaussians is very important for good performance.

Unfortunately, our optimization problem has no closed form so-
lution, but we can still optimize it using stochastic gradient descent
[16]. Pseudocode of our method, called Linear Transform for a
Gaussian Mixture Model (LTGMM), is given in Algorithm 1. Fi-
nally, after learning the transform, it is possible to fix A and then
re-learn the parameters C, ¥, Y of the mixture model, as described
in Section 4.2.

4. EXPERIMENTS

Experiments were conducted with Google’s Voice Search system
[17]. This is a large vocabulary speech recognition system which
recognizes user queries spoken into a mobile telephone and returns
the Google search results for the recognized text. For this paper
we experimented exclusively with the US English Voice Search data
and recognizer. For training we use 1.9 million manually-transcribed
anonymized utterances and 10 million utterances transcribed with
our recognizer. A further 27,000 manually transcribed utterances
were used for testing. The language model has of the order of 1
million tokens. All utterances were randomly selected among those
received by our live production system.

This system has 41 phones and 7959 decision tree cross-word
triphone states and uses a finite state transducer for search. Speech
is represented as 13-dimensional PLP cepstral coefficients, with on-
line cepstral mean normalisation. Training consists of maximum
likelihood (ML) training using 39 dimensional PLP, delta and delta-
delta features, followed by LDA to reduce dimensionality from 117
(a window of 9 frames) to 39 and maximum likelihood retraining,



Method State Error rate (%)
LDA 60.05
LTGMM 58.13
LTGMM - no min over E(z,y) 73.92

Table 1. Context independent state classification error rates for orig-
inal transform before and after training LTGMM with or without
closest negative Gaussian selection. (7959 state model.)

with a global semi-tied covariance matrix transformation [6], fol-
lowed by boosted maximum mutual information (BMMI) discrimi-
native training [18].

Frame classification experiments with this model measured the
error rate in assigning 10,000 speech frames, from an independent
development set, to the 126 context-independent states, with ground
truth given by forced alignment of the transcript. In testing, the pro-
jected frames were assigned to the most likely Gaussian and then la-
belled according to the context dependent state whose mixture model
contained that Gaussian. Context dependent states were mapped to
the corresponding context independent state.

In all experiments, LTGMM was initialized with the LDA pro-
jection.

4.1. Negative example selection

In a preliminary experiment, two methods of selecting the negative
Gaussian were compared. Results are shown in Table 1. It was found
that choosing the nearest negative example in Equation 2 was nec-
essary to achieve reduction in the state classification rate. Choos-
ing a random negative Gaussian from the shortlist failed to decrease
the state classification error rate. Figure 1 shows the average state
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Fig. 1. State classification error rate against training epoch (in mil-
lions) for a variety of (1, 7) hyperparameter values.

classification rate evaluated periodically during training, for differ-
ent values of 7 and 7. In practice n = 107¢ and 7 = 10 provided
good results on the frame classification task. For these parameters a
single machine can complete around 450 epochs per second, or 10°
epochs in 40 minutes. HLDA, with 200 iterations of gradient descent
took over 4 hours on a similar machine.

Figure 2 shows the effect on the classification error for each state
separately. The initial training is shown in the left-hand plot. All the
states lie close to or below the line y = =z, indicating that classi-
fication improves for all classes. However silence 98 is far below
the line indicating that much of the net improvement is just from
improving silence classification. After excluding silence from the
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Fig. 2. Per-state state classification error counts before (z axis) and
after (y axis) retraining with LTGMM. (left) training included si-
lence frames. (right) training excluded silence frames.

Method | State Error rate (%) | WER
LDA 60.05 14.2
LTGMM 59.32 14.1

Table 2. Word error rate results of training LTGMM using the 7959
state baseline model. No silence frames were used in LTGMM train-
ing.

training, we find that class 98 is still better classified. Table 2 shows
state classification and word error rates for the original LDA trans-
form and the LTGMM-trained transform after training without si-
lence frames. The transform used was the one with minimum de-
velopment set phone classification error rate. The development error
rate was reevaluated for each model every few minutes during train-
ing. A small reduction is seen in both frame classification and word
error rates.

4.2. Retraining

Although the LTGMM optimization is constructed to improve the
linear projection with respect to the current acoustic model, having
constructed the projection we can retrain the acoustic model. Fig-
ure 3 shows the training schemes that have been applied, with circled
numbers showing the systems evaluated. The baseline ML + BMMI
training is @.

These experiments were carried out on a 10,068 state model
trained similarly on 1.7M automatically transcribed utterances
(about 1700 hours of speech) which allowed for a reasonable turn-
around for retraining experiments. Word error rates are show in Ta-
ble 3 for the full large vocabulary voice search task with decoding
parameters tuned for maximum accuracy. For these experiments a
new manually-transcribed 27,000 utterance (over 150,000 words)
test-set and new language model were used that both matched the
more recent training data.

With the 10,068-state model, a linear projection was trained
with LTGMM as in the previous section and tested with the origi-
nal model @. In addition, a new set of Gaussian mixture models was
trained using the same training procedure as was previously used
after LDA (Viterbi ML training followed by BMMI) but using the
LTGMM transform @. This is contrasted with similar training after
HLDA @. All CD retraining started with the alignments from the
CD model marked * in Figure 3.

As can be seen from Table 3, as in the previous experiment, the
LTGMM transform performs slightly better than the original LDA
linear transform. After ML retraining with STC and discriminative
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Fig. 3. Training alternatives explored with the 10068 state model,
composed of context independent (CI) and context dependent (CD)
maximum likelihood (ML) training and boosted MMI (BMMI).
@. . .@ are the evaluated systems of Table 3.

Cl Retrain )

Method ML BMMI
WER % | WER %
LDA © 222 16.9
HLDA @ 22.0 16.6
LTGMM + original GMM model ® - 16.8
LTGMM + retrained GMM @ 22.1 16.6

Table 3. Word error rates after training the linear transform A using
LTGMM and subsequently retraining the mixture model parameters
with full Viterbi training followed by BMMI. These are compared to
baseline systems with LDA and HLDA transforms. @...® are the
systems of Figure 3.

training with BMMI the model using the LTGMM transform outper-
forms the seed LDA transform but the word error rate is the same as
for HLDA.

5. CONCLUSIONS

We have shown that we can exploit the non-Gaussian distribution of
speech states to learn an improved linear transformation for speech
recognition. Compared to LDA, the learnt transform can improve
both state classification accuracy and overall speech word error rate
on a large vocabulary task, and delivers similar performance to
HLDA. Improvements were seen both while keeping the mixture
model fixed and after retraining the mixture model. Further itera-
tions of retraining A and ¢;, U; parameters may bring about further
improvements but have not yet been attempted.

In future work, we have begun to investigate learning nonlin-
ear transformations instead of the linear transformation used here.
This technique might also be applied to dimensionality reduction on
higher-dimensional features than the conventional PLP features used
here.
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