THE FREQUENTIAL APPROACH TO PROBABILITY AND STATISTICS

A. P. DAWID

UNIVERSITY COLLEGE LONDON
PREQUENTIAL
PROBABILITY

Forecaster F \{ successive moves
Nature N \} with perfect
information

Each day: F issues a probability distribution $P_{F,i}$
for r.v. X_i.
N chooses a value x_i for X_i.

DATA: $D = \begin{pmatrix} P_{F,1} & P_{F,2} & P_{F,3} & \cdots & P_{F,\infty} \\ x_1 & x_2 & x_3 & \cdots & x_\infty \end{pmatrix}$

PROBLEM: In the light of the outcomes x_i is $P_{F,i}$ a good set of forecasts?
Additional structure

- A (non-randomised) strategy for F is specified by a joint probability distribution P_F for x_i:
 \[P_{F,i}(x_i) = P_F(x_i | x_i^{-1} = x_i^{i-1}) \]

- A (randomised, oblivious) strategy for N is specified by a joint probability distribution P_N for x_i:
 \[x_i \text{ simulated from } P_N(x_i | x_i^{-1} = x_i^{i-1}) \]

Initially, suppose both F and N operate such strategies

(—will drop later)
A. P_N, P_F both public.

Match?

(i) $P_F = P_N$

-or (ii) $P_{F,i} = P_{N,i}$, all i.

-but rare for P_N to be known.

B. P_N unknown, P_F public.

Develop MATCH CRITERION

$T(\bar{I}_{PF}, \bar{x})$

NULL DISTRIBUTION:

of $T(\bar{I}_{PF}, \bar{x})$

when $\bar{x} \sim P_N = P_{PF} = P_0$, say

-could depend on P_0.
T satisfies:

- **Weak Frequential Principle** if $T(P_F > \alpha)$ depends only on data $D = (P_F, \alpha)$.

- **Strong Frequential Principle** if relevant aspects of the null distribution of T does not depend on P_0.

Is this possible?

Yes
EXAMPLE 1

\[x_i = 0 \text{ or } 1 \]
\[p_i = P_{F,0} (X_i = 1) \]

\[T_n = \frac{1}{n} \sum_{i=1}^{n} (x_i - p_i) \quad (WPP) \]

Then

\[P_o (T_n \to 0) = 1 \quad (SPP) \]

-so acceptable match if \(T_n \) is "close to 0"

How close?
EXAMPLE 2

\[T_n = \frac{\sum_{i=1}^{n} (x_i - \phi_i)}{\left[\sum_{i=1}^{n} \phi_i (1 - \phi_i) \right]^{1/2}} \]

(WPP)

Then, so long as

\[P_0 \left(\sum_{i=1}^{n} \phi_i (1 - \phi_i) \to \infty \right) = 1, \]

\[P_0 (T_n \leq t) \to \Phi(t) \]

(SPP)

so acceptable match if

\[|T_n| \] not large in comparison to \(N(0, 1) \)

(significance level)
EXAMPLE 3

\[x_i \in [a, b] \]

\[P_{F_i} \text{ a distribution on } [a, b] \]

(continuous)

Define

\[u_i = P_{F_i}(X_i \leq x_i) \quad \text{(WPP)} \]

Then, under \(P_0 \), the \((u_i)\) are independently uniform on \([0, 1]\) \quad \text{(SPP)}

so can assess observed \((u_i)\) for conformity with this:

[Uniform? Independent?]
Game-theoretic analysis

Third player, Statistician, plays between F and N.

Move = size h of bet against F.

E.g. binary case:
F pays $ \text{hi} \times (x_i - \pi_i)

Let $K_n = $ S's fortune at n.
$K_0 = 1.$

S WINS GAME if:

(i) K_n always ≥ 0

(ii) EITHER $K_n \to \infty$

("F discredited")

OR. A occurs

some property of data D

(WPP)
Call A **FULL** if S has a winning strategy.

Then "A fails"

\Rightarrow "F discredited"

Martingale theory \Rightarrow

If A is full,

$P_0(A) = 1 \quad (SPP)$

Example 1: Can show

$A := \frac{1}{n} \sum (x_i - p_i) \rightarrow 0$

is full.

(+ many similar results)
If we change requirements from \(K_0 = 1 \) to
\[K_0 = \beta \in [0,1] \]
and from \(K_n \rightarrow \infty \) to
\((K_n) \) reaches 1 before 0 we can define
\[
PP(A) = \text{smallest } \beta \text{ s.t. } S \text{ has a winning strategy.}
\]
Then \(P_0(A) \leq PP(A) \) (SSP)

— applies to Examples 2, 3 and many more.
PREFERENTIAL STATISTICS

More players:

Pool \(E = \{ E_\theta : \theta \in \Theta \} \)

of “experts”

- plays before \(F \), issuing a family of probability forecasts

\(P_i = \{ P_{\theta, i} : \theta \in \Theta \} \)

for \(x_i \).

Now interested in comparing \(F \) and \(E \), rather than \(F \) and \(N \).
STRAATEGIES

Again, strategy \leftrightarrow joint distn.

$N: \ P_N \ (\text{unknown})$

$E: \ P_E = \{P_\theta : \theta \in \Theta \}$

$F: \ P_F$

(A) P_E public.

(E) "True model": $P_N = P_{0*} \in P_E$

"compare" P_F with (unknown) P_{0*}

- by evaluating probabilistic behaviour under $P_\theta \in P_E$, all θ.

- "Classical Statistics"

E.g.: $\{-\ln(\hat{\theta}_n)\}^{1/2}(\hat{\theta}_n - \theta) \xrightarrow{d} N(0,1)$

(WPP, SPP)

$[P_{0*}]$
Prequential consistency:

$$\| P_{F,i} - P_{\theta,i} \| \rightarrow 0 \ [P_\theta]$$

Prequential efficiency:

For any joint distribution \(R \),

$$\prod_{i=1}^{n} \frac{P_{F,i}(x_i)}{P_{R,i}(x_i)} \rightarrow 0$$

\([P_\theta, \text{almost all } \theta]\)

Both usually hold for:

- **Plug-in Strategy:**

 $$P_{F,i} = P_{\hat{\theta}_{i-1},i}$$

- **Bayes Strategy:**

 $$P_F = \int P_{\theta_i} \pi(\theta_i) d\theta$$

In both cases, \(P_{F,i} \) only depends on moves to \((i-1)\), not on strategies \(P_F \) - PREQUENTIAL
For many purposes, an efficient P_F can replace the whole family P_e.

E.g. Example 2:

$$T_n = \frac{\sum (x_i - P_F(i))}{\sum P_F(i) (1 - P_F(i))^2}$$

Then $T_n \sim N(0,1)$ \[P_F \]

---so we can test fit of P_e by testing fit of P_F.

(II) "False model": do not assume $P_N \in P_E$.

Performance measure at time i: $D(P_{N,i}, P_{F,i})$

E.g. $(P_{N,i} - P_{F,i})^2$

For given expert strategies P_E, N's moves π, let Θ^* (unknown) achieve

$$\min_{\Theta} \lim_{n \to \infty} \frac{1}{n} \sum D(P_{N,i}, P_0, i)$$

(closet expert to true P_N for observed data).

Then can construct estimators (Θ^*_n) such that

$$\Theta^*_n \to \Theta^* \quad [P_N]$$

PREQUENTIAL

OUT-OF-MODEL

CONSISTENCY
(III) "No model"
- do not even assume N is using a strategy
→ seek P_F to optimise some variant of regret:
$$\inf_{P^*} \sup_{x} \left[\sup_{\theta} \prod_{i=1}^{n} p_{\theta, i}(x_i) / \prod_{i=1}^{n} p_{F, i}(x_i) \right]$$
- "learning with expert advice"
n fixed?? On-line ??
[Shtarkov]
- Bayes strategy generally good.

How related to (I) and (II)?
Pe not known
experts just announce their
\(P_{0,i} \) at each time point.
\(\Rightarrow P_F \) must be a PREQUENTIAL strategy.

Could look for extensions
of (II): \(\theta_n^+ \rightarrow \theta^+ \) ALWAS

(III) minimax regret

What results possible?

What conditions?

"Unlink" forecasts from labels
(switching)?