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Abstract. We analyze the “query by committee” algorithm, a method for filtering informative
queries from a random stream of inputs. We show that if the two-member committee algorithm
achieves information gain with positive lower bound, then the prediction error decreases exponen-
tially with the number of queries. We show that, in particular, this exponential decrease holds for
query learning of perceptrons.
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1. Introduction

Most of the research on the theory of learning from random examples is based on
a paradigm in which the learner is both trained and tested on examples drawn at
random from the same distribution. In this paradigm the learner is passive and has
no control over the information that it receives. In contrast, in the query paradigm,
the learner is given the power to ask questions. What does the learner gain from
this additional power?

Study of the use of queries in learning (Valiant,1984, Angluin,1988), has mostly
concentrated on algorithms for ezact identification of the target concept. This
type of analysis concentrates on the worst case behavior of the algorithm, and no
probabilistic assumptions are made. In contrast, we are interested in algorithms
that achieve approximate identification of the target, and our analysis is based
on probabilistic assumptions. We assume that both the examples and the target
concept are chosen randomly. In particular, we show that queries can help accelerate
learning of concept classes that are already learnable from just unlabeled data.

This question was previously studied by (Eisenberg & Rivest,1990) in the PAC
learning framework. They give a negative result, and show that, for a natural set
of concept classes, which they call “dense in themselves”, queries are essentially
useless. They show that giving the learner the ability to ask membership queries
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(questions of the type “what is the label of the point #7”) in this context does not
enable the learner to significantly reduce the total number of labeled examples it
needs to observe. The reason is that if the learner observes only a small number of
examples, either passively or actively, then it can not be sensitive to slight changes
in the target concept and in the underlying distribution. An adversary can alter
the distribution and the target in a way that will not cause the learner to change
its hypothesis, but will increase the error of this hypothesis in a significant way.
In this paper we show how some concept classes that are dense in themselves can
be learned efficiently if we allow the learner access to random wunlabeled examples.
This added capability enables the learner to maintain its sensitivity to the input
distribution, while reducing the number of labels that it needs to know.

Baum(Baum,1991), proposed a learning algorithm that uses membership queries
to avoid the intractability of learning neural networks with hidden units. His al-
gorithm is proved to work for networks with at most four hidden units, and there
is experimental evidence(Baum & Lang,1992) that it works for larger networks.
However, when Baum and Lang tried to use this algorithm to train a network
for classifying handwritten characters, they encountered an unexpected problem
(Baum & Lang,1992). The problem was that many of the images generated by the
algorithm as queries did not contain any recognizable character, they were artificial
combinations of character images that had no natural meaning. The learning al-
gorithm that is analyzed in this paper uses random unlabeled instances as queries
and in this way may avoid the problem encountered by Baum’s algorithm.

In the lines of work described above, queries are explicitly constructed. In con-
trast, our work is derived within the query filtering paradigm. In this paradigm,
proposed by (Cohn, Atlas & Ladner,1990), the learner is given access to a stream of
inputs drawn at random from the input distribution. The learner sees every input,
but chooses whether or not to query the teacher for the label. Giving the learner
easy access to unlabeled random examples is a very reasonable assumption in many
real-life contexts. In applications such as speech recognition, it is often the case that
collecting unlabeled data is a highly automatic process, while finding the correct
labeling of the data requires expensive human work. Our algorithm uses all of the
unlabeled examples and in this way overcomes the problems pointed out by Rivest
and Eisenberg. Learning becomes an interactive process: rather than requesting
the human to label all the examples in advance, we let the computer choose the
examples whose labels are most informative. Initially, most examples will be infor-
mative for the learner, but as the process continues, the prediction capabilities of
the learner improve, and it discards most of the examples as non-informative, thus
saving the human teacher a large amount of work.

In (Cohn, Atlas & Ladner,1990) there are several suggestions for query filters
together with some empirical tests of their performance on simple problems. In
(Seung, Opper & Sompolinsky,1992) the authors suggested a filter called “query by
committee,” (QBC) and analytically calculated its performance for some perceptron-
type learning problems. For these problems, they found that the prediction error
decreases exponentially fast in the number of queries. In this work we present a
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more complete and general analysis of query by committee; and show that such an
exponential decrease is guaranteed for a general class of learning problems.

The problem of selecting the optimal examples for learning is closely related to the
problem of experimental design in statistics (see e.g. (Fedorov,1972, Atkinson,1992)).
Experimental design is the analysis of methods for selecting sets of experiments,
which correspond to membership queries in the context of learning theory. The
goal of a good design is to select experiments in a way that their outcomes, which
correspond to labels, give sufficient information for constructing a hypothesis that
maximizes some criterion of accuracy. One natural criterion is the accuracy with
which the parameters that define the hypothesis can be estimated (Lindley,1956).
In the context of Bayesian estimation a very general measure of the quality of a
query is the reduction in the entropy of the posterior distribution that is induced
by the answer to the query. Similar suggestions have been made in the perceptron
learning literature(Kinzel & Rujan,1990). A different experimental design criterion
is the accuracy with which the outcome of future experiments, chosen from some
constrained domain, can be predicted using the hypothesis. This criterion is very
similar to criteria used in learning theory. Both criteria are important for us in
this paper. We show that while in the general case the two are not necessarily re-
lated, they are related in the case of the query by committee algorithm. Using this
relation we prove the efficiency of the algorithm for some specific concept classes.

The results presented in this paper are restricted to a rather limited set of learning
problems. The main restriction is that the concepts are assumed to be deterministic
and noiseless. In the summary we list what we think are the natural extensions of
our analysis.

The paper is organized as follows. In Section 2 we present the Bayesian frame-
work of learning within which we analyze our algorithm. In Section 3 we present
some simple learning problems and demonstrate a case in which the information
gain of a query is not the relevant criterion when we are interested in prediction
quality. In Section 4 we describe the query by committee algorithm. In Section 5
we prove that there is a close relation between information gain and prediction
error for QBC. Using this relation we show in Section 6 that the prediction error
decreases exponentially fast with the number of queries for some natural learning
problems. In Section 7 we give a broader view on using unlabeled examples for
accelerating learning, and in Section 8 we summarize and point to some potential
future directions.

2. Preliminaries

We work in a Bayesian model of concept learning (Haussler, Kearns & Schapire,1994).
As in the PAC model, we denote by X an arbitrary sample space over which a dis-
tribution D is defined. In this paper we concentrate on the case where X is a
Euclidean space R%. Each concept is a mapping ¢ : X — {0,1} and a concept class
C is a set of concepts. The Bayesian model differs from the PAC model in that we
assume that the target concept is chosen according to a prior distribution P over
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C and that this distribution is known to the learner. We shall use the notation
Pryep(-) to denote the probability of an event when # is chosen at random from X
according to D.

We assume that the learning algorithm has access to two oracles: Sample and
Label. A call to Sample returns an unlabeled example z € X | chosen according to
the (unknown) distribution D. A call to Label with input «, returns ¢(z), the label
of  according to the target concept. After making some calls to the two oracles, the
learning algorithm is required to output a hypothesis h : X — {0,1}. We define the
expected error of the learning algorithm as the probability that h(z) # ¢(z), where
the probability is taken with respect to the distribution D over the choice of z, the
distribution P over the choice of ¢ and any random choices made as part of the
learning algorithm or of the calculation of the hypothesis 2. We shall usually denote
the number of calls that the algorithm makes to Sample by m and the number of
calls to Label by n. Our goal is to give algorithms that achieve accuracy e after
making O(1/¢) calls to Sample and O(log1/¢) calls to Label.

In our analysis we find it most convenient to view the finite number of instances
that are observed by the learning algorithm as an initial segment of an infinite
sequence of examples, all drawn independently at random according to D. We
shall denote such a sequence of unlabeled examples by X = {z1,z2...}, and use
()?, c()?)) = {(x1,e(z1)), (x2, c(x2)} ...} to denote the sequence of labeled examples
that is generated by applying ¢ to each z € X. We use X1, to denote the sequence
of the first m elements in X. We use the terminology of (Mitchell,1982), and define
the version space generated by the sequence of labeled examples ()?Lm, c()?lm))
to be the set of concepts ¢/ € C that are consistent with ¢ on X, i.e. that ¢/(z;) =
c(z;) for all 1 < ¢ < m. We denote the version space that corresponds to the first
labeled examples by V; = V(<X1...i, c()?lz))) The initial version space, Vo = V (),
is equal to C. The version space is a representation of the information contained in
the set of labeled examples observed by the learning algorithm. A natural measure
of the progress of the learning process is the rate at which the size of the version
space decreases. The instantaneous information gain from the ith labeled example
in a particular sequence of examples is defined to be —logPrp(V;)/Prp(Vi—1).
Summing the instantaneous information gains over a complete sequence of examples
we get the cumulative information gain, which is defined as

The natural measure of the information that we expect to gain from the label of
an unlabeled example is the expected instantaneous information gain taken with
respect to the probability that each one of the two labels occurs. Let pg be the
probability that the label of x,, is 0, given that ¢ € V,,,_; and let V.2 be the version
space that results from the label z,, being 0. Define p; and V;! in the corresponding
way for the case ¢(z,,) = 1. We define the expected information gain of z;, given
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Vi_1, to be:

. Prp (V) Prp (V)
z;|Vic1) = —polog ————+~ — p1 log ———"* ’
GlalViaa) = =polog 5ty P8 b ¥

= —pologpo — (1 — po)log(1 — po) = H(po) ,

where H(p) denotes the Shannon information content of a binary random variable
whose probability of being 1 is p. We shall use log base 2 in our definition and
measure the expected information gain in bits.! The maximal information gain from
a single label is one bit. The information gain is thus a very attractive measure
of the gain that can be expected from asking Label for the label of an example.
However, as we show in Section 3, this measure, by itself, is not sufficient for
guaranteeing a large reduction in the expected prediction error of the algorithm.

The “Gibbs” prediction rule is to predict the label of a new example & by picking
a hypothesis h at random from the version space and labeling z according to it. The
random choice of h is made according to the prior distribution P restricted to the
version space. It is a simple observation (see (Haussler, Kearns & Schapire,1994)),
that the expected error of this prediction error is at most twice larger than the
expected error of the optimal prediction rule which is the Bayes rule. We shall
assume that our learning algorithm has access to an oracle, denoted Gibbs, which
can compute the Gibbs prediction for a given example z € X and version space
V C C. Each time Gibbs(V, z) is called, a hypothesis h € C is chosen at random
according to the distribution P restricted to V', and the label A(z) is returned. Note
that two calls to Gibbs with the same V' and z can result in different predictions.
The main result of the paper is that a simple algorithm for learning using queries,
that uses the Gibbs prediction rule, can learn some important concept classes with
accuracy that is exponentially small in the number of calls to Label.

3. Two simple learning problems

In this section we discuss two very simple learning problems. Our goal here is to
give examples of the concepts defined in the previous section and to show that
constructing queries solely according to their expected instantaneous information
gain is not a good method in general.

Consider the following concept class. Let X = [0,1], and let the associated
probability distribution D be the uniform distribution. Let the concept class C,
consist of all functions of the form

Wi ={o w3t ®)

w>x

where w € [0,1]. We define the prior distribution of concepts, P to be the one
generated by choosing w uniformly from [0, 1].

The version space defined by the examples {{(z1, c(z1)),. .., (m,c(zm))} is (iso-
morphic to) the segment V; = [max(x;|c(2;) = 0), min(z;|c(2z;) = 1)]. Let us denote
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Figure 1. A figure of the version space and the examples that achieve maximal information gain
for the two threshold learning problem defined below.

by &; the ratio of the probabilities of the version space before and after observing
the ith example, i.e. & = PrpV;/PrpV;_;. The instantaneous information gain of
the example (;, ¢(z;)) is — log&;. Given an unlabeled example, the expected instan-
taneous information gain from z; is H(¢;). Examples that fall outside the segment
have zero expected information gain, while the example that divides the segment
into two equal parts obtains the highest possible expected information gain of one
bit. This agrees with our intuition because the labels of examples that fall out-
side the segment are already completely determined by previous labeled examples,
while the label of the example that falls in the middle of the version space interval
is least predictable. It is easy to show that the probability of a prediction error for
the Gibbs prediction rule is equal to the length of the segment divided by three.
Thus, if the learner asks for the label of the example located in the middle of the
segment, it is guaranteed to halve the error of the Gibbs prediction rule. In this
case we see that asking the oracle Label to label the example that maximizes the
expected information gain guarantees an exponentially fast decrease in the error of
the Gibbs prediction rule. In contrast, the expected prediction error after asking
for the labels of n randomly chosen examples is O(1/n).

The question is whether constructing queries according to their expected infor-
mation gain is a good method in general, i.e. whether it always guarantees that the
prediction error decreases exponentially fast to zero.
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The answer to this question is negative, to see why this is the case consider the
following, slightly more complex, learning problem. Let the sample space be the set
of pairs in which the first element, ¢, is either 1 or 2, and the second element, z, is a
real number in the range [0, 1],i.e. 2 € X = {1,2} x [0, 1]. Let D be the distribution
defined by picking both ¢ and z independently and uniformly at random. Let the
concept class be the set of functions of the form

1, w; <z

alir) = {y W57, (@

where @ € [0, 1]2. The prior distribution over the concepts is the one generated by
choosing @ uniformly at random from [0, 1]2. In this case each example corresponds
to either a horizontal or a vertical half plane, and the version space, at each stage
of learning, is a rectangle (see Figure 3). There are always two examples that
achieve maximal information gain, one horizontal and the other vertical. Labeling
each one of those examples reduces the volume of the version space by a factor of
two. However, the probability that the Gibbs rule makes an incorrect prediction
is proportional to the perimeter of the rectangular version space, and not to its
volume. Thus, if the learner always constructs queries of the same type, only one
of the dimensions of the rectangle is reduced, and the perimeter length stays larger
than a constant. This implies that the prediction error also stays larger than a
constant.

We conclude that the expected information gain of an unlabeled example is not a
sufficient criterion for constructing good queries. The essential problem is that the
distribution over the examples is completely ignored by this criterion. While one
can easily find a specific solution for the given learning problem, we would like to
have a general method that is sensitive to the distribution of the examples, and is
guaranteed to work for a wide variety of problems. In the next section we present
such a method.

4. The Query by Committee learning algorithm

In (Seung, Opper & Sompolinsky,1992) the authors devise an algorithm for learn-
ing with queries which they called “Query by Committee” and we shall refer to
as the QBC algorithm. The algorithm uses as queries examples whose expected
information gain is high, however, rather than constructing the examples, it filters
the more informative examples from the random unlabeled examples that it gets
from the oracle Sample. We discuss the simplest case in which the committee is
of size two. 2

The algorithm proceeds in iterations. In each iteration it calls Sample to get a
random instance z. It then calls Gibbs twice, and compares the two predictions for
the label of z. If the two predictions are equal, it rejects the instance and proceeds to
the next iteration. If the two predictions differ, it calls Label with input x, and adds
the labeled example to the set of labeled examples that define the version space.
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It then proceeds to the next iteration. In (Seung, Opper & Sompolinsky,1992) the
authors treat the query by committee algorithm as an on-line learning algorithm,
and analyze the rate at which the error of the two Gibbs learners reduces as a
function of the number of queries made. In our work we prove general bounds
both on the number of queries and on the number of random examples that the
algorithm tests. In order to do that we consider a baich learning scenario, in which
the learning algorithm is tested only after it has finished observing all of the training
examples and has fixed its prediction hypothesis.

To do that we define a termination condition on the iterative process described
above. When the algorithm reaches this a state that fulfills this condition it stops
calling Sample and Label and uses the Gibbs oracle to predict the labels of the
instances that it receives in the test phase. The termination condition is satisfies if
a large number of consecutive instances supplied by Sample are all rejected.

We measure the quality of the predictions made by the algorithm in a way similar
to that used in Valiant’s PAC model. We define the expected error of the algorithm
as the probability that its prediction of the label of a random instance disagrees
with that of the true underlying concept. This probability is taken with respect
to the random choice of the instance as well as the underlying concept. We also
allow the algorithm some small probability of failure to account for the fact that
the sequence of instances that it observes during training is atypical.

We say that the learning algorithm is successful if its expected error is small, when
trained on a typical sequence of instances. More precisely, we define two parameters,
an accuracy parameter 1 > € > 0 and a confidence parameter 1 > é > 0. We use
the term “training history” to describe a specific sequence of random instances and
random coin flips used during learning a specific hidden concept. For each choice
of the hidden concept, we allow a set of training histories that has probability é to
be marked as “atypical” training histories. Our requirement is that the expected
error over the set of typical training histories is smaller than ¢. The parameters ¢
and § are provided to the learning algorithm as input and are used to define the
termination criterion. Figure 2 gives a formal description of the algorithm. It is
important to notice that the termination condition depends only on ¢ and ¢, and
not of any properties of the concept class. While the performance of the algorithm
does depend on such properties, the algorithm can be used without prior knowledge
of these properties.

It is easy to show that if QBC ever stops, then the error of the resulting hypothesis
is small with high probability. That is because it is very unlikely that the algorithm
stops if the probability of error is larger than e (proof is given in Lemma 2). The
harder question is whether QBC ever stops, and if it does, how many calls to
Sample and to Label does it make before stopping? As we shall show in the
following two sections, there is a large class of learning problems for which the
algorithm will stop, with high probability, after O(1/e log1/8¢) calls to Sample,
and O(log1/¢) calls to Label.

The committee filter tends to select examples that split the version space into two
parts of comparable size, because if one of the parts contains most of the version
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Input: ¢ > 0 - the maximal tolerable prediction error.
6 > 0 - the desired reliability.
Gibbs- an oracle that computes Gibbs predictions.
Sample- an oracle that generates unlabeled examples.
Label- an oracle that generates the correct label of an example.

Initialize n - the counter of calls to Label — to 0, and set the initial version space,
Vo, to be the complete concept class C.

Repeat until more than ¢,, consecutive examples are rejected. Where

1. 7% (n+1)?
tp = —In——+ |
€ n 36

and n is the number of examples that have been used as queries so far.

1. Call Sample to get an unlabeled example x € X drawn at random according
to D.

2. Call Gibbs(V,, z) twice, to get two predictions for the label of .

3. If the two predictions are equal then reject the example and return to the
beginning of the loop. (step 1)

4. Else call Label(z) to get ¢(z), increase n by 1, and set V,, to be all concepts
¢’ € V,,_1 such that ¢/(z) = ¢(z).

Output as the prediction hypothesis Gibbs(V,, z).

Figure 2. Query by a committee of two

space, then the probability that the two hypotheses will disagree is very small.
Let us normalize the probability of the version space to one and assume that an
example x partitions the version space into two parts with probabilities F' and
1 — F respectively. Then the probability of accepting the example z as a query is
2F(1 — F') and the information gain from an example is H(F'). . Both of these
functions are maximized at F' = 0.5 and decrease symmetrically to zero when F is
increased to one or decreased to zero. It is thus clear that the queries of QBC have
a higher expected information gain than random examples. However, it is not true
in general that the expected information gain of the queries will always be larger
than a constant,® moreover, as we have seen in the Section 3, queries with high
information gain do not guarantee a fast decrease of the prediction error in general.
Our proof of the performance of QBC consists of two parts. In the first part, given
in Section 5, we show that a lower bound on the information gain of the queries
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does guarantee a fast decrease in the prediction error of QBC. In the second part,
given in Section 6, we show that the expected information gain of the queries of
QBC is guaranteed to be higher than a constant in some important cases.

5. Relating information gain and prediction error for Query by Com-
mittee

In this section we prove that if the expected information gain from the queries used
by QBC is high, then the prediction error of the algorithm is guaranteed to be
exponentially small in the number of queries asked. We shall first define exactly
what we mean by high information gain, and then give the theorem and its proof.

In our analysis we treat runs of the algorithm as initial segments of infinite runs
that would have been generated had there been no termination criterion on the
execution of the main loop in QBC. We denote by X the infinite sequence of
unlabeled examples that would have been generated by calls to Sample. We use
an infinite sequence of integer numbers I = {1 < i3 < i3 < ...} to refer to the
sequence of indices of those examples that are filtered by QBC from X and used
as queries to Label. This set of examples is denoted X;. We denote by M the
sequence of integers from 1 to m, and use XM to denote the first m examples in
X. We use I, to denote the first n elements of I. Finally, XI indicates the first n
examples that are used as queries, and Xinm indicates the queries that are chosen
from the first m unlabeled examples.

We now present the probabilistic structure underlying the query process. A point
in the sample space Q is a triple (e, X, I). The probability distribution over this
space is defined as follows. The target concept ¢ is chosen according to P, and
each component in the infinite sequence X is chosen independently according to D.
Fixing ¢ and )?, we define the distribution of the first n elements of I according
to the probability that algorithm QBC calls the oracle Label on the iterations
indexed by I,,. It is easy to see that the distributions defined for different values
of n are consistent with each other, thus we can define the distribution on I as the
limiting distribution for n — co. We denote the distribution we have defined on
the triplets (¢, )?, I) by A and use Pra and Ea to indicate the probability and the
expectation taken with respect to this distribution.

We now define formally what we mean when we say that the queries of QBC are
informative.

Definition. We say that the expected information gain of queries made by QBC
for the learning problem of concept class C,concept distribution P, and input dis-
tribution D, is uniformly lower bounded by g > 0 if the following holds.

For the distribution over (c,)?, I) that is generated by P,D and QBC and for
every n > 0, the expected instantaneous information gain from the n + 1st query,
given any sequence of previous queries and their answers, is larger than g. In
our notation we can write this as the requirement that the following conditional
expectation is larger than g almost everywhere:
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Pra (B (G, V(K1 (K00)) | Kr,e(X1,) > 9) =1

In somewhat more intuitive terms, a uniform lower bound on the information means
that for any version space that can be reached by QBC with non-zero probability,
the expected information gain from the next query of QBC is larger than g. In
Section 6 we shall prove uniform lower bounds on the information gain of QBC for
some important learning problems.

We now give the theorem that relates the bound on the information gain of QBC
to its expected prediction error.

THEOREM 1 If a concept class C has VC-dimension 0 < d < oo and the expected
information gain of queries made by QBC is uniformly lower bounded by g > 0
bits, then the following holds with probability larger than 1 — 6 over the random
choice of the target concept, the sequence of examples, and the choices made by
QBC:

e The number of calls to Sample that QBC makes s smaller than

2
mo = max | 24 160+ (610 304 DNTY )
eé ge €d?g

e The number of calls to Label that QBC makes is smaller than

g = 10(d+ 1) n 4my ,
g 6

In other words, it is an exponentially small fraction of the number of calls to
Sample.*

e The probability that the Gibbs prediction algorithm that uses the final version
space of QBC makes a mistake in its prediction is smaller than ¢.

Before we proceed to prove the theorem, let us give a brief intuitive sketch of
the argument (See Figure 3). The idea is that if a concept class is learnable then,
after observing many labeled examples, the conditional distribution of the labels
of new examples is highly biased to one of the two labels. This means that the
information gained from knowing the label of a random example is small. This,
in turn, means that the increase in the cumulative information from a sequence of
random examples becomes slower and slower as the sequence gets longer. On the
other hand, if the information gained from the queries of QBC is lower bounded
by a constant, then the cumulative information gain from the sequence of queries
increases linearly with the number of queries. It is clear that the information from
the labels of the queries alone is smaller than the information from the labels of all
the examples returned by Sample. The only way in which both rates of increase
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Figure 3. Each tag on the z axis denotes a random example in a specific typical sequence. The
symbol X under a tag denotes the fact that the example was chosen as a query.

can hold without violating this simple inequality is if the number of examples that
are rejected between consecutive queries increases with the number of queries. As
a result the termination criterion of QBC will hold, and the algorithm will output
its final prediction rule after a reasonably small number of queries. The prediction
rule that is output is the Gibbs prediction rule, using the final version space that
is defined by all the labeled examples seen so far. The probability of making
a prediction error using this rule is, by definition, equal to the probability of a
disagreement between a hypothesis that is randomly chosen according to the prior
distribution restricted to the version space and a concept that is independently
chosen according to the same distribution. This probability is also equal to the
probability of accepting a random example as a query when using this version space.
The termination condition is fulfilled only if a large number of random examples
are not accepted as queries, which implies that the probability of accepting a query
or making a prediction mistake when using the final version space is small. We
shall prove the theorem using the following three lemmas.

LEMMA 1 If the expected instantaneous information gain of the query algorithm s
uniformly lower bounded by g > 0 bits, then

Pra(Z((Xr,, e(X1,)) < §n) < 71" (6)
Proof: The definition of a uniform lower bound on the expected information gain
means that for any n > 0, for all sequence of of n queries (X; ,¢(Xr,)), excluding
possibly a set of measure zero, the expected information gain from the n+ 1st query
is lower bounded by g. Put in another way, this means that the random variables

Y = T((X1, o(X1,)) = T0(X1_, (X1, ) — g
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form a sequence of sub-martingale differences. As the instantaneous information
gain is bounded between 0 and 1, we get that —g <Y; < 1 —g. We can thus use
Hoeffding’s bound on the tails of bounded step sub-martingales (McDiarmid,1989)
5 from which we know that for any ¢ > 0

g+e l—g—c¢

P“é”f*“)f[( Loty

Setting € = Ag and taking logs we get
Pr(37i_, Yi < —Agn) <
exp ((=(1+0)gIn(1+2) + (1= (1+X)g) In =I5y ) n) <
exp (A —(1+ X)) In(1+ X)gn) .
Choosing A = 1/2 we get the bound. ]

LEMMA 2 The probability that the predictions made by QBC are wrong (after its
main loop has terminated) is smaller than € with probability larger than 1 — §/2.

Proof: Assume that the probability of a wrong prediction is larger than €. As
discussed in the informal part of the proof, this implies that the probability of
accepting a random example as a query with the final version space, is also larger
than e. It thus remains to show that the probability that QBC stops when the
probability of accepting a query is larger than ¢ is smaller than 6/2.

The termination condition of QBC is that all ¢,, examples tested after the nth
query are rejected. If the probability of accepting a random example is larger than
¢ then this probability is smaller than (1 — €)*». From the definition of ¢, we get
that

72 (n41)? 72 (n41)2 36
Lin (35 ) In % _

(l—e=" 7  <e~ _W.

Summing this probability over all possible values of n from zero to infinity we get
the statement of the lemma. [ ]

In (Haussler, Kearns & Schapire,1994) it was shown that if the VC-dimension of
a concept class is d, then the expected information gain from m random exam-
ples is bounded by (d 4+ 1)log(m/d). Here we show that the probability that the
information gain is much larger than that is very small.

LEMMA 3 Assume a concept ¢ is chosen at random from a concept class with VC
dimension d. Fiz a sequence of examples X, recall that Xp; denotes the first m
examples. Then

Preep (I(()?M,C(XM») > (d+ 1)(log %)) < % . (7)



14 FREUND, SEUNG, SHAMIR AND TISHBY

Proof: From Sauer’s Lemma (Sauer,1972) we know that the number of different
labelings created by m examples is at most Ef:o (m) < (em/d)?. The expected

cumulative information gain is equal to the entropy Z(base 2) of the distribution of
the labels and is maximized when all the possible labelings have equal probability.
This gives an upper bound of dlog “7* on the expected cumulative information gain.
Labelings that have cumulative information gain larger by a than this expected
value, must have probability that is smaller by 2% than the labels in the equipartition
case. As the number of possible labelings remains the same, the total probability
of all concepts that give rise to such labelings is at most 27¢. Choosing a = log <7*

we get the bound. [ ]

Proof of Theorem 1: We consider a randomly chosen element of the event space
(e, )?, I). Our analysis involves the first mg random examples presented to QBC,
XMO) and the first ng queries that QBC would filter if it never halts, Xjnn. We
denote the number of queries that QBC makes during the first my examples by
n, i.e. n = |[I N Mp|. The claim of the theorem is that, with probability at least
1—4, the algorithm halts before testing the m+ 1st example, the number of queries
it makes, n, is smaller than ng, and the hypothesis it outputs upon halting has
error smaller than e. We shall enumerate a list of conditions that guarantee that
all of these events occur for a particular random choice of examples and of internal
randomization in QBC. By showing that the probability of each of those conditions
to fail is small we get the statement of the theorem.
The conditions are:

1. The cumulative information content of the first ng queries is at least gng/2.
From Lemma 1 we get that in order for this condition to hold with probability
larger than 1 — é/4 it is sufficient to require that

1 4
nozjolng. (8)

2. The cumulative information content from the first mg examples is at most
(d+ 1)(log =32).
From Lemma 3 we get that in order for this condition to hold with probability
larger than 1 — é/4 it is sufficient to require that

mo > — . (9)

3. The number of queries made during the first my examples, n, is smaller than ng.
The condition follows from conditions 1 and 2 if

— —

I((X1ns (X1,,))) 2 (Xt (X)) (10)
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This is because if n > ng then the information gained from the queries asked
during the first my examples is larger than the total information gained from
the mg examples, which is impossible. In order for (10) to hold, it is sufficient
to require that

2(d+1
ng > (;— )(log

) (11)

4. The number of consecutive rejected examples guarantees that the algorithm stops

before testing the mgy + 1st example.

Notice that the threshold ¢; increases with 7. Thus if at least ¢,, consecutive
examples from among the first my examples are rejected, the algorithm is guar-
anteed to halt before reaching the mgy 4+ 1st example. As there are myg — n
rejected examples, the length of the shortest run of rejected examples is at least
(mg—n)/(n+1). We require that this expression is larger than t,, and use the
fact that condition 3 holds, i.e. that n < ng. Using these facts it is sufficient to
require that

mo > Ao+ 1)) [ﬁ(no + 1)2] : (12)

5. The Gibbs prediction hypothesis that is output by the QBC has probability smaller
than e of making a mistaken prediction.

From Lemma 2 we get that the probability of this to happen is smaller than
8/2.

We see that if Equations (8), (9), (11), and (12) hold, then the probability that
any of the four conditions fails is smaller than §.It thus remains to be shown that our
choices of ng and mg guarantee that these equations hold. Combining Equations (8)
and (11), we get that it is sufficient to require that mg > 2, d > 1, and

_ 10+ 1) 4mg
- 5

77,0—{—1

(13)

Plugging this choice of ng into Equation (12), we get the following requirement on
mo:

40(d + 1 4 20(d + 1 4
mg > 0(d+1) In 270y, 0(d+1) In 20| (14)
€g 6 bg §

It is simple algebra to check that the following choice of my and satisfies Equa-
tions (9) and (14):

2
mp = max [ 24 160d+ D) (60 30D (15)
eb ge €b2g

Equations (13) and (15) guarantee that the conditions 1-5 hold with probability at
least 1 — 6. [ ]
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6. Concept classes that are efficiently learnable using QBC

According to Theorem (1) above, if query by committee yields high information
gain, then it yields a rapidly decreasing generalization error. Here we discuss some
geometric concept classes for which a uniform lower bound on the information gain
exists, and hence to which the theorem is applicable.

Our main analysis is for a learning problem in which concepts are intersections of
half-spaces with a compact and convex subset of R%. In this case the concept class
itself can be represented as a compact and convex subset of R? and each example
partitions the concept class by a d — 1 dimensional hyperplane. In Section 6.1, we
sketch a proof of a uniform lower bound on the information gain of QBC that does
not depend on the dimension d, for the case in which both D and P are uniform.
The proof, which is detailed in Appendix A. is based on a variational analysis of
the geometry of the version space. In Section 6.2 this result is extended to the case
of non-uniform input distribution and prior and applied to the perceptron learning
problem.

6.1. Uniformly distributed half-spaces

In this subsection we prove a lower bound on the information gain for a simple
geometric learning problem to which we shall refer as the “parallel planes” learning
problem.

Figure 4. A figure of the two dimensional concept class defined by Equation (16) for d = 2. The
shaded area corresponds to a typical convex version space V which is defined by a set of half spaces
corresponding to several examples. This version space is bisected by a new unlabeled example

defined by # and ¢.
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We define the domain, X, to be the set of all pairs of the form (&, ), where & is a
vector in R whose length is 1, which we refer to as the “direction” of the example,
and ¢ is a real number in the range [—1,+1], to which we refer as the offset (see
Figure 6.1). In other words X = S¢ x [—1,+1], where S? denotes the unit sphere
around the origin of R%. In this section we assume that the distribution D on X is
uniform.® The concept class, C, is defined to be a set of binary functions over X,
parameterized by vectors @ € R?, ||@||» < 1, that are defined as follows

— ; LUth,
cw(:v,t):{o §.i<t (16)

We assume that the prior distribution is uniform on B?—the unit ball of radius
one around the origin. This concept class is very similar to the class defined by the
perceptron with variable threshold. ” However, note that in this case the threshold,
t, is part of the input, and not a parameter that defines the concept. This concept
class is a bit strange, but as we shall see, the results we can prove for it can be
extended to more natural concept classes such as the perceptron.

The information gain from random examples vanishes as d goes to infinity. The
reason for this is that in high dimension, the volume of the sphere is concentrated
near the equator. A typical random example will cut the sphere some distance away
from the equator, in which case the sphere will fall into two pieces of very unequal
volume. The piece containing the equator will contain almost all of the volume.
This geometric example illustrates why query algorithms are especially important in
high dimensions. Query by committee solves this problem by choosing two random
points in the sphere. Since these two points are likely to be near the equator, an
example that separates them is likely to be near the equator. For this reason, query
by committee can attain an information gain that remains finite in high dimensions.

In our proof of the uniform lower bound on the expected information gain of QBC
we use two properties of the version spaces for this concept class. The first property
is that each example (Z, t) cuts the version space by a plane that is orthogonal to the
direction & and has offset ¢ from the origin.® As ¢ is uniformly distributed, the planes
that cut the version space in any fixed direction have a uniformly distributed offset
that spans the width of the version space in that direction. The second property is
that all version spaces that can be generated when learning this concept class are
bounded convex sets because they are defined as the intersection of a ball with a
number of half-spaces.

As discussed in Section 4, both the expected information gain of an example and
the probability that the example is accepted by QBC are quantities that depend
on the ratio between the probabilities of the two parts of the version space that are
created by the example. Based on these observations we can reduce our problem to
a one dimensional problem. Fix a particular direction Z. Let Fiz : [-1,+1] — [0, 1]
be the fraction of the version space, V', that is on one side of the plane defined by
¥ and ¢, l.e.

F (t) _ PrCmEP (cu‘) € V|Cw(f,t) = 0)
‘ B PrCmEP (Cw € V)

(17)
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We call F' the volume function of the version space. The probability that QBC ac-
cepts the example (£, ) is 2Fz(t)(1—Fi(t)), and the expected information gain from
the example is H(Fz(t)). As t is uniformly distributed, the expected information
gain from the examples whose direction is Z is

A (1 = Fa(t)H(F3(t)) dt

) = AT (1 = Fa(t)) de

(18)

Our result is a lower bound on the value of G(Fz). The proof is based on find-
ing the convex version space that produces the smallest value of G(Fgz). This
body is constructed of two isomorphic cones connected at their bases, we call this
body a “two-cone”. Barland (Barland, 1992, Theoremb), analyzes a similar prob-
lem. He finds the convex body that achieves the minimal value of the functional
f_+11 min(Fz(t),1 — Fz(t))dt. The analysis of the minimum for this functional is
much simpler, interestingly, Barland finds that the body which achieves the mini-
mum is the same as the one which achieves the minimum of the functional G.

THEOREM 2 The functional G(Fz), defined for volume functions of convex bodies
in RY, assumes a unique minimum at the two-cones body defined above. The value
of G at the minimum is at least 1/9+ 7/(181n2) > 0.672 bits, for any dimension
d.

This theorem gives us a lower bound on the expected information gain of a single
query of QBC for the “parallel planes” learning problem defined at the beginning
of this section. In Section 6.2 we shall use this theorem to prove that QBC is an
effective query algorithm for learning perceptrons.

Proof: Here we give the main part of the proof. The more technical details are
formulated in Lemmas 4, 5, 6 and 7, whose proofs are given in appendix A.

The proof is based on a variational analysis of the functional G. We shall show
that the volume function that corresponds to “two-cones” minimizes this functional.
We shall show that any other volume function of a convex body can be slightly
altered in a way which decreases the value of G and maintains the correspondence
with some convex body.

We shall bound the value of G(F%) independently of the direction #. Our bound
depends only on the fact that the version space is a bounded convex set in R” and
that the distribution in it is uniform. We thus drop the subscript # from Fz(-). As
F(=1)=0, F(+1) =1, and H(1) = H(0) = 0, we will, without loss of generality,
extend the definition of F(?) to all of R by defining it to be zero for ¢ < —1 and one
for ¢ > 1. We then redefine the integrals in the definition of G(F) in Equation (18)
to be from —oo to co. It is easy to check that G(F (1)) = G(F(at + b)) for any
a,b # 0. Thus, without loss of generality, the support of the volume function is
[-1,+1] and F(0) = 1/2.

Consider the right half of the body, i.e. the set of points whose ¢ coordinate is at
least 0. Take the union of this half with its symmetric reflection at the plane ¢ = 0.
Similarly, generate a symmetric body from the left side of the original body. The
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two resulting bodies are reflection symmetric but usually not convex. Their volume
functions are:

F(t t<0
F_(t):{l(—)F(—t) t>0

1-F(=t) t<0
F‘*'(t):{F(t) = t>0"

It is easy to see that either G(Fy) < G(F) or G(F-) < G(F). Thus, in order
to prove a lower bound on G(F) for all convex bodies, it is sufficient to prove a
lower bound for volume functions that correspond to reflection-symmetric bodies
for which each half is convex. Our variational manipulations will apply to one half
of the symmetric body (say ¢t > 0) and carry over by reflection to other half. As we
shall show, the minimum for one half is obtained for a cone with a base at ¢ = 0.
Its symmetric reflection, the two-cone body, happens to be a convex body. Thus
the two cone body gives the minimum of G(F') for all convex bodies.

Our goal is thus to find the a volume function F : [0, 00) — [1/2,1] of the right
half of a convex body, which minimizes the functional

[ P(a)(1 = F(e))H(F(z)) de
[ F(z)(1—F(z))de

We find it convenient to define the functions K(¢) = F(t)(1 — F(t)), and
Q(z) =H(1/2 — /1 —42/2). Tt is easy to verify that H(F) = Q(K), and that

Equation (19) can be written as
+oo g~ .~
o K@)Q(K(t))dt
+co -
o K(t)dt

G(F) =

(19)

G(K) = (20)

The changes in G(K) that are induced by small changes in the function K can be
approximated by a linear functional, called the Fréchet derivative,® as follows
+ + o0
G(K+ V%) =G(K) + VGIK]()¥(t)dt + o (/ U(t)? dt) :
0

0

The Fréchet derivative VG[K] is a function from [0, c0) into R and VG[K](t) is
the value of this function at the point £. The derivative is calculated by formally
differentiating the functional VG[K] with respect to K(t). Thus

VG(t) =
oK (s)ds g8 (KOQUE () — [, K(s)Q(K (5)) ds 5725 K (1)

<f0+oo K(s) ds) ’

Q)+ K5 2 Q) - 60)|

(21)

1
f+ K(s)ds
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We first consider the behavior of the sum of the first two terms in the square
brackets. Denote K(t) by y. A direct calculation shows that Q(y) + y%Q(y) is
a strictly increasing function of y in the range 0 < y < 1/4, which is the range of
K(t). It is 0 for y = 0 and 1 for y = 1/4.

As 0 < G(K) <1 the third term is in the range of the sum of the first two terms.
As K(t) is decreasing for positive t, it follows that there is some point w > 0, which

is a function of K, such that for all 0 < t < w, %O)G(K(t)) > 0, and for all t > w,

%@G(K(t)) < 0. The parameter w is of critical importance in the rest of the
paper, and we shall refer to it is the “pivot point”. In terms of the volume function
F, for t > 0, F increases when K decreases and vice versa. Thus if the variation
¥ () is non-negative for points below the pivot point, non-positive for points above
the pivot point, and f0+oo W(t)% dt is sufficiently small then G(K(¢) + ¥(¢)) < 0 as
desired.

We shall construct suitable variations in proving lemma 5. For now, let B be the
convex body whose volume function is F'(¢). Consider the functions f(¢) and r(t)
defined as follows:

sy =0 - ,

t Cd—1

where ¢q — 1 is the volume of the d — 1 dimensional unit ball. The function F'(¢) is
equal to the total volume of the body B in the range (—oo,t], so f(¢) is the d — 1
dimensional volume of the slice of B at t. We call r(¢t) the radius function because
if Bisa body of revolution obtained by rotating (the planar graph of) the function
t — r(t) around the axis r(¢t) = 0, then the volume functions that correspond
to B and to B are the same. Moreover,the following Lemma characterizes radius
functions of convex bodies

LEmMA 4 1. The radius function of any conver body is concave.

2. The body of revolution that is generated by a concave radius function is convez.

The proof of the lemma is given in Appendix A. Thus the search for the minimum
of G(K) over convex bodies (for ¢ > 0) can be restricted to bodies of revolution
created by rotating a concave radius function r(t).

The proof of the theorem is concluded by proving the following lemmas, the details
are in Appendix A.

LEMMA 5 If the conver body with volume function F' is not a cone with base at the
hyperplane t = 0 then there exists an admissible variation U such that G(F +¥) <
G(F).

LEMMA 6 The minimum of G over convez bodies is achieved.

From Lemmas 5 and 6 it follows that the minimum of G(F') is achieved for the
two-cone body. Finally a simple calculation gives that
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LEMMA 7 The value of G(F) for a two-cone body in R? is at least 1/9+7/(181n2) >
0.672 for any dimension d.

This concludes the proof of Theorem 2. [ |

6.2. Perceptrons

In this section we apply Theorem 2 to the problem of learning perceptrons. The
perceptron concept class is defined as the following set of binary functions over the
unit ball

1L, & w>0
¢ (%) { 0, otherwise ’ (22)
where @, # € R%, ||i@]l2 = 1 and ||Z|]2 < 1. The prior distributions are within

some constants from the uniform distributions over the respective sets. As each
W is a point on the surface of a d dimensional sphere, the initial version space is
isomorphic to the unit sphere.

The section is organized as follows. We start by stating an extension of Theorem 2.
We then discuss a technical issue regarding an initial phase of the learning procedure
that is required in order to make the theorems apply. We then prove the main result
of this section, which shows that, under some mild assumptions, the prediction error
of the QBC algorithm, when learning decreases exponentially fast with the number
of queries asked.

Theorem 2 can be generalized to cases where the prior and input distributions
are not exactly uniform. We use the following definition

Definition. We say that a density D’ is within A of D if for every measurable set
A, we have that A < Prp(A)/Prp/(A) < 1/A.

Using this definition, we get the following extension of Theorem 2:

THEOREM 3 The value of the functional G(F') for the parallel planes learning prob-
lem, when the prior distribution is within Ap of uniform and the input distribution
is within Ap of uniform, is at least AxAp(1/9 + 7/(181n2)) > 0.672A%Ap bits,

independent of the dimension d.

The proof is in Appendix B.

Using Theorem 3, we can prove that QBC is an efficient query algorithm for the
perceptron concept class when the prior distribution and the distribution of exam-
ples are both close to uniform. We shall prove that there exists a lower bound on
the information gain of the queries of QBC. However, our proof technique requires
that the initial version space is not the complete unit sphere, but is restricted to
be within a cone. In other words, there has to exist a unit vector wy such that for
any @ € Vp the dot product @ - @y is larger than some constant « > 0.

This condition is annoying. However, it is not hard to guarantee that this condi-
tion holds by using an initial learning phase, prior to the use of QBC, that does not
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use filtering but rather queries on all the random instances supplied by Sample.
Using the results of Blumer et al. we can bound the number of training examples
that are needed to guarantee that the prediction error of an arbitrary consistent
hypothesis is small (with high probability). As the distribution of the instances
is close to uniform, a small prediction error implies that the hypothesis vector is
within a small angle of the vector that corresponds to the target concept. The
details of this argument are given in the following lemma.

LEMMA 8 Assume that the distribution of the instances D is within Ap from the
uniform distribution in the unit ball. Suppose m random instances are chosen
according to D, labeled according to fz,(-) and used to find a hypothesis fgz(-) that
s consistent with all the labeled instances.

If

2 8d

4 1
m > max (— log =, — log —3) where € = Ap cos™ ! ()
€ 0 ¢ €

then, with probability 1 — & over the choice of the m random instances, W - Wy > «.

Proof: If & @Wy < « then the angle between @ and @y is larger than cos™!(a).
The examples on which fz(Z) is incorrect are those vectors in the unit ball for
which #-w > 0 and & - Wy < 0, or & - W < 0 and & - Wy > 0. This defines a subset
of the unit ball, constructed of two wedges, whose volume is at least cos™!(a) of
the volume of the ball. As the distribution of the instances is within Ap from the
uniform distribution, the probability of this set is at least Ap cos™1(a).

On the other hand, as the VC dimension of the d dimensional perceptron is d
we can use the classical uniform convergence bounds from (Blumer et al.,1989).
Theorem 2.1 in (Blumer et al.,1989) guarantees that a hypothesis that is consis-
tent with m labeled examples, chosen independently at random from an arbitrary
distribution, has error smaller than ¢ with probability 1 — § if

4 2 8d 13
m > max | —log -, — log —
€ 6 € €

Combining these two arguments, we get the statement of the theorem. [ ]

Assuming that an initial phase of learning from unfiltered instances is used to
guarantee a bound on the maximal angle between vectors, we get the following
theorem.

THEOREM 4 For any a > 0, let C,, be the d dimensional perceptron concept class
as defined in Equation (22), restricted to those concepts ¢z, such that Wy @ > « for
some unit vector Wy. Let the prior distribution over C, be within Ap of uniform and
the input distribution be within Ap from uniform. Then the expected information
gain of the queries of QBC is larger than 0.672a°A% Ap
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Proof: The version space for the perceptron is a region on the d-dimensional unit
sphere that is bounded by a set of great circles. We shall transform this problem
into a special case of the parallel planes learning problem defined in Section 6.1.

Because we assume the existence of the vector Wy we can define a one-to-one
mapping of the version space to a bounded convex subset of R9~!. We can assume,
without loss of generality, that @y = {1,0,...,0}. We can also assume that ||Z]|, =
1, because all instances & whose length is smaller than 1 can be mapped to &/||Z||2
without changing the label assigned to them by the concepts. The distribution over
the surface of the unit sphere that is created in this way is within Ap of uniform.

In this case the mapping of the concepts is defined by transforming the vector

W = {wy,wsy,...,ws} that lies on the unit sphere to the d — 1 dimensional vector
W = {wy/wr,ws/w, ..., wg/wi}. The corresponding mapping of the instances
maps the instance & = {x1,...,24} that lies on the unit sphere to the pair & =

{2a, ..., 24} /7 /Zf:2 z?andt = —él‘l/\/zf:z z2. 1t is easy to see that the condition
that defines the perceptron w-# > 0 is equivalent to #’-@’ > ¢, which is the condition
that defines the corresponding parallel-plane concept.

The condition W - Wy > « is, in this case, equivalent to w; > «. It is easy to check
that the only examples in the transformed concept space that can be labeled both

0 and 1 by some concept in C,, are those for which \/Ef»lzz z? > «. This implies
that the increase in the volume of an infinitesimal part of the instance space is by
a factor of at most a~%. Thus as the distribution over the instances on the surface
of the unit sphere is within Ap of uniform, the distribution over the transformed
instance space is within a?Ap of uniform.

To bound the distance of the prior distribution from uniform, consider the map-
ping of an infinitesimally small region of the version space from the sphere to the
plane. Figure 5 illustrates this transformation for a two dimensional perceptron.
This transformation maps the hyperspherical region to a larger region in the hy-
perplane. The factor by which the volume is increased is between 1 and a~¢. This
can be seen by separating the transformation into two steps. In the first step, the
region on the unit hypersphere is mapped to a region on a larger hypersphere. The
radius of this larger hypersphere is at most a~?!, thus the increase in the volume is
by a factor of at most a~(4=1) In the second step, the region on the large hyper-
sphere is mapped to the hyperplane, as the region is infinitesimally small, it can be
approximated by a linear region. The increase in the volume of the region in this
step is by a factor of a~!. Multiplying the two factors we get a~¢.

As the prior distribution over the sphere is within Ap of uniform, the distribution
over the hyperplane that is generated by the mapping is within Apa? of uniform.

We thus have a special case of the parallel plane learning problem with close to
uniform distributions. Using Theorem 3, we get the statement of the theorem.
|
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Projection of the
segment on the
plane

Projection of the region
to alarger sphere

Maximal angle Segement of
between W and W the spherical
version space

Figure 5. The transformation that maps the spherical version space unto the hyperplane.

6.3. Using an incorrect prior distribution

Up to this point we have made the assumption that the learning algorithm is using
the correct prior distribution on the concept space P. In this section we show how
this assumption can be weakened.

Definition. ' We say that a distribution P is A-dominated by a distribution P
if, for any event A, Prp(A) < APrp:(A4).

Suppose that QBC uses a distribution P’ that A-dominates P for some 0 < A < oo
such that there is a uniform lower bound on the expected information gain of QBC
with respect to P’. The following theorem replaces Theorem 1 for this case.

THEOREM 5 If a concept class C has VC-dimension 0 < d < oo and the expected
information gain of queries made by QBC when using the prior P’ is uniformly
lower bounded by g > 0 bits, and if P is A.-dominated by P’ for some 0 < A, < oo
then the following holds with probability larger than 1 — 6 over the random choice
of the target concept (with respect to P ), the sequence of examples, and the choices
made by QBC:

o The number of calls to Sample that QBC makes is smaller than

4d 160(d+1) 80(d+1)\°
mp = max (5, ng max <6, In W . (23)

e The number of calls to Label that QBC makes is smaller than

10(d+ 1 4
ng = 0(d+1) In Mo
g 6

bl

In other words, it is an exponentially small fraction of the number of calls to
Sample.
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o The probability that the Gibbs prediction algorithm that uses the final version
space of QBC makes a mistake in its prediction is smaller than c.

Note that while the number of calls to Sample increases by about a factor of A2,
the number of queries increases only by an additive term of about 2log A..

Sketch of proof: It is clear that the arguments given in the proofs of Lemmas 1
- 3 and Theorem 1 hold if P is replaced by P’ throughout. This implies that,
with high probability, the error of a Gibbs prediction algorithm that uses the final
version space of QBC is smaller than ¢, or

Ep [Preap napr [c(z) # h(2)]] < €.
The assumption that P is A.-dominated by P’ implies that
Ep [Prenp nop [c(2) # h(2)]] < AJ€"

By increasing mg by a factor of A2 we get that A2’ = ¢, from which the statement
of the theorem follows. [ ]

7. Learning using unlabeled examples and membership queries

The QBC algorithm uses unlabeled examples in order to reduce the number of
labeled examples that it needs to know. While QBC is a very simple algorithm
it is not the only way of using the information provided by random unlabeled
examples. In this section we make the observation that in the learning framework
defined in this paper there is a general scheme for query filtering. This scheme is
potentially more computationally intensive than QBC, however, it is applicable in
more generality than QBC.

The main observation is that the oracles Sample and Gibbs, defined in Section 2
allow the learning algorithm to estimate the expected error of any prediction rule.
In this way the algorithm can calculate the expected improvement of making any
particular query.

The prediction rule used by QBC is to select a random consistent hypothesis h
using Gibbs, and then label the instance with h(z). In general, any prediction
rule defines a conditional distribution of the label given the instance. The error of
a prediction rule for a given instance ¢ € X and concept ¢ € C' is the probability
that the prediction assigns to the incorrect label 1 — ¢(x). The expected error
of the prediction rule is defined by selecting z at random according to D and
a ¢ at random according to P. The oracles Sample and Gibbs generate random
selections from D and P respectively. Thus, disregarding computational complexity,
we can approximate the expected error of any prediction rule using sufficiently large
samples of instances and hypotheses.

The dependence of the prediction rule generated by QBC on the labeled instances
seen in the past is defined via the version space V. In general, any learning algorithm
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defines a mapping from sets of labeled instances to prediction rules. The estimate of
the error of a prediction rule thus defines a measure of the quality of a set of labeled
examples. If we are given an unlabeled instance, we can estimate the distribution
of the label of the instance by using Gibbs. In this way we can estimate the
expected reduction in the prediction error that will result from knowing the correct
label of any instance. A reasonable heuristic for filtering queries is to select those
instances that cause the largest reduction in the prediction error. If after observing
any set of labeled instances the learning algorithm can find an instance which
reduces the expected prediction error by a constant multiplicative factor, then the
prediction error decreases exponentially fast in the number of queries asked. Of
course, instances that cause such a reduction might not always exist, and even if
they exist, the problem of finding them efficiently is potentially hard.

The algorithm analyzed in this paper, QBC, is an efficient variant of this heuris-
tic. The general heuristic described above makes a large number of calls to the
oracles Sample and Gibbs, algorithm QBC makes much fewer calls. More specif-
ically, the dependence of the number of calls to Sample on the desired error, ¢
is!! O(l/e), which is the same dependence achieved by the algorithm that makes
a query on each instance that it gets from Sample. The algorithm makes twice as
many calls to Gibbs as it makes to Sample. It is not clear if this is close to opti-
mal, however, it is certainly much smaller than the number of calls that is suggested
in the heuristic described above. The exponential decrease of the error of QBC
as a function of the number of queries has been established for a restricted family
of parameterized concept classes. Establishing the effectiveness of QBC for more
general concept classes or proving that it will not be effective for general families
of concept classes is an interesting open problem.

While the general heuristic described in this section is not efficient, it is applicable
in much more general situations than QBC. For example, the outcomes do not
have to be binary or even discrete, and the relation between them and the inputs
can be stochastic rather than deterministic. Finding learning algorithms that learn
efficiently in this more general frameworks is another interesting open problem.

8. Summary

We have proved that the Query by Committee algorithm is an efficient query algo-
rithm for the perceptron concept class with distributions that are close to uniform.
This gives a rigorous proof to the results given in (Seung, Opper & Sompolinsky,1992)
which were obtained using the replica method of statistical mechanics. It also gener-
alizes their results by relaxing the requirements on the distribution of the examples
and on the prior distribution. In addition, we show that exact knowledge of the
prior distribution is not required. It is sufficient if the ratio between the assumed
prior and actual prior is bounded by a constant factor.

We have proved that, in general, if the queries that are filtered by the query by
committee algorithm have high expected information gain then the prediction error
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is guaranteed to decrease rapidly with the number of queries. By proving that this
is the case for the perceptron learning problem, we have achieved our main result.

We hope that lower bounds on the expected information gain of QBC can be
proven for other concept classes. It seems that it would be very useful, in this
context, to generalize Theorem 1 to allow cases in which the expected information
gain is small to occur with some small probability.

There are several issues that we do not discuss in this paper. First, one would
like to know whether the results can be extended to concept classes other than
perceptrons. Second, it is of great practical importance to analyze more general
scenarios. In the “noisy” case, the learner sometimes observes a corrupted label,
which is different from the correct label associated with the instance. A related
case is the “probabilistic” case, in which the relationship between the instance and
the label is described by a conditional distribution. An even more general case is
the “agnostic” scenario, in which the only assumption is that there is some joint
distribution over instances and labels from which examples are drawn independently
at random. Extending our analysis to any of these more general cases is an an open
problem which is important for making the analysis more relevant to practical
applications.

Though theoretical results for such models are lacking, there is empirical evidence
that extensions of the QBCalgorithm can be used to learn noisy and probabilistic
models, such as hidden Markov models (Dagan & Engelson,1995). We believe that
the more general “agnostic” learning scenario and the noisy learning problem are
related. It seems useful, in this context, to extend the size of the committee and
use more refined definitions for “disagreement” among the committee members.

In this work we have explored some of the power of algorithms for learning using
queries that have access to random unlabeled instances and can make membership
queries. This model of learning is natural in contexts where unlabeled instances are
much cheaper than labeled instances. An interesting theoretical open question is
how much more powerful is this model of learning from queries from the standard
model for using membership queries in statistical learning.

Acknowledgments

Part of this research was done at the Hebrew University of Jerusalem. Freund,
Shamir and Tishby would like to thank the US-Israel Binational Science Foundation
(BSF) Grant no. 90-00189/2 for support of their work. We would also like to thank
Yossi Azar, Shlomo Halfin, and Manfred Opper for helpful discussions regarding
this work.



28

Table 1. Notation Table

FREUND, SEUNG, SHAMIR AND TISHBY

symbol definition meaning section  equation
X sample space 2
D sample distribution 2
X {z1,z2,...} unlabeled examples 2
drawn from X according to D 2
m number of examples 2
n number of queries (labeled examples) 2
X {z1,...,zm} first m examples 2
C concept class 2
c target concept 2
Vi {h € C|h(z;) = c(zi),s=1...n} version space of first n labeled examples 2
P Bayesian prior distribution on C 2
h hypothesis in C 2
T —log Prp (Vin) cumulative information gain 2 1
H(p) —plogp — (1 — p)log(1l —p) binary entropy function 2
G(zi|Vic1) expected information gain from example z; 2 2
given version space V;_1
F fractional reduction in version space 4
{1,...,m} 5
X {z1,...,zm} first m examples in X 5
I {t1,%2,...} sequence of indices of examples used as queries 5
In {t1,...,in} first n elements of I 5
<; {zi,, @iy, .-} sequence of query examples 5
an {zi,,...,zi, } first n examples used as queries 5
g lower bound on expected information gain 5
d VC dimension 5
G expected information gain functional 6.1 18
K F(1-F) 6.1
Q(z) H(1/2— /(1 - 42)/2) 6.1
v variation in K 6.1
Ap, Ap uniformity parameters of 6.2
prior and input distributions
Ae divergence between correct and incorrect priors 6.3
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Appendix A

Proofs of Lemmas 4-7

Proof of Lemma 4: Let us denote by S; the convex body in £4~! that is defined
by the slice of the convex body B at t. Clearly, f(t) is the volume of S;.
We define the linear combination of two bodies, A and B as:

MA+XB = {/\10+ /\2b|a € A, be B} ,

where A1, A2 € R. An immediate result of the convexity of B is that for any
t1,t2 € R, and any 0 < A, A2 < 1 such that Ay + A, =1

A1Sy, + A28y, € Sati4rats -

Using the terminology of the theory of convex bodies, we can say that the set of
bodies S;, parameterized by t € R is a (one-parameter) concave family of bodies.!?
The Brunn-Minkowski theorem states that, for bodies in R, “the n-th root of
the volume of the bodies of a linear or concave family is a concave function of
the family of parameters” ((Bonnesen & Fenchel,1987),Subsection 48). In our case,
n = d — 1 and the family is a concave family of a single parameter. We thus get

the statement of the lemma as a special case of the Brunn Minkowski theorem.
|

Proof of Lemma 6: As the value of the functional G(F') is always positive, there
must exist an infimum to the set of values it can achieve on the set of all convex
bodies. We denote this infimum by g and show that it is achieved as a minimum.
In other words, that there exists a volume function F,, which corresponds to a
convex body such that G(Foo) = p.

Let B, be a sequence of convex bodies and Fj, be the corresponding sequence of
volume functions such that lim,_.. G(F,) = u. By Lemma 4, we may assume that
the bodies B,, are bodies of revolution, and that they correspond to concave radius
functions r,(¢). We thus need to show that there exists a concave radius function
Teo(t) which is the limit of r,(¢) for n — oc.

The functional G(F) is defined in terms of integrals and the radius functions r,(?)
are continuous and bounded by a constant which depends only on the dimension
d. Thus if rp(t) converges to re(¢) pointwise then the value of G on the sequence
of bodies of revolution corresponding to ry(t) converges to the value of G on the
body corresponding to re(t).

We prove the lemma by showing the existance of a subsequence of the radius
functions which have a pointwise limit. Using a diagonalization argument, we can
pick a subsequence of r,, indexed by m, such that r,,(¢) converges pointwise for
each rational value of ¢. It is easy to see that the limit function r(¢), defined on
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the rationals, is concave and continuous there. We get a concave extension to all
real values of ¢ by taking the limit over the rationals:

reo(to) = lub(r(7)|T < to, T rational ) .

Clearly 7o (1) is also concave and continuous and is the pointwise limit of ry(¢) for
all . Thus r(t) is the radius function of a concave body B which assumes the
minimum G(B) = p. ]

Proof of Lemma 7: The radius function that corresponds to the two-cone body
is

r*(t) = cqmax(0,1 — |t]) (A1)

One can compute G4(r*) for any fixed d by solving the integral in Equation (18)
as follows. In this case we find it more convenient to use the integral over the
negative half of the line as defined in Equation (19). The volume function in the
range —1 <t < 0is Fj(t) = fioo(r*(s))d_lds = (1+1)%/2 and it is 0 for t < 0.
Plugging this into Equation (19) we get

fol (1+t2)d+1(1 _ (1+t2)d+1)H((1+t2)d+1)dt - f01/2 Fl/d(l — FYH(F)dF

fol (1+t2)d+1 (1— (1+f2)d+1) dt B f01/2 FY4(1 — F)dF
(A.2)

G(Fg) =

which can be shown by direct calculation to decrease as d — co. Which gives the
general lower bound of

1/2
1—FYH(F)dF 1 7
Gy > 0 UMD 1 T (43)
f01/2(1 — F)dF 9  18log2
This proves the statement of the lemma. [ |

Proof of Lemma 5: We shall keep using the notation defined in the proof of
Theorem 2. For each volume function F' which does not come from a cone, we
construct a variation that decreases G(F').

We describe the variations in terms of adding a variation function, ¥(t) to the
radius function r(t). As we are restricting ourselves to volume functions, it is
enough to define ¢(¢) for 0 <t < 0.

Let us enumerate the requirements on the radius variation function (), and on
the corresponding volume variation function

F(t)+¥(t) = ca_y [ (r(s) + 9(s))4 ds.
1. We need F(Jt|) + ¥([|t]) to be a volume function. For this to hold we require

that r(¢)+(t) is a positive concave function that is nonzero only on a bounded
segment [0, ¢], ¢ < co.
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2. We need to guarantee that f;° VG(¢)¥(t)dt < 0. For that to hold we require
that W(t) is non-positive for all 0 < ¢ < w and non-negative for all ¢t > w.
Where w is the pivot point for the volume function F'. See equation 20 and the
discussion following it.

3. For any given € > 0 we should be able to find a radius variation function (t)

such that the change in the corresponding volume function is as small as is
desired € > [F*° ()2 dt > 0.

We describe three families of variational functions. For any radius function r that
corresponds to a volume function and is not equal to r* = max(0, 1—|¢|), one of these
variations applies, showing that there exists r/(¢) such that G4(r') < G4(r). The
variations are constructed geometrically. Below is a list of the constructions that
should be read alongside Figure A.1. The basic idea in all three transformations
is to “move” volume from place to place along the projection direction, in such a
way that for each point ¢ in a particular range, volume is moved only from one the
right of the points to their left or vice versa. It is easy to check that each of the
conditions 1-3 holds for each of those transformations. In the descriptions below
we shall refer to volume changes are caused by increasing or decreasing the radius
function, note that these are changes in the d-dimensional volume of the revolution
body whose volume function corresponds to the radius function, and not in the two
dimensional area described by the changes in the graph. The transformations thus
depend on the dimension of the actual body, however, the qualitative form of the
transformation remains the same for all dimensions. Each transformation takes a
parameter A, which is a positive number that is set small enough so that condition
3 holds.

1. If r is not linear in the range 0 < ¢ < w then transformation 1 is used (see
Figure A.1(a)):

(A) Let A be the point (w,r(w)), select a point A’ on the curve defined by r
to the left of A so that the volume decrease caused by changing the curve!3

A —~ A’ to the chord A — A’ is equal A\/2.

(B) Let B be the point (0,r(0)), select a point B’ slightly above B and connect
it to the (unique) point X on the curve so that the curve B— X — A’ — 4

is concave. Choose B’ so that the volume increase caused by changing the
curve B ~ X to the line B — X is A/2.

Set Ag small enough so that this construction is possible for all 0 < A < Aq.

Note that for each point 0 < ¢t < w, at least one of the two following conditions
hold: either volume is only removed from the right of ¢, or volume is only added
to the left of ¢. This implies that the volume function, F'(¢), increases in this
range. Because the amount of volumes that are removed and added are equal,
F(t) does not change for ¢ outside the range [0,w]. This implies that condition
2 holds.



32 FREUND, SEUNG, SHAMIR AND TISHBY

Transformation 1

r(t)

Chords
Transformation 2

Tangents \

r(t)

Transformation 3

Figure A.1. The variational transformations
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2.

If r does not decrease linearly to zero for ¢t > w then transformation 2 is used

(see Figure A.1(a)):

(A) Select A” on the curve to the right of A so the volume decrease that is
caused by changing A —~ A" to A — A" is A/2.

(B) Let C be the point at which the curve meets the horizontal axis. Select
C" slightly to the right of C' and connect it to the point Y on the curve so
that the curve C/ —Y —~ A” — A is concave. Choose C’ so that the volume
increase caused by changing C' — C —Y to C' —Y is A/2.

Set Ag small enough so that this construction is possible for all 0 < A < Ag.
An argument similar to the one used in transformation 1 holds in this case for

t>w.

If neither condition 1 nor 2 holds, and the slopes of the two linear segments are
not equal (i.e. r # r*), then transformation 3 is used (see Figure A.1(b)):

(A) A point A’ slightly below A is chosen.

(B) A point B’ slightly above B is chosen so that there is no net change in the
volume when changing A — B to A’ — B'.

(C) A point C” slightly to the right of C'is chosen so that there is no net change
in the volume when changing A — C to A’ — C".

(D) The movement from A to A’ is chosen do that the change in the volume
caused by each of the four changesinr: B—X to B'— X, A—X to A— X,
A=Y toA =Y and C—Y to C' —Y is equal to A/4

In this case the volume function is changed on both sides of the pivot point.
Arguments similar to the one used in transformation 1 shows that condition 2
is met.

The only radius functions to which none of those transformations apply is r*,

thus finishing the proof of the lemma. [ ]

Appendix B
Proof of Theorem 3

We first prove the dependence on the uniformity of the input distribution, as mea-
sured by Ap. In general, any distribution D that is within Ap of the uniform
distribution p can be written as weighted sum of the form App+ (1 — Ap)v where v
is some other distribution. Fix the version space and any prior distribution, let the
distribution of examples be D = App + (1 — Ap)v and let g,, g, be the expected
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information gains when the examples are generated according to p or v respec-
tively. As g, > 0 we get that the expected information gain when D is within Ap
of uniform is at least Ap times the expected information gain when D is uniform.

The analysis of the dependence on Ap is more involved. We go back to the analysis
of an arbitrary projection of a convex body from the proof of Theorem 2. The
main idea there was to show transformations that increase or decrease the volume
function in particular ranges, in a way that decreased the expected information
gain. There, the transformation involved changing the shape of the body. Here we
present a transformation that changes the density of the prior distribution inside
the version space.

We fix a convex body and a direction & along which this body is projected. We
denote by p(t) the average density along the slice of body which is defined by
the example (Z,¢). The relation between the volume function F', and the radius
function r is now

1
Fat) = [ 06" plo)ds
— 00
We search for a density distribution of the points in the body, which is within
Ap of the uniform distribution, and minimizes the expected information gain from
(uniformly distributed) examples whose direction is #. Note that the symmetriza-
tion argument used in the proof of Theorem 2 holds for this case too, and we can
thus restrict ourselves to functions r and p that are defined only over the positive
reals. From the variational derivative of F'(¢) for ¢t > 0 that we computed in Equa-
tion (20), we know that G(F') decreases if F'(t) is increased for some ¢t < w or if
F(t) is decreased for some 0 < t < w. As we allow deviations from the uniform
prior distribution we can change F' without changing the form of the convex body.
We shall now give a variation of p that changes p(?) in the range 0 <t < w in a way
that decreases G(F'). As this variation can be applied to any p that does not have
a specific step-like form in this range, we get that this step-like form of p achieves
the minimal value of G(F') for this fixed body and P that is within Ap of uniform.
A similar argument can be used to show that p(¢) must also have a stepwise form
in the range w < t.

Assume that there exist 0 < t; < t3 < w and ¢,6 > 0 such that 0 < ¢} — ¢ <
t1+e<ty—e<ta+e<w,andsuchthat forallt € [t1—¢,t1+¢€], p(t) < 1/Ap =6,
and for all t € [ta —€,t2 + €], p(t) > Ap + 6. We add to p(t) the following variation
function:

+61, ti—e<t<t+e,
1/}(15):{—52, lr—e<t<ts+e,
0, otherwise

where 61, 65 are chosen so that 6 > 6,6, > 0 and
t14e€ —
o1 _ tl—e(r(s))d tds

& [F(p(s))d-1ds |

to—e€
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This insures that the volume function does not change outside the range [t; —¢,t2+
€].
It is easy to check that p(t) + ¢(t) corresponds to a density distribution that is
within Ap of the uniform distribution. Changing the density distribution from p(?)
to p(t) + ¢(t) decreases F(t) in the range [t; — €,t3 + €] and does not change F'(t)
anywhere else. Thus this change decreases G(F'). It is also easy to check that this
variation cannot be applied to p if and only if there exists 0 < a < w such that
p(t) = 1/Ap for 0 < t < a and p(t) = Ap for a < t < w. From this argument
and a similar argument for the range ¢ > w we get that the density function that
minimizes G(F') must be of the form

p*(t):{l//\'p, 0<t<aorb<t, (B.1)

Ap, a<t<b

where 0 < a < w < b. We do not have a simple variational argument for determin-
ing the exact value of @ and b, however, as we shall see, we can lower bound the
information gain without this explicit knowledge.

We have thus found the form of the density function that minimizes the informa-
tion gain for a specific body (and a specific projections). Suppose now that we fix
the function p and vary the shape of the body, i.e. the radius function r. Going
through the construction of the variational functions ¢ in the proof of Theorem 2,
we see that the same construction steps hold verbatim, although special attention
needs to meaning of the expression “the volume decrease is equal to z” as the
volume is now defined in terms of the non uniform distribution specified by p.

The combination of these two arguments shows that the smallest value of G(F')
is attained for the radius function r* specified in Equation (A.1), and the average
density function p*. It remains to compute a lower bound on G(F') based on these
two facts. This is done by bounding the ratio between the values of G(F') for the
uniform prior and the non uniform prior cases.

We change the integration variable in Equation (19) from « to F'(z):

[P P = FyH(F) &dF

1/2 -
PP —F) %4

G(F) = (B.2)

When written in this form, the dependence of G(F) on the r and p enters the
equation through the derivative dz/dF. By bounding the ratio between the values
that this derivative attains in the uniform and the non-uniform cases, we can bound
the ratio between the values that G(F) attains for the uniform and the non-uniform
prior distributions.

The volume function that corresponds to the uniform prior distribution is, for
—1 <2 <0, Fou(z) = (1 +2)4/2. The volume function that corresponds to the
prior distribution defined by p* is

/\7_,1(1—1—1‘)0!, -1 <z < —b,

Fronund®) = 28 Ap(1+2)% + ¢, —b< < —a, (B.3)
M (1+z)d+1-235" —a<z<0
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Where ¢ > 0 is defined by matching the two definitions of F'(—b).
Taking the derivatives of F,.;; and F .. .air We get the following equation for their
ratio:

X, 0< F<F(=h),
dr 1-1/d
. —-1/d
%Fd)j =% (ﬁc) ’ F(=b) < F < F(—a), (B.4)
F unif l/d 9F 1—1/d
Ap (m) , F(-a)< F<1/2

Using the facts that Ap < 1, ¢ > 0, and d > 2 we can bound the ratio of the
derivatives for each of the three cases. For the range —1 < z < —b we get that

() sonennis
Cmonunit | (B.5)
e

For the range —b < z < —a we get, using the fact that F' is monotone non-
decreasing, that

Ao < Al < L

2F (—a) 2F (x) 2F(=b)  AZ'(1-b)¢ _  _,
LS ) e SR e S TR e = Ap(Ih) S

which implies that in the range —b < 2 < —a,

(F 2 it ¢ )\ Z2HL/ o 22 (B.6)
(55) e

Finally, for the range —a < « < 0, we get that

1 S A_l/d <

dp(l—a) +c 2F(—a)
%S )\_1 . 1 <1
7 (1—a) 2F(—a)+ A5 —1

which implies that
2-1/4 (d7)
AL < aG V<A < % <1 (B.7)
dF / unit

Combining the bounds from Equations (B.5), (B.6), and (B.7), and plugging them
into Equation (B.4), we get that

)\% S (d(_‘,)l:n)on unif < )\ 2
dF / unit

Using this bound and Equation (B.2) we get that G(Foonunit) > A%G(FMH). This
completes the proof of the theorem.
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Notes

1. Here, and elsewhere in the paper, log(-), denotes the logarithm over base two, while In(-)
denotes the logarithm over base e.

2. Our analysis can be extended to larger committees, but the improvement in the performance
is minor.

3. For example, consider the case in which the version space contains two disconnected sets in
R?, which are very far from each other, and assume that a random example is very likely
to separate these two sets. Suppose one of the sets has probability ¢, while the other has
probability 1 — e. While most of the examples that separate the two sets are rejected, the
fraction that is accepted can still dominate all other examples. Thus the expected information
gain is close to H(e). As e can be set arbitrarily small, the expected information gain can be
arbitrarily close to zero. It seems that this type of version space can occur only very rarely
but we do not know what are the necessary conditions.

4. Note that the number of calls to Sample is Q(d/e) ((Blumer et al.,1989)), even if all of the
instances are used as queries to Label.

5. The bound as it appears in (McDiarmid,1989) is given for martingales. However, it is easily
checked that it is also true for super-martingales. Reversing the sign of the Y; we get an
equivalent theorem for sub-martingales.

6. Actually, it is enough to assume that the distribution of the offset ¢ is uniform for any direction
Z. No assumption needs to be made regarding the distribution of Z.

7. The perceptron concept class is defined as the following set of binary functions over the unit
sphere

e (@) 1, Z-w>t
@t 0, otherwise ~

8. In the following discussion we ignore the distinction between the concepts in C and their
parameterization, and refer to the concept ¢z simply as the vector 0.

9. Details on how the Fréchet derivative is defined and calculated can be found in standard books
on variational analysis, such as (Smith,1985).

10. This definition is a one-sided version of the notion of A-closeness defined in Definition 6.2.
11.Ignoring log factors.
12.For the definition of a convex family of bodies see ((Bonnesen & Fenchel,1987),Subsection 24).

13. We use A — B to denote the line segment between the points A and B, and A —~ B to denote
the segment of a curve that connects A and B. We also use the shorthand A— B —~ C — D to
denote a the concatenation of a line segment, a curve segment, and another line segment.
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