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Abstract

This paper studies the problem of active learning where the labeler can not only return an incorrect
label but also abstain from labeling. Different noise and abstention models of the labeler are considered
and the amount of queries to the labeler required to learn a good classifier is analyzed. An adaptive
algorithm which automatically requests less queries with a more informative labeler is provided and is
proved to have nearly optimal query complexity. The analysis also shows the gains of allowing a labeler
to abstain from labeling by quantifying the reduction in the number of queries.

1 Introduction
In active learning, the learner is given an input space X , a label space L, and a hypothesis class H such that
one of the hypotheses in the class generates ground truth labels. Additionally, the learner has at its disposal
a labeler to which it can pose interactive queries about the labels of examples in the input space. Note that
the labeler may output a noisy version of the ground truth label (flipped label). The goal of the learner is
to learn a hypothesis in H which is close to the hypothesis that generates the ground truth labels.

There has been a significant amount of literature on active learning, both theoretical and practical.
Previous theoretical work on active learning has mostly focused on the above basic setting [2, 4, 7, 10, 22]
and has developed algorithms under a number of different models of label noise. A handful of exceptions
include [3] which allows class conditional queries, [5] which allows requesting counterexamples to current
version spaces, and [23] where the learner has access to a strong labeler and a weak labeler.

In this paper, we consider a more general setting where, in addition to a label, the labeler can sometimes
abstain from prediction. This scenario arises naturally in difficult labeling tasks and has been considered
in computer vision by [11, 15]. Our goal in this paper is to investigate this problem from a foundational
perspective, and explore what kind of assumptions are needed, and how an abstaining labeler can affect
properties such as consistency and convergence rates of active learning algorithms.

The setting of active learning with an abstaining noisy labeler was first considered by [21], who looked
at learning binary threshold classifiers based on queries to an labeler whose abstention rate is higher closer
to the decision boundary. They primarily looked at the case when the abstention rate at a distance ∆ from
the decision boundary is less than 1 − Θ(∆α), and the rate of label flips at the same distance is less than
1
2 − Θ(∆β); under these conditions, they provided an active learning algorithm that given parameters α
and β, outputs a classifier with error ε using O(ε−α−2β) queries to the labeler. However, there are several
limitations to this work. The primary limitation is that parameters α and β need to be known to the
algorithm, which is not usually the case in practice. A second major limitation is that even if the labeler
has nice properties, such as, the abstention rates increase sharply close to the boundary, their algorithm is
unable to exploit these properties to reduce the number of queries. A third and final limitation is that their
analysis only applies to one dimensional thresholds, and not to more general decision boundaries.

In this work, we provide an algorithm which is completely adaptive in the sense that it does not need to
know any parameters of the labeler’s noise and abstention models. Additionally, we show that this algorithm
is able to exploit nice properties of the labeler. Our algorithm is statistically consistent under very mild
conditions – when the abstention rate is non-decreasing as we get closer to the decision boundary. Under the
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conditions of [21], we give the same rate of convergence. However, if the abstention rate of the labeler increases
strictly monotonically close to the decision boundary – a condition that we call the c-growth property – then
our algorithm adapts and does substantially better. It simply exploits the increasing abstention rate close
to the decision boundary, and does not even have to rely on the noisy labels! Specifically, when applied to
the case where the noise rate is at most 1

2 − Θ(∆β) and the abstention rate is 1 − Θ(∆α) at distance ∆
from the decision boundary, our algorithm can output a classifier with error ε based on only O(ε−α) queries.
An important property of this algorithm is that all this is achieved in a completely adaptive manner ; unlike
previous work [21], our algorithm needs no information whatsoever on the abstention rates or rates of label
noise. Thus our result also strengthens existing results on active learning from (non-abstaining) noisy labelers
by providing an adaptive algorithm that achieves that same performance as [6] without knowledge of noise
parameters.

We extend our algorithm so that it applies to any smooth d-dimensional decision boundary, not just
one-dimensional thresholds, and we complement it with lower bounds on the number of queries that need
to be made to any labeler. Our lower bounds generalize the lower bounds in [21], and shows that our upper
bounds are nearly optimal. We also present an example that shows that at least a relaxed version of the
monotonicity property is necessary to achieve this performance gain; if the abstention rate plateaus around
the decision boundary, then our algorithm needs to query and rely on the noisy labels (resulting in higher
query complexity) in order to find a hypothesis close to the one generating the ground truth labels.

1.1 Related work
There has been a considerable amount of work on active learning, most of which involves labelers that are
not allowed to abstain. Theoretical work on this topic largely falls under two categories – the membership
query model [6, 13, 17, 18], where the learner can request label of any example in the instance space, and
the PAC model, where the learner is given a large set of unlabeled examples from an underlying unlabeled
data distribution, and can request labels of a subset of these examples. Our work and also that of [21] builds
on the membership query model.

There has also been a lot of work on active learning under different noise models. The problem is
relatively easy when the labeler always provides the ground truth labels – see [8, 9, 12] for work in this
setting in the PAC model, and [13] for the membership query model. Perhaps the simplest setting of label
noise is random classification noise, where each label is flipped with a probability that is independent of the
unlabeled instance. [14] shows how to address this kind of noise in the PAC model by repeatedly querying
an example until the learner is confident of its label; [17, 18] provide more sophisticated algorithms with
better query complexities in the membership query model. A second setting is when the noise rate increases
closer to the decision boundary; this setting has been studied under the membership query model by [6]
and in the PAC model by [10, 4, 22]. A final setting is agnostic PAC learning – when a fixed but arbitrary
fraction of labels may disagree with the label assigned by the optimal hypothesis in the hypothesis class.
Active learning is known to be particularly difficult in this setting; however, algorithms and associated label
complexity bounds have been provided by [1, 2, 4, 10, 12, 22] among others.

Our work expands on the membership query model, and our abstention and noise models are related
to a variant of the Tsybakov noise condition. A setting similar to ours was considered by [6, 21]. [6]
considers a non-abstaining labeler, and provides a near-optimal binary search style active learning algorithm;
however, their algorithm is non-adaptive. [21] gives a nearly matching lower and upper query complexity
bounds for active learning with abstention feedback, but they only give a non-adaptive algorithm for learning
one dimensional thresholds, and only study the situation where the abstention rate is upper-bounded by a
polynomial function. Besides [21] , [11, 15] study active learning with abstention feedback in computer vision
applications. However, these works are based on heuristics and do not provide any theoretical guarantees.
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2 Settings
Notation 1 [A] is the indicator function: 1 [A] = 1 if A is true, and 0 otherwise. For x = (x1, . . . , xd) ∈ Rd
(d > 1), denote (x1, . . . , xd−1) by x̃. Define lnx = loge x, log x = log 4

3
x, [ln ln]+ (x) = ln ln max{x, ee}. We

use Õ and Θ̃ to hide logarithmic factors in 1
ε ,

1
δ , and d.

Definition 1. Suppose γ ≥ 1. A function g : [0, 1]d−1 → R is (K, γ)-Hölder smooth, if it is continuously
differentiable up to bγc-th order, and for any x,y ∈ [0, 1]d−1,

∣∣∣g(y)−∑bγcm=0
g(m)(x)
m! (y − x)m

∣∣∣ ≤ K ‖y − x‖γ .
We denote this class of functions by Σ(K, γ).

Definition 2. A function f : [0, 1]→ [0, 1] satisfies the c-growth property (0 < c < 1) if f is nondecreasing
and for any 0 < a ≤ 1 and 0 ≤ b ≤ 2

3a,
f(b)
f(a) ≤ 1− c.

Note. The c-growth property prevents f from being too flat. For example, f(x) = 1 does not satisfy the c-
growth property for any 0 < c < 1, while f(x) = xα (α > 0) satisfies the c-growth property with c = 1−

(
2
3

)α.
Note that if f satisfies the c-growth property, then f(0) = 0 by letting k →∞ in f

((
2
3

)k) ≤ (1− c)k.

We consider active learning for binary classification. We are given an instance space X = [0, 1]d and a
label space L = {0, 1}. Each instance x ∈ X is assigned to a label l ∈ {0, 1} by an underlying function
h∗ : X → {0, 1} in a hypothesis space of interest unknown to the learning algorithm. The learning algorithm
has access to any x ∈ X , but no access to their labels. Instead, it can only obtain label information through
interactions with a labeler, whose relation to h∗ is to be specified later. The objective of the algorithm is to
output some classifier ĥ that is close to h∗ while making as few interactions with the labeler as possible.

We assume that the hypothesis space of interest is the smooth boundary fragment class H = {hg(x) =
1 [xd > g(x̃)] | g : [0, 1]d−1 → [0, 1] is (K, γ)-Hölder smooth}. In other words, the decision boundaries of
classifiers in this class are epigraph of smooth functions (see Figure 1 for example). We assume h∗(x) =
1 [xd > g∗(x̃)] ∈ H. Observe that when d = 1, our hypothesis space becomes the space of threshold functions
H = {hθ(x) = 1 [x > θ] : θ ∈ [0, 1]}.

The performance of a classifier h(x) = 1 [xd > g(x̃)] is evaluated by the volume of disagreement region
which is the set of points that h and h∗ assign different labels to. Mathematically, this is equal to the L1

distance between the decision boundaries ‖g − g∗‖ =
∫
[0,1]d−1 |g(x̃)− g∗(x̃)| dx̃.

The learning algorithm can only obtain label information by querying a labeler who is allowed to abstain
from labeling or return an incorrect label (flipping between 0 and 1). For each query x ∈ [0, 1]d, the labeler
L will return y ∈ Y = {0, 1,⊥} (⊥ means that the labeler abstains from providing a 0/1 label) according
to some distribution PL(Y = y | X = x). When it is clear from the context, we will drop the subscript of
PL(Y | X). Note that while the labeler can declare its indecision by outputting ⊥, we do not allow classifiers
in our hypothesis space to output ⊥.

In our active learning setting, our goal is to output a boundary g such that g is close to g∗ while making
as few interactive queries to the labeler as possible. In particular, we want to find an algorithm with low
query complexity Λ(ε, δ,A, L, g∗), which is defined as the minimum number N such that if the ground truth
is g∗, then with probability at least 1− δ, the algorithm A can output a classifier h(x) = 1 [xd > g(x̃)] such
that ‖g − g∗‖ =

∫
[0,1]d−1 |g(x̃)− g∗(x̃)| dx̃ ≤ ε, and the number of queries to the labeler L is at most N .

2.1 Assumptions
In this subsection, we introduce some assumptions on the response of the labeler.

Assumption 1. The response distribution of the labeler P (Y | X) satisfies:

• (abstention) For any x̃ ∈ [0, 1]d−1, xd, x′d ∈ [0, 1], if |xd − g∗(x̃)| ≥ |x′d − g∗(x̃)| then P (⊥| (x̃, xd)) ≤
P (⊥| (x̃, x′d));

• (noise) For any x ∈ [0, 1]d, P (Y 6= 1 [xd > g∗(x̃)] | x, Y 6=⊥) ≤ 1
2 .
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Figure 1: A classifier with
boundary g(x̃) = (x− 0.4)

2
+0.1

for d = 2. Label 1 is assigned to
the region above, 0 to the below
(red region)
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Figure 2: The distributions
above satisfy Assumptions 1
and 2, but the abstention feed-
back is useless since P (⊥| x) is
flat between x = 0.2 and 0.4
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Figure 3: Distributions above
satisfy Assumptions 1, 2, and
3.

In other words, we assume that the closer x is to the decision boundary (x̃, g∗(x̃)), the more likely the
labeler will abstain from labeling; and the 0/1 labels can be flipped with probability as large as 1

2 (note that
when it is 1

2 , P (0 | x) = P (1 | x) so the 0/1 labels are completely uninformative).

Assumption 2. When queried on a point x ∈ [0, 1]d, the labeler returns y ∈ Y such that:

• (abstention) P (⊥| x) ≤ 1− f (|xd − g∗(x̃)|),

• (noise) P (Y 6= 1 [xd > g∗(x̃)] | x, Y 6=⊥) ≤ 1
2

(
1− C3 |xd − g∗(x̃)|β

)
.

Here C3, β are non-negative constants, and f is nondecreasing.

Assumption 2 gives upper bounds for the probabilities that the labeler returns abstentions or flipped
labels, and these upper bounds decrease as x gets further away from the decision boundary. The assumption
on the noise is a variant of the Tsybakov noise condition.

Assumption 3. When queried on a point x ∈ [0, 1]d, the labeler returns y ∈ Y such that P (⊥| x) =
1− f (|xd − g∗(x̃)|) where f satisfies the c-growth property for some constant 0 < c < 1.

Assumption 3 requires the abstention probability P (⊥ |(x̃, xd)) not to be too flat with respect to xd
(Figure 3).

We will show that there is a labeler (see Figure 2 for example) that satisfies Assumption 2 but the
abstention feedback cannot be exploited to improve the query complexity, while under Assumption 3 the
abstention feedback is always very useful.

Note that here c, f, C3, β are unknown parameters that characterizes the complexity of the learning task.
We want to design an algorithm that does not require knowledge of these parameters but still achieves nearly
optimal query complexity.

3 Learning one-dimensional thresholds
In this section, we start with the one dimensional case (d = 1) to demonstrate the main idea. We will
generalize these results to multidimensional instance space in the next section.

When d = 1, the decision boundary g∗ becomes a point in [0, 1], and the corresponding classifier is a
threshold function over [0,1]. In other words the hypothesis space becomes H = {fθ(x) = 1 [x > θ] : θ ∈
[0, 1]}). We denote the ground truth decision boundary by θ∗ ∈ [0, 1]. We want to find a θ̂ ∈ [0, 1] such that
|θ̂ − θ∗| is small while making as few queries as possible.
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3.1 Algorithm
The proposed algorithm is a binary search style algorithm shown as Algorithm 1. (For the sake of simplicity,
we assume log 1

2ε is an integer.) Algorithm 1 takes a desired precision ε and confidence level δ as its input,
and returns an estimation θ̂ of the decision boundary θ∗. The algorithm maintains an interval [Lk, Rk]
in which θ∗ is believed to lie, and shrinks this interval iteratively. To find the subinterval that contains
θ∗, Algorithm 1 relies on two auxiliary functions (marked in Procedure 2) to conduct adaptive sequential
hypothesis tests regarding subintervals of interval [Lk, Rk].

Algorithm 1 The active learning algorithm for learning thresholds
1: Input: δ, ε
2: [L0, R0]← [0, 1]
3: for k = 0, 1, 2, . . . , log 1

2ε − 1 do
4: Define three quartiles: Uk ← 3Lk+Rk

4 , Mk ← Lk+Rk
2 , Vk ← Lk+3Rk

4

5: A(u), A(m), A(v), B(u), B(v) ← Empty Array
6: for n = 1, 2, . . . do
7: Query at Uk,Mk, Vk, and receive labels X(u)

n , X
(m)
n , X

(v)
n

8: for w ∈ {u,m, v} do
9: . We record whether X(w) =⊥ in A(w), and the 0/1 label (as -1/1) in B(w) if X(w) 6=⊥

10: if X(w) 6=⊥ then
11: A(w) ← A(w).append(1) , B(w) ← B(w).append(21

[
X(w) = 1

]
− 1)

12: else
13: A(w) ← A(w).append(0)
14: end if
15: end for
16: . Check if the differences of abstention feedbacks are statistically significant
17: if CheckSignificant-Var(

{
A

(u)
i −A

(m)
i

}n
i=1

, δ
4 log 1

2ε

) then
18: [Lk+1, Rk+1]← [Uk, Rk]; break
19: else if CheckSignificant-Var(

{
A

(v)
i −A

(m)
i

}n
i=1

, δ
4 log 1

2ε

) then
20: [Lk+1, Rk+1]← [Lk, Vk]; break
21: end if
22: . Check if the differences between 0 and 1 labels are statistically significant

23: if CheckSignificant(
{
−B(u)

i

}B(u).length

i=1
, δ

4 log 1
2ε

) then
24: [Lk+1, Rk+1]← [Uk, Rk]; break

25: else if CheckSignificant(
{
B

(v)
i

}B(v).length

i=1
, δ

4 log 1
2ε

) then
26: [Lk+1, Rk+1]← [Lk, Vk]; break
27: end if
28: end for
29: end for
30: Output: θ̂ =

(
Llog 1

2ε
+Rlog 1

2ε

)
/2

Suppose θ∗ ∈ [Lk, Rk]. Algorithm 1 tries to shrink this interval to a 3
4 of its length in each iteration by

repetitively querying on quartiles Uk = 3Lk+Rk
4 , Mk = Lk+Rk

2 , Vk = Lk+3Rk
4 . To determine which specific

subinterval to choose, the algorithm uses 0/1 labels and abstention feedbacks simultaneously. Since the
ground truth labels are determined by 1 [x > θ∗], one can infer that if the number of queries that return
label 0 at Uk (Vk) is statistically significantly more (less) than label 1, then θ∗ should be on the right (left)
side of Uk (Vk). Similarly, from Assumption 1, if the number of non-abstention feedbacks at Uk (Vk) is
statistically significantly more than non-abstention feedbacks at Mk, then θ∗ should be closer to Mk than
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Procedure 2 Adaptive sequential testing
1: . D0, D1 are absolute constants defined in Proposition 3 and Proposition 4
2: . {Xi} are i.i.d. random variables bounded by 1. δ is the confidence level. Detect if EX > 0
3: function CheckSignificant({Xi}ni=1 , δ)

4: p(n, δ)← D0

(
1 + ln 1

δ +
√

4n
(
[ln ln]+ 4n+ ln 1

δ

))
5: Return

∑n
i=1Xi ≥ p(n, δ)

6: end function
7: function CheckSignificant-Var({Xi}ni=1 , δ)
8: Calculate the empirical variance Var = n

n−1

(∑n
i=1Xi

2 − 1
n (
∑n
i=1Xi)

2
)

9: q(n,Var, δ)← D1

(
1 + ln 1

δ +
√(

Var + ln 1
δ + 1

) (
[ln ln]+

(
Var + ln 1

δ + 1
)

+ ln 1
δ

))
10: Return n ≥ ln 1

δ AND
∑n
i=1Xi ≥ q(n,Var, δ)

11: end function

Uk (Vk).
Algorithm 1 relies on the ability to shrink the search interval via statistically comparing the numbers of

obtained labels at locations Uk,Mk, Vk. As a result, a main building block of Algorithm 1 is to test whether
i.i.d. bounded random variables Yi are greater in expectation than i.i.d. bounded random variables Zi with
statistical significance. In Procedure 2, we have two test functions CheckSignificant and CheckSignificant-
Var that take i.i.d. random variables {Xi = Yi − Zi} (|Xi| ≤ 1) and confidence level δ as their input, and
output whether it is statistically significant to conclude EXi > 0.

CheckSignificant is based on the following uniform concentration result regarding the empirical mean:

Proposition 3. Suppose X1, X2, . . . are a sequence of i.i.d. random variables with X1 ∈ [−2, 2], EX1 = 0.
Take any 0 < δ < 1. Then there is an absolute constant D0 such that with probability at least 1− δ, for all
n simultaneously, ∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ D0

(
1 + ln

1

δ
+

√
4n

(
[ln ln]+ 4n+ ln

1

δ

))
In Algorithm 1, we use CheckSignificant to detect whether the expected number of queries that return

label 0 at location Uk (Vk) is more/less than the expected number of label 1 with a statistical significance.
CheckSignificant-Var is based on the following uniform concentration result which further utilizes the

empirical variance Vn = n
n−1

(∑n
i=1 Y

2
i − 1

n (
∑n
i=1 Yi)

2
)
:

Proposition 4. Take any δ > 0. Then there is an absolute constant D1 such that with probability at least
1− δ, for all n ≥ ln 1

δ simultaneously,∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≤ D1

(
1 + ln

1

δ
+

√(
1 + ln

1

δ
+ Vn

)(
[ln ln]+ (1 + ln

1

δ
+ Vn) + ln

1

δ

))
The use of variance results in a tighter bound when Var(Xi) is small.
In Algorithm 1, we use CheckSignificant-Var to detect the statistical significance of the relative order

of the number of queries that return non-abstention feedbacks at Uk (Vk) compared to the number of non-
abstention feedbacks at Mk. This results in a better query complexity than using CheckSignificant under
Assumption 3, since the variance of difference in the abstention feedback approaches 0 when the interval
[Lk, Rk] zooms in on θ∗.1

1We do not apply CheckSignificant-Var to 0/1 labels because unlike the difference of numbers between non-abstention
feedback at Uk (Vk) and Mk, the variance of the difference of numbers between 0 and 1 labels stays above a positive constant.
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3.2 Analysis
For Algorithm 1 to be statistically consistent, we only need Assumption 1.

Theorem 5. Let θ∗ be the ground truth. If the labeler L satisfies Assumption 1 and Algorithm 1 stops to
output θ̂, then

∣∣∣θ∗ − θ̂∣∣∣ ≤ ε with probability at least 1− δ
2 .

Under additional Assumptions 2 and 3, we can derive upper bounds of the query complexity for our
algorithm.

Theorem 6. Let θ∗ be the ground truth, and θ̂ be the output of Algorithm 1. Under Assumptions 1 and 2,
with probability at least 1− δ, Algorithm 1 makes at most Õ

(
1

f( ε2 )
ε−2β

)
queries.

Theorem 7. Let θ∗ be the ground truth, and θ̂ be the output of Algorithm 1. Under Assumptions 1 and 3,
with probability at least 1− δ, Algorithm 1 makes at most Õ

(
1

f( ε2 )

)
queries.

The query complexity given by Theorem 7 is independent of β that decides the flipping rate, and con-
sequently smaller than the bound in Theorem 6. This improvement is due to the use of ⊥ labels, which
become much more informative under Assumption 3.

3.3 Lower Bounds
In this subsection, we give lower bounds of query complexity in the one-dimensional case and establish near
optimality of Algorithm 1. We will give corresponding lower bounds for the high-dimensional case in the
next section.

The lower bound in [21] can be easily generalized to Assumption 2:

Theorem 8. ([21]) There is a universal constant δ0 ∈ (0, 1) and a labeler L satisfying Assumptions 1 and
2, for any active learning algorithm A, there is a θ∗ ∈ [0, 1], such that for small enough ε, Λ(ε, δ0,A, L, θ∗) ≥
Ω
(

1
f(ε)ε

−2β
)
.

Our query complexity (Theorem 7) for the algorithm is also almost tight under Assumptions 1 and 3
with a polynomial abstention rate.

Theorem 9. There is a universal constant δ0 ∈ (0, 1) and a labeler L satisfying Assumptions 1, 2, and
Assumption 3 with f(x) = C2x

α (C2 > 0 and 0 ≤ α ≤ 2 are constants), for any active learning algorithm
A, there is a θ∗ ∈ [0, 1], such that for small enough ε, Λ(ε, δ0,A, L, θ∗) ≥ Ω (ε−α).

3.4 Remarks
Our results confirm the intuition that learning from abstention is easier than learning from noisy labels. This
is true because a noisy label might mislead the learning algorithm, but an abstention response never does.
Our analysis shows, in particular, that if the labeler never abstains, and outputs completely noisy labels
with probability bounded by 1 − |x− θ∗|γ (i.e., P (Y 6= I [x > θ∗] | x) ≤ 1

2 (1− |x− θ∗|γ)), then the near
optimal query complexity of Õ

(
ε−2γ

)
is significantly larger than the near optimal Õ (ε−γ) query complexity

associated with a labeler who only abstains with probability P (Y =⊥| x) ≤ 1 − |x− θ∗|γ and never flips
a label. More precisely, while in both cases the labeler outputs the same amount of corrupted labels, the
query complexity of the abstention-only case is significantly smaller than the noise-only case.

Note that the query complexity of Algorithm 1 consists of two kinds of queries: queries which return
0/1 labels and are used by function CheckSignificant, and queries which return abstention and are used by
function CheckSignificant-Var. Algorithm 1 will stop querying when the responses of one of the two kinds of
query are statistically significant. Under Assumption 2, our proof actually shows that the optimal number
of queries is dominated by the number of queries used by CheckSignificant function. In other words, a
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simplified variant of Algorithm 1 which excludes use of abstention feedback is near optimal. Similarly, under
Assumption 3, the optimal query complexity is dominated by the number of queries used by CheckSignificant-
Var function. Hence the variant of Algorithm 1 which disregards 0/1 labels would be near optimal.

4 The multidimensional case
We will follow [6] to generalize the results from one-dimensional thresholds to the d-dimensional (d > 1)
smooth boundary fragment class Σ(K, γ).

4.1 Lower bounds
Theorem 10. There are universal constants δ0 ∈ (0, 1), c0 > 0, and a labeler L satisfying Assump-
tions 1 and 2, for any active learning algorithm A, there is a g∗ ∈ Σ(K, γ), such that for small enough
ε, Λ(ε, δ0,A, L, g∗) ≥ Ω

(
1

f(c0ε)
ε−2β−

d−1
γ

)
.

Theorem 11. There is a universal constant δ0 ∈ (0, 1) and a labeler L satisfying Assumptions 1, 2, and
Assumption 3 with f(x) = C2x

α (C2 > 0 and 0 ≤ α ≤ 2 are constants), for any active learning algorithm
A, there is a g∗ ∈ Σ(K, γ), such that for small enough ε, Λ(ε, δ0,A, L, g∗) ≥ Ω

(
ε−α−

d−1
γ

)
.

4.2 Algorithm and Analysis
Recall the decision boundary of the smooth boundary fragment class can be seen as the epigraph of a
smooth function [0, 1]n−1 → [0, 1]. For d > 1, we can reduce the problem to the one-dimensional problem
by discretizing the first d− 1 dimensions of the instance space and then perform a polynomial interpolation.
The algorithm is shown as Algorithm 3. For the sake of simplicity, we assume γ, M/γ in Algorithm 3 are
integers.

Algorithm 3 The active learning algorithm for the smooth boundary fragment class
1: Input: δ, ε, γ
2: M ← Θ

((
1
ε

))1/γ . L ← {
0
M , 1

M , . . . , M−1M

}d−1
3: For each l ∈ L, apply Algorithm 1 with parameter (ε, δ/Md−1) to learn a threshold gl that approximates
g∗(l)

4: Partition the instance space into cells {Iq} indexed by q ∈
{

0, 1, . . . , Mγ − 1
}d−1

, where

Iq =

[
q1γ

M
,

(q1 + 1)γ

M

]
× · · · ×

[
qd−1γ

M
,

(qd−1 + 1)γ

M

]
5: For each cell Iq, perform a polynomial interpolation: gq(x̃) =

∑
l∈Iq∩L glQq,l(x̃), where

Qq,l(x̃) =

d−1∏
i=1

γ∏
j=0,j 6=Mli−γqi

x̃i − (γqi + j)/M

li − (γqi + j)/M

6: Output: g(x̃) =
∑
q∈{0,1,...,Mγ −1}d−1 gq(x̃)1 [x̃ ∈ q]

We have similar consistency guarantee and upper bounds as in the one-dimensional case.

Theorem 12. Let g∗ be the ground truth, and g be the output of Algorithm 3. If the labeler L satisfies
Assumption 1, then ‖g∗ − g‖ ≤ ε with probability at least 1− δ

2 .
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Theorem 13. Let g∗ be the ground truth, and g be the output of Algorithm 3. Under Assumptions 1 and 2,
with probability at least 1− δ, Algorithm 3 makes at most Õ

(
d

f(ε/2)ε
−2β− d−1

γ

)
queries.

Theorem 14. Let g∗ be the ground truth, and g be the output of Algorithm 3. Under Assumptions 1 and 3,
with probability at least 1− δ, Algorithm 3 makes at most Õ

(
d

f(ε/2)ε
− d−1

γ

)
queries.
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A Proof of query complexities

A.1 Properties of adaptive sequential testing in Procedure 2
Lemma 15. Suppose {Xi}∞i=1 is a sequence of i.i.d. random variables such that EXi ≤ 0, |Xi| ≤ 1. Let
δ > 0. Then with probability at least 1 − δ, for all n ∈ N simultaneously CheckSignificant({Xi}ni=1 , δ) in
Procedure 2 returns false.

Proof. This is immediate by applying Proposition 21 to Xi − EXi.

Lemma 16. Suppose {Xi}∞i=1 is a sequence of i.i.d. random variables such that EXi > ε > 0, |Xi| ≤ 1. Let
δ ∈ [0, 13 ], N ≥ ξ

ε2 ln 1
δ [ln ln]+

1
ε (ξ is an absolute constant specified in the proof). Then with probability at

least 1− δ, CheckSignificant
(
{Xi}Ni=1 , δ

)
in Procedure 2 returns true.

Proof. Let SN =
∑N
i=1Xi. CheckSignificant

(
{Xi}Ni=1 , δ

)
returns false if and only if

SN ≤ D0

(
1 + ln 1

δ +
√
N
(
[ln ln]+N + ln 1

δ

))
.

Pr

(
SN ≤ D0

(
1 + ln

1

δ
+

√
N

(
[ln ln]+N + ln

1

δ

)))

≤Pr

(
SN ≤ D0

(
1 + ln

1

δ
+
√
N [ln ln]+N +

√
N ln

1

δ

))

≤Pr

(
SN −NEXi ≤ D0

(
1 + ln

1

δ
+
√
N [ln ln]+N +

√
N ln

1

δ

)
−Nε

)

Suppose N = cξ
ε2 ln 1

δ [ln ln]+
1
ε for constant c ≥ 1 and ξ. ξ is set to be sufficiently large, such that (1)

ξ ≥ 4D2
0; (2)

2D0√
ξ

+D0

(
3 +

√
[ln ln]+ξ

)
+D0−

√
ξ/2 ≤ −

√
1
2 ; (3) f(x) = D0

√
[ln ln]+x−

√
x/2 is decreasing

when x > ξ. Here (2) is satisfiable since D0√
ξ

+D0

√
[ln ln]+ξ−

√
ξ/2→ −∞ as ξ →∞, (3) is satisfiable since

f ′(x)→ −∞ as x→∞. (2) and (3) together implies 2D0√
ξ

+D0

(
3 +

√
[ln ln]+cξ

)
+D0 −

√
cξ/2 ≤ −

√
1
2 .

1√
N

(
D0

(
1 + ln

1

δ
+
√
N [ln ln]+N +

√
N ln

1

δ

)
−Nε

)

=

√
ln

1

δ

 D0ε(1 + ln 1
δ )√

cξ[ln ln]+
1
ε ln 1

δ

+D0

√√√√ [ln ln]+

(
cξ
ε2 ln 1

δ [ln ln]+
1
ε

)
ln 1

δ

+D0 −
√
cξ[ln ln]+

1

ε


Since [ln ln]+

1
ε , c, ln

1
δ ≥ 1 and ε < 1, we have D0ε(1+ln 1

δ )√
cξ[ln ln]+

1
ε ln 1

δ

≤ 2D0√
ξ
.
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Since [ln ln]+x ≥ 1 if x ≥ 1, we have [ln ln]+
1
ε ≤ 1

ε , and thus√
[ln ln]+

(
cξ

ε2
ln

1

δ
[ln ln]+

1

ε

)
=

√
ln

[
max

{
e, 2 ln

1

ε
+ ln cξ + ln ln

1

δ
+ ln[ln ln]+

1

ε

}]

≤
√

ln

[
max

{
e, 3 ln

1

ε
+ ln cξ + [ln ln]+

1

δ

}]
(a)

≤
√

ln

[
max

{
e, 9 ln

1

ε
ln cξ[ln ln]+

1

δ

}]
≤

√
3 + [ln ln]+

1

ε
+ [ln ln]+cξ + ln[ln ln]+

1

δ
(b)

≤
√

3 +
√

[ln ln]+cξ +

√
[ln ln]+

1

ε
+

√
ln[ln ln]+

1

δ

where (a) follows by a+ b+ c ≤ 3abc if a, b, c ≥ 1, and (b) follows by
√∑

i xi ≤
∑
i

√
xi if xi ≥ 0.

Thus, we have

1√
N

(
D0

(
1 + ln

1

δ
+
√
N [ln ln]+N +

√
N ln

1

δ

)
−Nε

)

≤
√

ln
1

δ

2D0√
ξ

+D0

√
3 +

√
[ln ln]+cξ +

√
[ln ln]+

1
ε +

√
ln[ln ln]+

1
δ√

ln 1
δ

+D0 −
√
cξ[ln ln]+

1

ε


(c)

≤
√

ln
1

δ

(
2D0√
ξ

+D0

(
3 +

√
[ln ln]+cξ

)
+D0 −

√
cξ/2

)
(d)

≤ −
√

ln
1

δ
/2

(c) follows by
√

ln 1
δ ≥ max

{
1,
√

ln[ln ln]+
1
δ

}
, D0 ≥ 1, and

√
[ln ln]+

1
ε

(
D0√
ln 1
δ

−√cξ
)
≤ D0 −

√
cξ ≤

−√cξ/2 if cξ ≥ 4D2
0. (d) follows by our choose of ξ.

Therefore,

Pr

(
SN −NEXi ≤ D0

(
1 + ln

1

δ
+
√
N [ln ln]+N +

√
N ln

1

δ

)
−Nε

)

≤Pr

(
SN −NEXi ≤ −

√
N ln

1

δ
/2

)

which is at most δ by Hoeffding Bound.

Lemma 17. Suppose {Xi}∞i=1 is a sequence of i.i.d. random variables such that EXi ≤ 0, |Xi| ≤ 1. Let
δ > 0. Then with probability at least 1 − δ, for all n simultaneously CheckSignificant-Var({Xi}ni=1 , δ) in
Procedure 2 returns false.

Proof. Define Yi = Xi−EXi. It is easy to check n
n−1

(∑n
i=1 Y

2
i − 1

n (
∑n
i=1 Yi)

2
)

= n
n−1

(∑n
i=1X

2
i − 1

n (
∑n
i=1Xi)

2
)
.

The result is immediate from Proposition 4.
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Lemma 18. Suppose {Xi}∞i=1 is a sequence of i.i.d. random variables such that EXi > τε, |Xi| ≤ 1,
Var (Xi) ≤ 2ε where 0 < ε ≤ 1, τ > 0. Let δ < 1, N = ξ

τε ln 2
δ (ξ is a constant specified in the proof). Then

with probability at least 1− δ, CheckSignificant-Var
(
{Xi}Ni=1 , δ

)
in Procedure 2 returns true.

Proof. Let Yi = Xi − EXi, η be the constant η in Lemma 29. Set ξ = max(η, 16τ + 4
3 ).

CheckSignificant-Var
(
{Xi}Ni=1 , δ

)
returns false if and only if

∑N
i=1Xi ≤ q(N,Var, δ/2).

By applying Lemma 29 to Xi,
q(N,Var,δ)

N − EXi ≤ −τε/2 with probability at least 1− δ/2.
Applying Bernstein’s inequality to Yi, we have

Pr

(
1

N

N∑
i=1

Yi ≤ −τε/2
)
≤ exp

(
−N (−τε)2 /4

4ε+ τε/3

)

= exp

(
− ξ ln 2

δ

16/τ + 4/3

)
≤ δ/2

Thus, by a union bound,

Pr

(
N∑
i=1

Xi ≤ q(N,Var, δ)
)

≤Pr

(
q(N,Var, δ)

N
− EXi ≥ −τε/2

)
+ Pr

(
q(N,Var, δ)

N
− EXi ≤ −τε/2 and

1

N

N∑
i=1

Xi ≤
q(N,Var, δ)

N

)

≤δ/2 + Pr

(
q(N,Var, δ)

N
− EXi ≤ −τε/2 and

1

N

N∑
i=1

Yi ≤
q(n,Var, δ)

N
− EXi

)

≤δ/2 + Pr

(
1

N

N∑
i=1

Yi ≤ −τε/2
)

≤δ

A.2 The one-dimensional case
Proof of Theorem 5. Since θ̂ =

(
Llog 1

2ε
+Rlog 1

2ε

)
/2 and Rlog 1

2ε
− Llog 1

2ε
= 2ε,

∣∣∣θ̂ − θ∗∣∣∣ > ε is equivalent to
θ∗ /∈ [Llog 1

2ε
, Rlog 1

2ε
]. We have

Pr
(∣∣∣θ̂ − θ∗∣∣∣ > ε

)
= Pr

(
θ∗ /∈ [Llog 1

2ε
, Rlog 1

2ε
]
)

= Pr (∃k : θ∗ ∈ [Lk, Rk] and θ∗ /∈ [Lk+1, Rk+1])

≤
log 1

2ε−1∑
k=0

Pr (θ∗ ∈ [Lk, Rk] and θ∗ /∈ [Lk+1, Rk+1])

For any k = 0, . . . , log 1
2ε − 1, define Qk =

{
(p, q) : p, q ∈ Q ∩ [0, 1] and q − p =

(
3
4

)k} where Q is the set
of rational numbers. Note that Lk, Rk ∈ Qk, and Q is countable. So we have
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Pr (θ∗ ∈ [Lk, Rk] and θ∗ /∈ [Lk+1, Rk+1])

=
∑

(p,q)∈Qk:p≤θ∗≤q

Pr (Lk = p,Rk = q and θ∗ /∈ [Lk+1, Rk+1])

=
∑

(p,q)∈Qk:p≤θ∗≤q

Pr (θ∗ /∈ [Lk+1, Rk+1]|Lk = p,Rk = q) Pr (Lk = p,Rk = q)

Define event Ek,p,q to be the event Lk = p,Rk = q. To show Pr
(∣∣∣θ̂ − θ∗∣∣∣ > ε

)
≤ δ

2 , it suffices to show

Pr (θ∗ /∈ [Lk+1, Rk+1]|Ek,p,q) ≤ δ
2 log 1

2ε

for any k = 0, . . . , log 1
2ε − 1, (p, q) ∈ Qk and p ≤ θ∗ ≤ q.

Conditioning on event Ek,p,q, event θ∗ /∈ [Lk+1, Rk+1] happens only if some calls of CheckSignificant and
CheckSignificant-Var between Line 16 and 27 of Algorithm 1 return true incorrectly. In other words, at least
one of following events happens for some n:

• O(1)
k,p,q: θ

∗ ∈ [Lk, Uk] and CheckSignificant-Var(
{
A

(u)
i −A

(m)
i

}n
i=1

, δ
4 log 1

2ε

) returns true;

• O(2)
k,p,q: θ

∗ ∈ [Vk, Rk] and CheckSignificant-Var(
{
A

(v)
i −A

(m)
i

}n
i=1

, δ
4 log 1

2ε

) returns true;

• O(3)
k,p,q: θ

∗ ∈ [Lk, Uk] and CheckSignificant(
{
−B(u)

i

}n
i=1

, δ
4 log 1

2ε

) returns true;

• O(4)
k,p,q: θ

∗ ∈ [Vk, Rk] and CheckSignificant(
{
B

(v)
i

}n
i=1

, δ
4 log 1

2ε

) returns true;

Note that since [Uk, Vk] ⊂ [Lk+1, Rk+1] for any k by our construction, if θ∗ ∈ [Uk, Vk] then θ∗ ∈ [Lk+1, Rk+1].
Besides, event θ∗ ∈ [Lk, Uk] and event θ∗ ∈ [Vk, Rk] are mutually exclusive.

Conditioning on event Ek,p,q, suppose for now θ∗ ∈ [Lk, Uk].

Pr
(
O

(1)
k,p,q | Ek,p,q

)
= Pr

(
∃n : CheckSignificant-Var(

{
D

(u,m)
i

}n
i=1

,
δ

4 log 1
2ε

) returns true | θ∗ ∈ [Lk, Uk], Ek,p,q

)

On event θ∗ ∈ [Lk, Uk] and Ek,p,q, the sequences
{
A

(u)
i

}
and

{
A

(m)
i

}
are i.i.d., and E

[
A

(u)
i −A

(m)
i | θ∗ ∈

[Lk, Uk], Ek,p,q

]
≤ 0. By Lemma 17, the probability above is at most δ

4 log 1
2ε

.
Likewise,

Pr
(
O

(3)
k,p,q | Ek,p,q

)
= Pr

(
∃n : CheckSignificant(

{
−B(u)

i

}n
i=1

,
δ

4 log 1
2ε

) returns true | θ∗ ∈ [Lk, Uk], Ek,p,q

)

On event θ∗ ∈ [Lk, Uk] and Ek,p,q, the sequence
{
B

(u)
i

}
is i.i.d., and E

[
−B(u)

i | θ∗ ∈ [Lk, Uk], Ek,p,q

]
≤ 0.

By Lemma 15, the probability above is at most δ
4 log 1

2ε

.

Thus, Pr (θ∗ /∈ [Lk+1, Rk+1] | Ek,p,q) ≤ δ
2 log 1

2ε

when θ∗ ∈ [Lk, Uk]. Similarly, when θ∗ ∈ [Vk, Rk], we can

show Pr (θ∗ /∈ [Lk+1, Rk+1] | Ek,p,q) ≤ Pr
(
O

(2)
k,p,q | Ek,p,q

)
+ Pr

(
O

(4)
k,p,q | Ek,p,q

)
≤ δ

2 log 1
2ε

.

Therefore, Pr (θ∗ /∈ [Lk+1, Rk+1] | Ek,p,q) ≤ δ
2 log 1

2ε

, and thus Pr
(∣∣∣θ̂ − θ∗∣∣∣ > ε

)
≤ δ/2.
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Proof of Theorem 6. Define Tk to be the number of iterations of the loop at Line 6, T =
∑log 1

2ε−1
k=0 Tk. For

any numbers m1,m2, . . . ,mlog 1
2ε−1

, we have:

Pr (T ≥ m) ≤ Pr
(∣∣∣θ̂ − θ∗∣∣∣ > ε

)
+ Pr

∣∣∣θ̂ − θ∗∣∣∣ < ε and T ≥
log 1

2ε−1∑
k=0

mk


≤ δ

2
+ Pr

T ≥ log 1
2ε−1∑
k=0

mk and
∣∣∣θ̂ − θ∗∣∣∣ < ε

 (1)

≤ δ

2
+

log 1
2ε−1∑
k=0

Pr
(
Tk ≥ mk and

∣∣∣θ̂ − θ∗∣∣∣ < ε
)

≤ δ

2
+

log 1
2ε−1∑
k=0

Pr (Tk ≥ mk and θ∗ ∈ [Lk, Rk])

The first and the third inequality follows by union bounds. The second follows by Theorem 5. The
last follows since

∣∣∣θ̂ − θ∗∣∣∣ < ε is equivalent to θ∗ ∈ [Llog 1
2ε
, Rlog 1

2ε
], which implies θ∗ ∈ [Lk, Rk] for all

k = 0, . . . , log 1
2ε − 1.

We define Qk as in the previous proof. For all k = 0, . . . , log 1
2ε − 1,

Pr (Tk ≥ mk and θ∗ ∈ [Lk, Rk])

=
∑

(p,q)∈Qk:p≤θ∗≤q

Pr (Tk ≥ mk, Lk = p,Rk = q)

=
∑

(p,q)∈Qk:p≤θ∗≤q

Pr (Tk ≥ mk|Lk = p,Rk = q) Pr (Lk = p,Rk = q)

Thus, in order to prove the query complexity of Algorithm 1 is O
(∑log 1

2ε−1
k=0 mk

)
, it suffices to show that

Pr (Tk ≥ mk | Lk = p,Rk = q) ≤ δ
2 log 1

2ε

for any k = 0, . . . , log 1
2ε − 1, (p, q) ∈ Qk and p ≤ θ∗ ≤ q.

For each k, p, q, define event Ek,p,q to be the event Lk = p,Rk = q. Define lk = q − p =
(
3
4

)k, Nk to be

Θ̃
(

1
f(lk/4)

l−2βk

)
. The logarithm factor of Nk is to be specified later. Define S(u)

n and S(v)
n to be the size of

array B(u) and B(v) before Line 16 respectively.
To show Pr (Tk ≥ Nk | Ek,p,q) ≤ δ

2 log 1
2ε

, it suffices to show that on event Ek,p,q, with probability at least

1− δ
2 log 1

2ε

, if n = Nk then at least one of the two calls to CheckSignificant between Line 22 and Line 27 will
return true.

On event Ek,p,q, if θ∗ ∈ [Lk,Mk] (note that on event Ek,p,q, Lk andMk are deterministic), then |Vk − θ∗| ≥
lk
4 . We will show

p1 := Pr

(
CheckSignificant

({
B

(v)
i

}S(v)
Nk

i=1
,

δ

4 log 1
2ε

)
returns false | Ek,p,q

)
≤ δ

2 log 1
2ε

To prove this, we will first show that S(v)
Nk

, the length of the array B(v), is large with high probability,
and then apply Lemma 16 to show that CheckSignificant will return true if S(v)

Nk
is large.

By definition, S(v)
Nk

=
∑Nk
i=1A

(v)
i . By Assumption 2, E

[
A

(u)
i | Ek,p,q

]
= Pr (Y 6=⊥| X = Uk, Ek,p,q) ≥

f
(
lk
4

)
.
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On event Ek,p,q,
{
A

(v)
i

}
is a sequence of i.i.d. random variables. By the multiplicative Chernoff bound,

Pr
(
S
(v)
Nk
≤ 1

2Nkf
(
lk
4

)
| Ek,p,q

)
≤ exp

(
−Nkf

(
lk
4

)
/8
)
.

Now,

p1 ≤Pr

(
CheckSignificant

({
B

(v)
i

}S(v)
Nk

i=1
,

δ

4 log 1
2ε

)
returns false, S(v)

Nk
≥ 1

2
Nkf

(
lk
4

)
| Ek,p,q

)

+ Pr

(
S
(v)
Nk

<
1

2
Nkf

(
lk
4

)
| Ek,p,q

)
By Assumption 2 and |Vk − θ∗| ≥ lk

4 , E
[
B

(v)
i | Ek,p,q

]
≥ C2

(
lk
4

)β
. On event Ek,p,q,

{
B

(v)
i

}
is a se-

quence of i.i.d. random variables. Thus, On event Ek,p,q, by Lemma 16, with probability at least 1 −
δ

4 log 1
2ε

, CheckSignificant will return true if 1
2Nkf

(
lk
4

)
= Θ

(
1

l2βk
ln ln 1/ε

δ [ln ln]+
1

l2βk

)
. We have already proved

Pr
(
S
(v)
Nk
≤ 1

2Nkf
(
lk
4

)
| Ek,p,q

)
≤ exp

(
−Nkf

(
lk
4

)
/8
)
. By setting Nk = Θ

(
1

f(lk/4)
l−2βk ln ln 1/ε

δ [ln ln]+
1

l2βk

)
,

we can ensure p1 is at most δ/2 log 1
2ε .

Now we have proved on event Ek,p,q, if θ∗ ∈ [Lk,Mk], then

Pr

(
CheckSignificant

({
B

(v)
i

}S(v)
Nk

i=1
,

δ

4 log 1
2ε

)
returns true | Ek,p,q

)
≥ 1− δ

2 log 1
2ε

Likewise, on event Ek,p,q, if θ∗ ∈ [Mk, Rk], then

Pr

(
CheckSignificant

({
−B(u)

i

}S(u)
Nk

i=1
,

δ

4 log 1
2ε

)
returns true | Ek,p,q

)
≥ 1− δ

2 log 1
2ε

Therefore, we have shown Pr (Tk ≥ Nk | Ek,p,q) ≤ δ
2 log 1

2ε

for any k, p, q. By (1), with probability at least
1− δ, the number of samples queried is at most

log 1
2ε−1∑
k=0

O

(
1

f(
(
3
4

)k
/4)

(
3

4

)−2βk
ln

ln 1/ε

δ
[ln ln]+

(
3

4

)−2kβ)

=O

(
ε−2β

f(ε/2)
ln

1

ε

(
ln

1

δ
+ ln ln

1

ε

)
[ln ln]+

1

ε

)

Proof of Theorem 7. For each k in Algorithm 1 at Line 3, Let lk = Rk − Lk. Let Nk = η 1
f(lk/4)

ln
4 log 1

2ε

δ ,
where η is a constant to be specified later. As with the previous proof, it suffices to show Pr (Tk ≥ Nk | Ek,p,q) ≤

δ
2 log 1

2ε

where event Ek,p,q is defined to be Lk = p,Rk = q, Tk is the number of iterations at the loop at Line
6.

On event Ek,p,q, we will show that the loop at Line 6 will terminate after n = Nk with probability at
least 1− δ

2 log 1
2ε

.

Suppose for now θ∗ ∈ [Mk, Rk]. Let Zi = A
(u)
i − A

(m)
i , ζ = θ∗ −Mk. Clearly, |Zi| ≤ 1. On event Ek,p,q,

sequence {Zi} is i.i.d.. By the c-growth property, E [Zi | Ek,p,q] = f(ζ + lk
4 ) − f(ζ) ≥ cf(ζ + lk

4 ) since ζ ≤
2
3 (ζ+ lk

4 ). Var [Zi|Ek,p,q] = Var
[
A

(u)
i | Ek,p,q

]
+Var

[
A

(m)
i | Ek,p,q

] (a)

≤ E
[
A

(u)
i | Ek,p,q

]
+E

[
A

(m)
i | Ek,p,q

]
=

f(ζ + lk
4 ) + f(ζ)

(b)

≤ 2f(ζ + lk
4 ) where (a) follows by Ai ∈ {0, 1} and (b) follows by the monotonicity of
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f . Thus, on event Ek,p,q, by Lemma 18, if we set η sufficiently large (independent of lk, ε, δ), then with
probability at least 1− δ

4 log 1
2ε

CheckSignificant-Var
(
{Zi}Nki=1 ,

δ
4 log 1

2ε

)
in Procedure 2 returns true.

Similarly, we can show that on event Ek,p,q, if θ∗ ∈ [Lk,Mk], by Lemma 18, with probability at least

1− δ
4 log 1

2ε

, CheckSignificant-Var
({

A
(v)
i −A

(m)
i

}Nk
i=1

, δ
4 log 1

2ε

)
returns true.

Therefore, the loop at Line 6 will terminate after n = Nk with probability at least 1 − δ
4 log 1

2ε

on event

Ek,p,q. Therefore, with probability at least 1−δ, the number of samples queried is at most
∑log 1

2ε−1
k=0

1

f(( 3
4 )
k
/4)

ln ln 1/ε
δ =

O
(

1
f(ε/2) ln 1

ε

(
ln 1

δ + ln ln 1
ε

))
.

A.3 The d-dimensional case
To prove the d-dimensional case, we only need to use a union bound to show that with high probability all
calls of Algorithm 1 succeed, and consequently the output boundary g produced by polynomial interpolation
is close to the true underlying boundary due to the smoothness assumption of g∗.

Proof of Theorem 12. For q ∈
{

0, 1, . . . , Mγ − 1
}d−1

, define the “polynomial interpolation” version of g∗ as

g∗q (x̃) =
∑

l∈Iq∩L

g∗(l)Qq,l(x̃)

Recall that we choose M = O
(
ε−1/γ

)
.

By Theorem 5, each run of Algorithm 1 at the line 3 of Algorithm 3 will return a gl such that
∣∣gl − g∗q (l)

∣∣ ≤
ε with probability at least 1− δ/2Md−1.

‖g − g∗‖
=

∑
q∈{0,...,M/γ−1}d−1

‖(gq − g∗)1{x̃ ∈ Iq}‖

≤
∑

q∈{0,...,M/γ−1}d−1

∥∥(gq − g∗q)1{x̃ ∈ Iq}∥∥+
∥∥(g∗q − g∗)1{x̃ ∈ Iq}∥∥

∥∥(g∗q − g∗)1{x̃ ∈ Iq}∥∥ =

∫
Iq

∣∣g∗q (x̃)− g∗(x̃)
∣∣ dx̃

= O

(∫
Iq

M−γdx̃

)
= O

(
M−γ−d+1

)
The second equality follows from Lemma 3 of [6] that |gq(x̃)− g∗(x̃)| = O (M−γ) since g∗ is γ-Hölder

smooth.

∥∥(gq − g∗q)1{x̃ ∈ Iq}∥∥
=
∑

l∈Iq∩L

∣∣gl − g∗q (l)
∣∣ ‖Qq,l‖

≤
∑

l∈Iq∩L

ε ‖Qq‖

=O(εM−d+1)
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Therefore, overall we have ‖g − g∗‖ ≤ O
(
M−γ−d+1 + εM−d+1

) (
M
γ

)d−1
= O(ε).

Proof of Theorem 13. By Theorem 6, each run of Algorithm 1 at the line 3 of Algorithm 3 will make
Õ
(

d
f(ε/2)ε

−2β
)

queries with probability at least 1 − δ/Md−1, thus by a union bound, the total number

of queries made is Õ
(

d
f(ε/2)ε

−2β− d−1
γ

)
with probability at least 1− δ.

Proof of Theorem 14. The proof is similar to the previous proof.

B Proof of lower bounds
First, we introduce some notations for this section. Given a labeler L and an active learning algorithm A,
denote by PnL,A the distribution of n samples {(Xi, Yi)}ni=1 where Yi is drawn from distribution PL(Y |Xi)

and Xi is drawn by the active learning algorithm based solely on the knowledge of {(Xj , Yj)}i−1j=1. We will
drop the subscripts of PnL,A and PL(Y |X) when it is clear from the context. For a sequence {Xi}∞i=1 denote
by Xn the subsequence {X1, . . . , Xn}.

Definition 19. For any distributions P,Q on a countable support, define KL-divergence as dKL (P,Q) =∑
x
P (x) ln P (x)

Q(x) . For two random variablesX,Y , define the mutual information as I(X;Y ) = dKL (P (X,Y ) ‖ P (X)P (Y )).

We will use Fano’s method shown as below to prove the lower bounds.

Lemma 20. Let Θ be a class of parameters, and {Pθ : θ ∈ Θ} be a class of probability distributions indexed
by Θ over some sample space X . Let d : Θ×Θ→ R be a semi-metric. Let V = {θ1, . . . , θM} ⊆ Θ such that
∀i 6= j, d(θi, θj) ≥ 2s > 0. Let P̄ = 1

M

∑
θ∈V Pθ. If dKL

(
Pθ ‖ P̄

)
≤ δ for any θ ∈ V, then for any algorithm

θ̂ that given a sample X drawn from Pθ outputs θ̂(X), the following inequality holds:

sup
θ
Pθ

(
d(θ, θ̂(X)) ≥ s

)
≥ 1− δ + ln 2

lnM

Proof. For any algorithm θ̂, define a test function Ψ̂ : X → {1, . . . ,M} such that Ψ̂(X) = arg mini∈{1,...,M} d(θ̂(X), θi).
We have

sup
θ
Pθ

(
d(θ, θ̂(X)) ≥ s

)
≥ max

θ∈V
Pθ

(
d(θ, θ̂(X)) ≥ s

)
≥ max
i∈{1,...,M}

Pθi

(
Ψ̂(X) 6= i

)
Let V be a random variable uniformly taking values from V, and X be drawn from PV . By Fano’s

Inequality, for any test function Ψ : X → {1, . . . ,M}

max
i∈{1,...,M}

Pθi (Ψ(X) 6= i) ≥ 1− I(V ;X) + ln 2

lnM

The desired result follows by the fact that I(V ;X) = 1
M

∑
θ∈V dKL

(
Pθ ‖ P̄

)
.

B.1 The one dimensional case
Proof of Theorem 9. 2 Without lose of generality, let C3 = 1 in Assumption 2. Let ε ≤ 1

4 min
{(

1
2

)1/β
,
(
4
5

)1/α
, 14

}
.

We will prove the desired result using Lemma 20.
First, we construct V and Pθ. For any k ∈ {0, 1, 2, 3}, let PLk(Y | X) be the distribution of the labeler

Lk’s response with the ground truth θk = kε:
2Actually we can use Le Cam’s method to prove this one dimensional case (which only needs to construct 2 distributions

instead of 4 here), but this proof can be generalized to the multidimensional case more easily.
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PLk (Y =⊥ |x) = 1−
∣∣∣∣x− 1

2
− kε

∣∣∣∣α
PLk (Y = 0|x) =


(
x− 1

2 − kε
)α (

1−
(
x− 1

2 − kε
)β)

/2 x > 1
2 + kε(

1
2 + kε− x

)α (
1 +

(
1
2 + kε− x

)β)
/2 x ≤ 1

2 + kε

PLk (Y = 1|x) =


(
x− 1

2 − kε
)α (

1 +
(
x− 1

2 − kε
)β)

/2 x > 1
2 + kε(

1
2 + kε− x

)α (
1−

(
1
2 + kε− x

)β)
/2 x ≤ 1

2 + kε

Clearly, PLk complies with Assumptions 1, 2 and 3.
Define Pnk to be the distribution of n samples {(Xi, Yi)}ni=1 where Yi is drawn from distribution PLk(Y |Xi)

and Xi is drawn by the active learning algorithm based solely on the knowledge of {(Xj , Yj)}i−1j=1.
Define P̄L = 1

4

∑
j PLj and P̄

n = 1
4

∑
j P

n
k . We take Θ to be [0, 1], and d(θ1, θ2) = |θ1−θ2| in Lemma 20.

To use Lemma 20, we need to bound dKL
(
Pnk ‖ P̄n

)
for k ∈ {0, 1, 2, 3}.

For any k ∈ {0, 1, 2, 3} ,

dKL
(
Pnk ‖ P̄n0

)
=EPnk

(
ln
Pnk ({(Xi, Yi)}ni=1)

P̄n ({(Xi, Yi)}ni=1)

)
=EPnk

(
ln
Pnk (X1)Pnk (Y1 | X1)Pnk (X2 | X1, Y1) · · ·Pnk (Yn | X1, Y1, . . . , Xn)

P̄n (X1) P̄n (Y1 | X1) P̄n (X2 | X1, Y1) · · · P̄n (Yn | X1, Y1, . . . , Xn)

)
(a)
=EPnk

(
ln

Πn
i=1PLk (Yi|Xi)

Πn
i=1P̄L (Yi|Xi)

)
(2)

=

n∑
i=1

EPnk

(
EPnk

(
ln
PLk (Yi|Xi)

P̄L (Yi|Xi)
| Xn

))
≤n max

x∈[0,1]
dKL

(
PLk(Y | x) ‖ P̄L(Y | x)

)
(a) follows by the fact that Pnk (Xi+1 | X1, Y1, . . . Xi, Yi) = P̄n (Xi+1 | X1, Y1, . . . , Xi, Yi) since Xi+1

is drawn by the same active learning algorithm based solely on the knowledge of {(Xj , Yj)}ij=1 regard-
less of the labeler’s response distribution, and the fact that Pnk (Yi | X1, Y1, . . . , Xi) = PLk (Yi|Xi) and
P̄n (Yi | X1, Y1, . . . , Xi) = P̄L (Yi|Xi) by definition.

For any k ∈ {1, 2, 3}, x ∈ [0, 1],

P̄L(· | x) ≥ PL0(· | x) + PLk(· | x)

4
(3)

For any k ∈ {0, 1, 2, 3}, x ∈ [0, 1], y ∈ {1,−1,⊥}
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(
P̄L(Y = y | x)− PLk(Y = y | x)

)2
=

∑
j

1

4

(
PLj (Y = y | x)− PL0

(Y = y | x)
)

+ (PL0
(Y = y | x)− PLk(Y = y | x))

2

≤

 5

16

∑
j>0

(
PLj (Y = y | x)− PL0

(Y = y | x)
)2

+ 5 (PL0
(Y = y | x)− PLk(Y = y | x))

2


≤6
∑
j>0

(
PLj (Y = y | x)− PL0

(Y = y | x)
)2 (4)

where the first inequality follows by
(∑4

i=0 ai

)2
≤ 5

∑4
i=0 a

2
i by letting aj = 1

4

(
PLj (Y = y | x)− PL0

(Y = y | x)
)

for j = 0, . . . , 3 and a4 = PL0
(Y = y | x)− PLk(Y = y | x), and noting that a0 = 0 under this setting.

Thus,

dKL
(
PLk(Y | x) ‖ P̄L(Y | x)

)
≤
∑
y

1

P̄L(Y = y | x)

(
PLk(Y = y | x)− P̄L(Y = y | x)

)2
≤24

∑
j>0

∑
y

1

PLj (y | x) + PL0
(y | x)

(
PLj (Y = y | x)− PL0

(Y = y | x)
)2

≤O(εα)

The first inequality follows from Lemma 25. The second inequality follows by (3) and (4). The last
inequality follows by applying Lemma 26 to PL0

(· | x) and PLj (· | x) and the assumption α ≤ 2.
Therefore, we have dKL

(
Pnk ‖ P̄n0

)
= nO(εα). By setting n = ε−α, we get dKL

(
Pnk ‖ P̄n0

)
≤ O (1) , and

thus by Lemma 20,

sup
θ
Pθ

(
d(θ, θ̂(X)) ≥ Ω (ε)

)
≥ 1− O (1) + ln 2

ln 4
= O (1)

B.2 The d-dimensional case
Again, we will use Lemma 20 to prove the lower bounds for d-dimensional cases. We first construct {Pθ :
θ ∈ Θ} using a similar idea with [6], and then use Lemma 27 to select a subset Θ̃ ⊂ Θ to apply Lemma 20.

Proof of Theorem 10. Recall that for x = (x1, . . . , xd) ∈ Rd, we have defined x̃ to be (x1, . . . , xd−1). Define
m =

(
1
ε

)1/γ . L =
{

0, 1
m , . . . ,

m−1
m

}d−1, h(x̃) = Πd−1
i=1 exp

(
− 1

1−4x2
i

)
1
{
|xi| < 1

2

}
, φl(x̃) = Km−γh(m(x̃ −

l)− 1
2 ) where l ∈ L. It is easy to check φl(x̃) is (K, γ)-Hölder smooth and has bounded support [l1, l1 + 1

m ]×
· · · × [ld−1, ld−1 + 1

m ], which implies that for different l1, l2 ∈ L, the support of φl1 and φl2 do not intersect.
Let Ω = {0, 1}md−1

. For any ω ∈ Ω, define gω(x̃) =
∑
l∈L ωlφl(x̃). For each ω ∈ Ω, define the conditional

distribution of labeler Lω’s response as follows:
For xd ≤ A, PLω (y =⊥ |x) = 1− f(A), PLω (y 6= I(xd > gω(x̃))|x, y 6=⊥) = 1

2

(
1− C3 |xd − gω(x̃)|β

)
;

For xd ≥ A, PLω (y =⊥ |x) = 1− f(xd), PLω (y 6= I(xd > gω(x̃))|x, y 6=⊥) = 1
2

(
1− C3x

β
d

)
.

Here, A = cmaxφ(x̃) = c′ε for some constants c, c′.
It can be easily verified that PLω satisfies Assumptions 1 and 2. Note that gω(x̃) can be seen as the

underlying decision boundary for labeler PLω .
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Define Pnω to be the distribution of n samples {(Xi, Yi)}ni=1 where Yi is drawn from distribution PLω (Y |Xi)

and Xi is drawn by the active learning algorithm based solely on the knowledge of {(Xj , Yj)}i−1j=1.
By Lemma 27, when ε is small enough so that md−1 is large enough, there is a subset

{
ω(1), . . . ,ω(M)

}
⊂

Ω such that
∥∥ω(i) − ω(j)

∥∥
0
≥ md−1/12 for any 0 ≤ i < j ≤M and M ≥ 2m

d−1/48. Define Pni = Pn
ω(i) , P̄

n =
1
M

∑M
i=1 P

n
i .

Next, we will apply Lemma 20 to
{
ω(1), . . . ,ω(M)

}
with d(ω(i),ω(j)) = ‖gω(i) − gω(j)‖. We will lower-

bound d(ω(i),ω(j)) and upper-bound dKL
(
Pni ‖ P̄n

)
.

For any 1 ≤ i < j ≤M ,

‖gω(i) − gω(j)‖
=

∑
l∈{1,...,m}d−1

∣∣∣ω(i)
l − ω

(j)
l

∣∣∣Km−γ−(d−1) ‖h‖
≥md−1/12 ∗Km−γ−(d−1) ‖h‖
=Km−γ ‖h‖ /12

=Θ (ε)

By the convexity of KL-divergence, dKL
(
Pni ‖ P̄n

)
≤ 1

M

∑M
j=1 dKL

(
Pni ‖ Pnj

)
, so it suffices to upper-

bound dKL
(
Pni ‖ Pnj

)
for any i, j.

For any 1 < i, j ≤M ,

dKL
(
Pni ‖ Pnj

)
≤n max

x∈[0,1]d
dKL

(
PnL

ω(i)
(Y | x) ‖ PnL

ω(j)
(Y | x)

)
=n max

x∈[0,1]d
PnL

ω(i)
(Y 6=⊥| x)dKL

(
PnL

ω(i)
(Y | x, Y 6=⊥) ‖ PnL

ω(j)
(Y | x, Y 6=⊥)

)
The inequality follows as (2) in the proof of Theorem 9. The equality follows since Pω(y =⊥ |x) is the

same for all ω ∈ Ω.
If xd ≥ A, then PnL

ω(i)
(Y | x, Y 6=⊥) = PnL

ω(j)
(Y | x, Y 6=⊥), so dKL

(
PnL

ω(i)
(Y | x, Y 6=⊥) ‖ PnL

ω(j)
(Y | x, Y 6=⊥)

)
=

0. If xd < A, then PnL
ω(i)

(Y 6=⊥| x) = f(A). Therefore,

dKL
(
Pni ‖ Pnj

)
≤ nf(A) max

x∈[0,1]d
dKL

(
PnL

ω(i)
(Y | x, Y 6=⊥) ‖ PnL

ω(j)
(Y | x, Y 6=⊥)

)
.

Apply Lemma 25 to PnL
ω(i)

(Y | x, Y 6=⊥) and PnL
ω(i)

(Y | x, Y 6=⊥), and noting they are bounded above

by a constant, we have maxx∈[0,1]d dKL

(
PnL

ω(i)
(Y | x, Y 6=⊥) ‖ PnL

ω(j)
(Y | x, Y 6=⊥)

)
= O

(
A2β

)
. Thus,

dKL
(
Pni ‖ Pnj

)
≤ nf(A)O

(
A2β

)
= nf(c′ε)O(ε2β)

By setting n = 1
f(c′ε)ε

−2β− d−1
γ , we get dKL

(
Pni ‖ Pnj

)
≤ O

(
ε−

d−1
γ

)
. The desired results follows by

Lemma 20.

The proof of Theorem 11 follows the same structure.

Proof of Theorem 11. As in the proof of Theorem 10, define m =
(
1
ε

)1/γ . L =
{

0, 1
m , . . . ,

m−1
m

}d−1, h(x̃) =

Πd−1
i=1 exp

(
− 1

1−4x2
i

)
1
{
|xi| < 1

2

}
, φl(x̃) = Km−γh(m(x̃− l)− 1

2 ) where l ∈ L. Let Ω = {0, 1}md−1

. For any

ω ∈ Ω, define gω(x̃) = 1
2 +

∑
l∈L ωlφl(x̃), which can be seen as a decision boundary. A = maxφ(x̃) = c′ε

for some constants c′.
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Let g+(x̃) = g(1,1,...,1)(x̃) =
∑
l∈L φl(x̃), g−(x̃) = g(0,0,...,0)(x̃) = 0. In other words, g+ is the “highest”

boundary, and g− is the “lowest” boundary.
For each ω ∈ Ω, define the conditional distribution of labeler Lω’s response as follows:

PLω (y =⊥ |x) = 1− C2 |xd − gω(x̃)|α

PLω (y 6= I(xd > gω(x̃))|x, y 6=⊥) =
1

2

(
1− C3 |xd − gω(x̃)|β

)
It can be easily verified that PLω satisfies Assumptions 1, 2, and 3. Without lose of generality, let

C2 = C3 = 1.
Let P+(· | x) = PL(1,1,...,1)

(· | x), P−(· | x) = PL(0,0,...,0)
(· | x). By the construction of g, for any

x ∈ [0, 1]d, any ω ∈ Ω, PLω (· | x) equals either P+(· | x) or P−(· | x).
Define Pnω to be the distribution of n samples {(Xi, Yi)}ni=1 where Yi is drawn from distribution PLω (Y |Xi)

and Xi is drawn by the active learning algorithm based solely on the knowledge of {(Xj , Yj)}i−1j=1.
By Lemma 27, when ε is small enough so thatmd−1 is large enough„ there is a subset Ω′ =

{
ω(1), . . . ,ω(M)

}
⊂

Ω such that (i) (well-separated)
∥∥ω(i) − ω(j)

∥∥
0
≥ md−1/12 for any 0 ≤ i < j ≤ M , M ≥ 2m

d−1/48; and (ii)
(well-balanced) for any j = 1, . . . ,md−1, 1

24 ≤ 1
M

∑M
i=1 ω

(i)
j ≤ 3

24 .
Define Pni = Pn

ω(i) , P̄
n = 1

M

∑M
i=1 P

n
i . Define PLi = PL

ω(i)
, P̄L = 1

M

∑M
i=1 PLi . By the well-balanced

property, for any x ∈ [0, 1]d, P̄L(· | x) is between 1
24P+(· | x) + 23

24P−(· | x) and 3
24P+(· | x) + 21

24P−(· | x).
Therefore

P̄L(· | x) ≥ 1

24
(P+(· | x) + P−(· | x)) (5)

Moreover, since PLi(· | x) can only take P+(· | x) or P−(· | x) for any x,∣∣PLi(· | x)− P̄L(· | x)
∣∣ ≤ |P+(· | x)− P−(· | x)| (6)

Next, we will apply Lemma 20 to
{
ω(1), . . . ,ω(M)

}
with d(ω(i),ω(j)) = ‖gω(i) − gω(j)‖. We already know

from the proof of Theorem 10 ‖gω(i) − gω(j)‖ = Ω (ε).
For any 0 < i ≤M , dKL

(
Pni ‖ P̄n0

)
≤ nmaxx∈[0,1]d dKL

(
PLi(Y | x) ‖ P̄L(Y | x)

)
. For any x ∈ [0, 1]d,

dKL
(
PLi(Y | x) ‖ P̄L(Y | x)

)
≤
∑
y

1

P̄L(Y = y | x)

(
PLi(Y = y | x)− P̄L(Y = y | x)

)2
≤
∑
y

24

P+(y | x) + P−(y | x)
(P+(Y = y | x)− P−(Y = y | x))

2

≤O(Aα)

The first inequality follows from Lemma 25. The second inequality follows by (5) and (6). The last
inequality follows by applying Lemma 26 to P+(· | x) and P−(· | x), setting the ε in Lemma 26 to be gω(x̃),
and using gω(x̃) ≤ A and the assumption α ≤ 2.

Therefore, we have

dKL (Pni ‖ Pn0 ) ≤ nO (Aα) = nO(εα)

By setting n = ε−α−
d−1
γ , we get dKL (Pni ‖ Pn0 ) ≤ O

(
ε−

d−1
γ

)
. Thus by Lemma 20,

sup
θ
Pθ

(
d(θ, θ̂(X)) ≥ Ω (ε)

)
≥ 1−

O
(
ε−

d−1
γ

)
+ ln 2

ε−
d−1
γ /48

= O (1)

, from which the desired result follows.
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C Technical lemmas

C.1 Concentration bounds
In this subsection, we define Y1, Y2, . . . to be a sequence of i.i.d. random variables. Assume Y1 ∈ [−2, 2],
EY1 = 0, Var(Y1) = σ2 ≤ 4. Define Vn = n

n−1

(∑n
i=1 Y

2
i − 1

n (
∑n
i=1 Yi)

2
)
. It is easy to check EVn = nσ2.

We need following two results from [20]

Lemma 21. ([20], Theorem 2) Take any 0 < δ < 1. Then there is an absolute constant D0 such that with
probability at least 1− δ, for all n simultaneously,∣∣∣∣∣

n∑
i=1

Yi

∣∣∣∣∣ ≤ D0

(
1 + ln

1

δ
+

√
nσ2 [ln ln]+ (nσ2) + nσ2 ln

1

δ

)
Lemma 22. ([20], Lemma 3) Take any 0 < δ < 1. Then there is an absolute constant K0 such that with
probability at least 1− δ, for all n simultaneously,

nσ2 ≤ K0

(
1 + ln

1

δ
+

n∑
i=1

Y 2
i

)
We note that Proposition 3 is immediate from Lemma 21 since Var(Yi) ≤ 4.

Lemma 23. Take any δ > 0. Then there is an absolute constant K3 such that with probability at least 1− δ,
for all n ≥ ln 1

δ simultaneously,

nσ2 ≤ K3

(
1 + ln

1

δ
+ Vn

)
Proof. By Lemma 22, with probability at least 1− δ/2,

nσ2 ≤ K0

(
n∑
i=1

Y 2
i + ln

2

δ
+ 1

)
= K0

n− 1

n
Vn +

1

n

(
n∑
i=1

Yi

)2

+ ln
2

δ
+ 1


By Theorem 21, with probability at least 1− δ/2,

1

n

(
n∑
i=1

Yi

)2

<
1

n

(
D0

(
1 + ln

2

δ
+

√
nσ2 [ln ln]+ (nσ2) + nσ2 ln

2

δ

))2

=
D2

0

n

(
1 + ln

2

δ

)2

+D2
0σ

2 [ln ln]+ (nσ2) +D2
0σ

2 ln
2

δ

+2D2
0

(
1 + ln

2

δ

)√
σ2 [ln ln]+ (nσ2) + σ2 ln 2

δ

n

≤ K1

(
1 + ln

1

δ
+ [ln ln]+ (nσ2)

)
for some absolute constant K1. The last inequality follows by n > ln 1

δ .
Thus, by a union bound, with probability at least 1−δ, nσ2 ≤ K0Vn+K0(K1+2) ln 1

δ+K0K1 [ln ln]+ (nσ2)+
K0(K1 + 3).

Let K2 > 0 be an absolute constant such that ∀x ≥ K2, K0K1 [ln ln]+ x ≤ x
2 .

Now if nσ2 ≥ K2, then nσ2 ≤ K0Vn +K0(K1 + 2) ln 1
δ + nσ2

2 +K0(K1 + 3), and thus

nσ2 ≤ 2K0Vn + 2K0(K1 + 2) ln
1

δ
+ 2K0(K1 + 3) +K2 (7)

If nσ2 ≤ K2, clearly (7) holds. This concludes the proof.
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We note that Proposition 4 is immediate by applying above lemma to Lemma 21.

Lemma 24. Take any δ > 0. Then with probability at least 1− δ,

Vn ≤ 4nσ2 + 8 ln
1

δ

Proof. Applying Bernstein’s Inequality to Y 2
i , and noting that Var(Y 2

i ) ≤ 4σ2 since |Yi| ≤ 2, we have with
probability at least 1− δ,

n∑
i=1

Y 2
i ≤ 4

3
ln

1

δ
+ nσ2 +

√
8nσ2 ln

1

δ

≤ 4 ln
1

δ
+ 2nσ2

The last inequality follows by the fact that
√

4ab ≤ a+ b.
The desired result follows by noting that Vn = n

n−1

(∑n
i=1 Y

2
i − 1

n (
∑n
i=1 Yi)

2
)
≤ 2

∑n
i=1 Y

2
i .

C.2 Bounds of distances among probability distributions
Lemma 25. If P,Q are two probability distributions on a countable support X , then

dKL (P ‖ Q) ≤
∑
x

(P (x)−Q(x))
2

Q(x)

Proof.

dKL (P ‖ Q) =
∑
x

P (x) ln
P (x)

Q(x)

≤
∑
x

P (x)

(
P (x)

Q(x)
− 1

)

=
∑
x

(P (x)−Q(x))
2

Q(x)

The first inequality follows by lnx ≤ x − 1. The second equality follows by
∑
x P (x)

(
P (x)
Q(x) − 1

)
=∑

x

(
P 2(x)−P (x)Q(x)

Q(x) − P (x) +Q(x)
)

=
∑
x

(P (x)−Q(x))2

Q(x) .

Define

P0 (Y =⊥ |x) = 1−
∣∣∣∣x− 1

2

∣∣∣∣α
P0 (Y = 0|x) =


(
x− 1

2

)α (
1−

(
x− 1

2

)β)
/2 x > 1

2(
1
2 − x

)α (
1 +

(
1
2 − x

)β)
/2 x ≤ 1

2

P0 (Y = 1|x) =


(
x− 1

2

)α (
1 +

(
x− 1

2

)β)
/2 x > 1

2(
1
2 − x

)α (
1−

(
1
2 − x

)β)
/2 x ≤ 1

2

and
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P1 (Y =⊥ |x) = 1−
∣∣∣∣x− ε− 1

2

∣∣∣∣α
P1 (Y = 0|x) =


(
x− ε− 1

2

)α (
1−

(
x− ε− 1

2

)β)
/2 x > ε+ 1

2(
ε+ 1

2 − x
)α (

1 +
(
ε+ 1

2 − x
)β)

/2 x ≤ ε+ 1
2

P1 (Y = 1|x) =


(
x− ε− 1

2

)α (
1 +

(
x− ε− 1

2

)β)
/2 x > ε+ 1

2(
ε+ 1

2 − x
)α (

1−
(
ε+ 1

2 − x
)β)

/2 x ≤ ε+ 1
2

Lemma 26. Let P0, P1 be the distributions defined above. If x ∈ [0, 1], ε ≤ min
{(

1
2

)1/β
,
(
4
5

)1/α
, 14

}
, then

∑
y

(P0(Y = y|x)− P1(Y = y|x))
2

P0(Y = y|x) + P1(Y = y|x)
= O

(
εα + ε2

)
(8)

Proof. By symmetry, it suffices to show for 0 ≤ x ≤ 1+ε
2 . Let t = 1

2 + ε− x.
We first show (8) holds for ε

2 ≤ t ≤ ε (i.e. 1
2 ≤ x ≤ 1+ε

2 ).
We claim miny (P0(Y = y|X = t) + P1(Y = y|X = t)) ≥ 1

2

(
ε
2

)α. This is because:
• P0(Y =⊥ |X = t) + P1(Y =⊥ |X = t) = 1 − (ε− t)α + 1 − tα ≥ 2 − 2εα ≥ 1

2

(
ε
2

)α where the last

inequality follows by ε ≤
(
4
5

)1/α;
• 2 (P0(Y = 0|X = t) + P1(Y = 0|X = t)) = (ε− t)α

(
1− (ε− t)β

)
+ tα

(
1 + tβ

)
≥ tα

(
1 + tβ

)
≥
(
ε
2

)α.
Therefore, P0(Y = 0|X = t) + P1(Y = 0|X = t) ≥ 1

2

(
ε
2

)α.
• Similarly, P0(Y = 1|X = t) + P1(Y = 1|X = t) ≥ 1

2

(
ε
2

)α.
Besides, ∑

y

(P0(Y = y|X = t)− P1(Y = y|X = t))
2

= (tα − (ε− t)α)
2

+
1

4

(
tα
(
1− tβ

)
− (ε− t)α

(
1 + (ε− t)β

))2
+

1

4

(
tα
(
1 + tβ

)
− (ε− t)α

(
1− (ε− t)β

))2
= (tα − (ε− t)α)

2
+

1

4

(
tα − (ε− t)α − tα+β − (ε− t)α+β

)2
+

1

4

(
tα − (ε− t)α + tα+β + (ε− t)α+β

)2
(a)

≤ (tα − (ε− t)α)
2

+
1

2
(tα − (ε− t)α)

2
+

1

2

(
tα+β + (ε− t)α+β

)2
+

1

2
(tα − (ε− t)α)

2
+

1

2

(
tα+β + (ε− t)α+β

)2
=2 (tα − (ε− t)α)

2
+
(
tα+β + (ε− t)α+β

)2
≤2ε2α + 4ε2α+2β

≤6ε2α

where (a) follows by the inequality (a+ b)2 ≤ 2a2 + 2b2 for any a, b.
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Therefore, we get
∑
y

(P0(Y=y|x)−P1(Y=y|x))2
P0(Y=y|x)+P1(Y=y|x) ≤

∑
y(P0(Y=y|x)−P1(Y=y|x))2

miny(P0(Y=y|x)+P1(Y=y|x)) ≤ 12 ∗ 2αεα when 1
2 ≤ x ≤ 1+ε

2 .

Next, We show (8) holds for ε ≤ t ≤ 1
2 + ε (i.e. 0 ≤ x ≤ 1

2 ). We will show (P0(Y=y|x)−P1(Y=y|x))2
P0(Y=y|x)+P1(Y=y|x) =

O
(
εα + ε2

)
for Y =⊥, 1, 0.

For Y =⊥, for the denominator,

P0(Y =⊥ |X = t) + P1(Y =⊥ |X = t) = 2− tα − (t− ε)α ≥ 2−
(

3

4

)α
−
(

1

2

)α
For the numerator,

(P0(Y =⊥ |X = t)− P1(Y =⊥ |X = t))
2

= (tα − (t− ε)α)
2

= t2α
(

1−
(

1− ε

t

)α)2
By Lemma 28, if α ≥ 1, t2α

(
1−

(
1− ε

t

)α)2 ≤ t2α
(
α εt
)2

= t2α−2 (αε)
2

= O
(
ε2
)
. If 0 ≤ α ≤ 1,

t2α
(
1−

(
1− ε

t

)α)2 ≤ t2α ( εt)2 = t2α−2ε2 ≤ ε2α.
Thus, we have (P0(Y=⊥|x)−P1(Y=⊥|x))2

P0(Y=⊥|x)+P1(Y=⊥|x) = O
(
ε2α + ε2

)
.

For Y = 1, for the denominator,

2 (P0(Y = 1|X = t) + P1(Y = 1|X = t)) = tα
(
1− tβ

)
+ (t− ε)α

(
1− (t− ε)β

)
≥ tα

(
1− tβ

)
≥ tα

(
1−

(
3

4

)β)

For the numerator,

(P0(Y = 1|X = t)− P1(Y = 1|X = t))
2

=
1

4

(
tα
(
1− tβ

)
− (t− ε)α

(
1− (t− ε)β

))2
≤1

2
(tα − (t− ε)α)

2
+

1

2

(
tα+β − (t− ε)α+β

)2
=

1

2
t2α
(

1− (1− ε

t
)α
)2

+
1

2
t2α+2β

(
1− (1− ε

t
)α+β

)2
≤1

2
t2α
(

1− (1− ε

t
)α
)2

+
1

2
t2α
(

1− (1− ε

t
)α+β

)2
If α ≥ 1, by Lemma 28, 1

2 t
2α
(
1− (1− ε

t )
α
)2

+ 1
2 t

2α
(
1− (1− ε

t )
α+β

)2 ≤ 1
2 t

2α
(
α εt
)2

+ 1
2 t

2α
(
(α+ β) εt

)2
=(

1
2α

2 + 1
2 (α+ β)

2
)
t2α−2ε2. Thus, (P0(Y=1|x)−P1(Y=1|x))2

P0(Y=1|x)+P1(Y=1|x) ≤
(

1
2α

2 + 1
2 (α+ β)

2
)
tα−2ε2/

(
1−

(
3
4

)β) which
is O(ε2) if α ≥ 2 and O (εα) if α ≤ 2.

If α ≤ 1 and α + β ≥ 1, by Lemma 28, 1
2 t

2α
(
1− (1− ε

t )
α
)2

+ 1
2 t

2α
(
1− (1− ε

t )
α+β

)2 ≤ 1
2 t

2α
(
ε
t

)2
+

1
2 t

2α
(
(α+ β) εt

)2
=
(

1
2 + 1

2 (α+ β)
2
)
t2α−2ε2 ≤

(
1
2 + 1

2 (α+ β)
2
)
t2α−2ε2. Thus, (P0(Y=1|x)−P1(Y=1|x))2

P0(Y=1|x)+P1(Y=1|x) ≤(
1
2 + 1

2 (α+ β)
2
)
tα−2ε2/

(
1−

(
3
4

)β)
= O (εα).

If α ≤ 1, α+β ≤ 1, by Lemma 28, 1
2 t

2α
(
1− (1− ε

t )
α
)2

+ 1
2 t

2α
(
1− (1− ε

t )
α+β

)2 ≤ 1
2 t

2α
(
ε
t

)2
+ 1

2 t
2α
(
ε
t

)2
=

t2α−2ε2. Thus, (P0(Y=1|x)−P1(Y=1|x))2
P0(Y=1|x)+P1(Y=1|x) ≤ tα−2ε2/

(
1−

(
3
4

)β)
= O (εα).

Therefore, we have (P0(Y=1|x)−P1(Y=1|x))2
P0(Y=1|x)+P1(Y=1|x) = O

(
εα + ε2

)
.

Likewise, we can get (P0(Y=0|x)−P1(Y=0|x))2
P0(Y=0|x)+P1(Y=0|x) = O

(
εα + ε2

)
. So we prove

∑
y

(P0(Y=y|x)−P1(Y=y|x))2
P0(Y=y|x)+P1(Y=y|x) =

O
(
εα + ε2

)
when x ≤ 1

2 . This concludes the proof.
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C.3 Other lemmas
Lemma 27. ([19], Lemma 4) For sufficiently large d > 0, there is a subset M ⊂ {0, 1}d with following
properties: (i) |M | ≥ 2d/48; (ii) ‖v − v′‖0 > d

12 for any two distinct v, v′ ∈ M ; (iii) for any i = 1, . . . , d,
1
24 ≤ 1

M

∑
v∈M vi ≤ 3

24 .

Lemma 28. If x ≤ 1,r ≥ 1, then (1− x)
r ≥ 1− rx and 1− (1− x)

r ≤ rx.
If 0 ≤ x ≤ 1,0 ≤ r ≤ 1, then (1− x)r ≥ 1−x

1−x+rx and 1− (1− x)r ≤ rx
1−(1−r)x ≤ x.

Inequalities above are know as Bernoulli’s inequalities. One proof can be found in [16].

Lemma 29. Suppose ε, τ are positive numbers and δ ≤ 1
2 . Suppose {Zi}∞i=1 is a sequence of i.i.d random

variables bounded by 1, EZi ≥ τε, and Var(Zi) = σ2 ≤ 2ε. Define Vn = n
n−1

(∑n
i=1 Zi − 1

n (
∑n
i=1 Zi)

2
)
,

qn = q (n, Vn, δ) as Procedure 2. If n ≥ η
τε ln 1

δ for some sufficiently large number η (to be specified in the
proof), then with probability at least 1− δ , qnn − EZi ≤ −τε/2.

Proof. By Lemma 24, with probability at least 1− δ, Vn ≤ 4nσ2 + 8 ln 1
δ , which implies

qn ≤ D1

(
1 + ln

1

δ
+

√(
4nσ2 + 9 ln

1

δ
+ 1

)(
[ln ln]+ (4nσ2 + 9 ln

1

δ
+ 1) + ln

1

δ

))

We denote the RHS by q.
On this event, we have

qn
n
− EZi ≤ q

n
− τε

= τε
( q

nτε
− 1
)

(a)

≤ τε

(
2D1

η
+

D1

η ln 1
δ

√
9η

τ
ln

1

δ

(
[ln ln]+ (

9η

τ
ln

1

δ
) + ln

1

δ

)
− 1

)

= τε

(
2D1

η
+D1

√
9

ητ ln 1
δ

[ln ln]+ (
9η

τ
ln

1

δ
) +

9

ητ
− 1

)

where (a) follows from q
n being monotonically decreasing with respect to n. By choosing η sufficiently

large, we have 2D1

η +D1

√
9

ητ ln 1
δ

[ln ln]+ ( 9η
τ ln 1

δ ) + 9
ητ − 1 ≤ − 1

2 , and thus qn
n − EZi ≤ −τε/2.
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