Lifelong Intelligence Beyond the Edge using Hyperdimensional Computing

Xiaofan Yu¹, Anthony Thomas¹, Ivannia Gomez Moreno², Louis Gutierrez¹, Tajana Šimunić Rosing¹

¹ University of California San Diego
 ² CETYS University, Campus Tijuana

IPSN 2024

PRISM

see

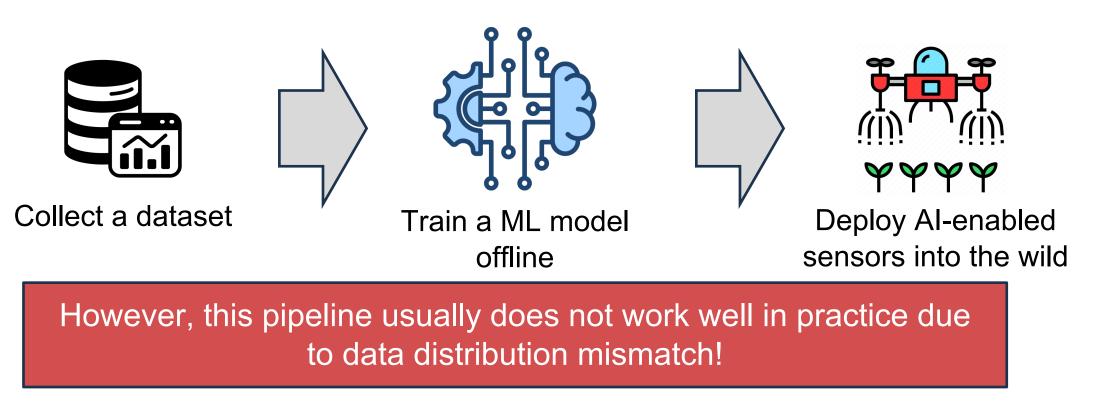
intel

CoCoSys

System Energy Efficiency Lab seelab.ucsd.edu

Deploy Edge Intelligence: Current Pipeline

 Current pipelines of designing and deploying edge intelligence include three steps



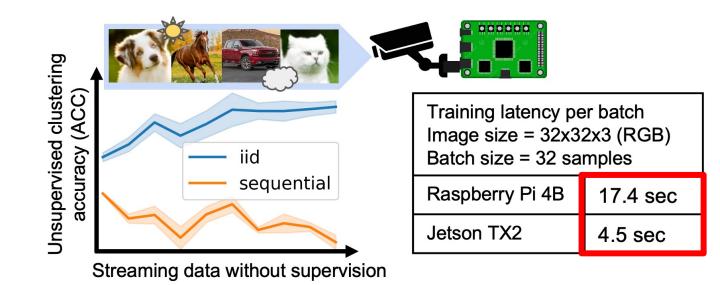
Lifelong (or Continual) Learning on the Device

- No prior data collection
- No offline training
- The edge device learns and adapts to a continuously changing environment from its past data
- This learning process continues throughout the lifetime of the edge device

System Energy Efficiency Lab seelab.ucsd.edu

Challenges of Lifelong Learning

- Unique challenges in deploying lifelong edge intelligence
 - Catastrophic forgetting [McCloskey 1989]
 - Lack of supervision in field
 - Limited on-board resources



System Energy Efficiency Lab seelab.ucsd.edu

5

Prior Works

- Unsupervised lifelong learning based on NNs
 - STAM [IJCAI'21]: progressive memory architecture
 - CaSSLe [CVPR'22]: past knowledge distillation
 - LUMP [ICLR'22]: memory replay

(+) Various techniques to mitigate catastrophic forgetting (-) Intensive resources usage during training

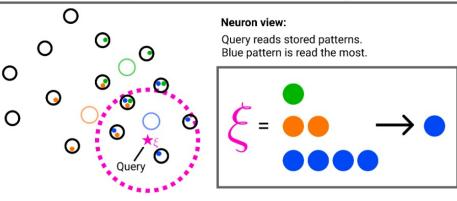
- Neurally-inspired lifelong learning algorithms
 - FlyModel [Shen 2021], SDMLP [ICLR'23]: sparse coding and associative memory

(+) Lightweight training (-) Need label supervision Figures from LUMP [ICLR'22]

u_r

0

Viewa



Read patterns from neurons near query

Figures from SDMLP [ICLR'23]

 (\mathcal{U}_1) Learned Representation

Correlation

Prior Works

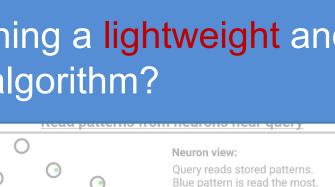
- Unsupervised lifelong learning based on NNs
 - STAM [IJCAI'21]: progressive memory architecture
 - CaSSLe [CVPR'22]: past knowledge distillation
 - LUMP [ICLR'22]: memory replay

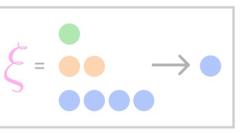
Is there any alternative strategies for designing a lightweight and unsupervised lifelong learning algorithm?

- Neurany-inspired meiong learning algorithms
 - FlyModel [Shen 2021], SDMLP [ICLR'23]: sparse coding and associative memory

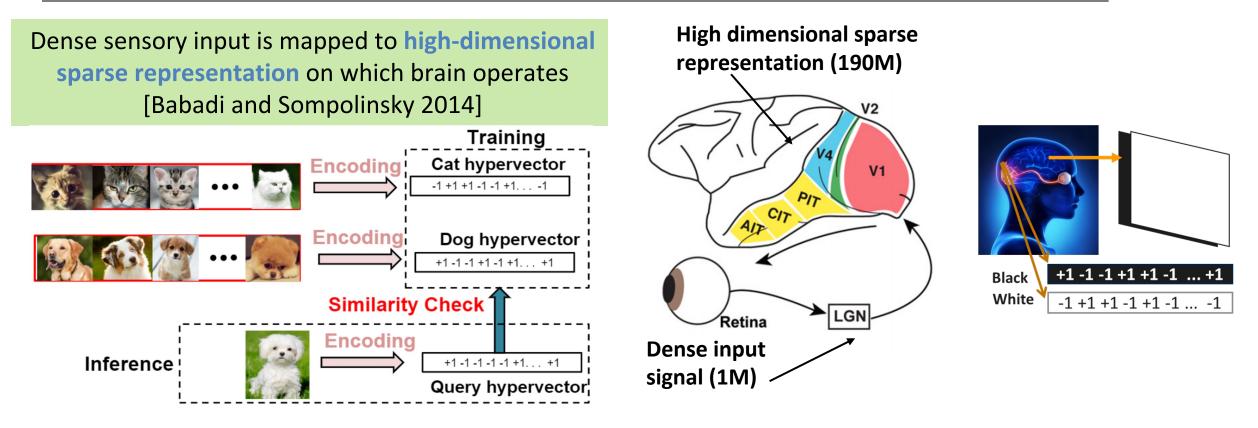
(+) Lightweight training(-) Need label supervision

Figures from SDMLP [ICLR'23





Brain-Inspired Hyperdimensional Computing (HDC)



Benefits of HD computing:

- Easy-to-parallelize operations \rightarrow energy-efficient
- Fast single-pass training
- Connections with biological lifelong learning in fruit flies [Shen 2021]

System Energy Efficiency Lab seelab.ucsd.edu

Our Contribution: LifeHD

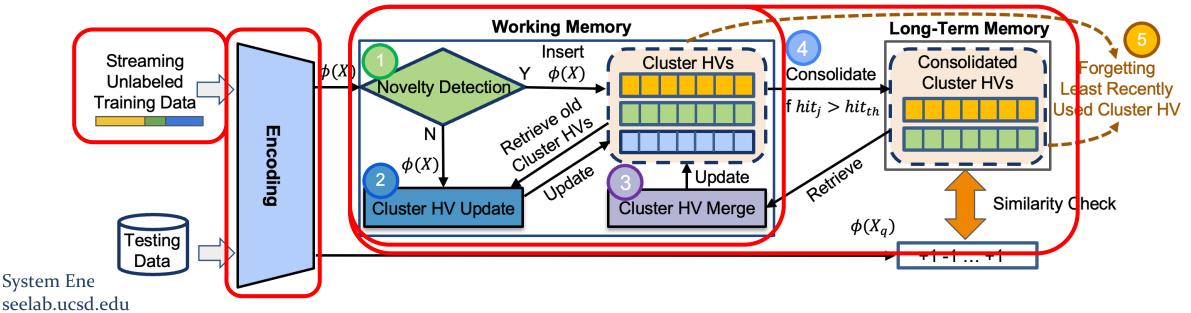
- We design LifeHD, the first end-to-end system for on-device unsupervised lifelong learning using Hyperdimensional Computing
- We propose two variants of LifeHD
 - LifeHD_{semi} deals with scarce labeled inputs
 - LifeHD_a deals with **power constraints**
- We implement LifeHD on off-the-shelf edge devices and conduct extensive experiments across three typical IoT applications



Overview of LifeHD

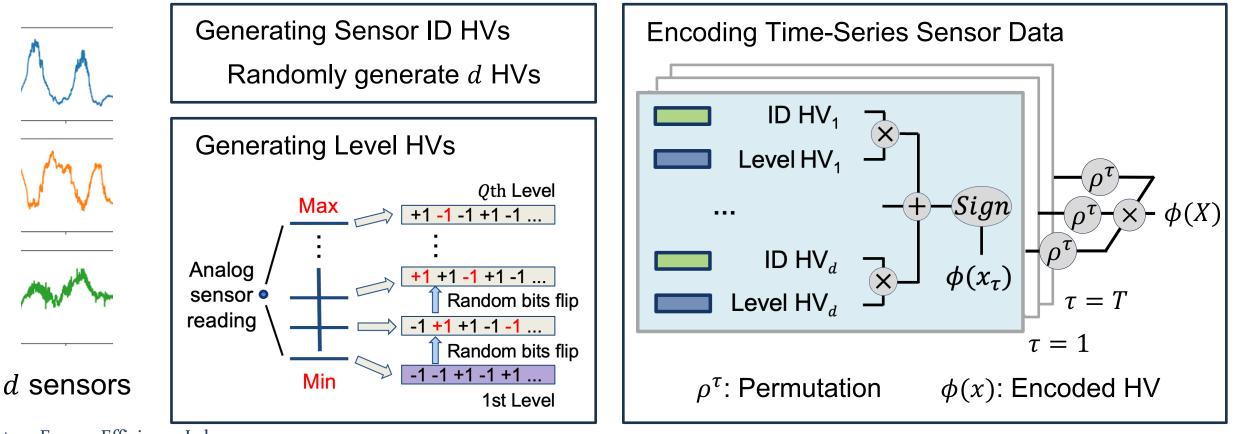
9

- Streaming data input
 - Class incremental streams with potential distribution drift
- Encoding projects dense sensor signals into high-dimensional vectors
- Two-tier associative memory design for mitigating catastrophic forgetting
- Three key components in LifeHD's working memory
 - (1) Novelty detection, (2) Cluster HV update, (3) Cluster HV Merge



LifeHD Encoding

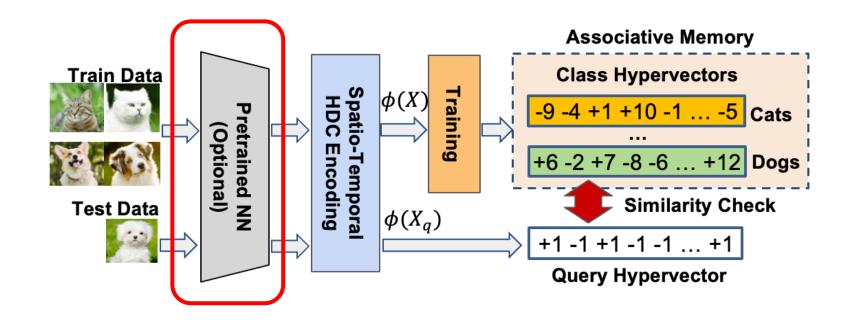
- Encoding is the first and the most important step in HDC
- We use the Spatiotemporal HDC encoding [Nature Electronics'21]



System Energy Efficiency Lab seelab.ucsd.edu

HDnn Encoding

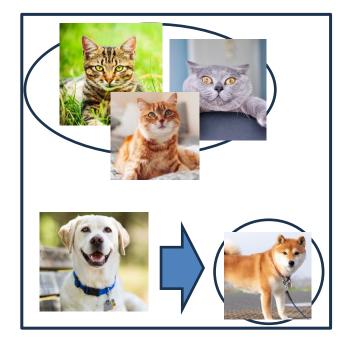
- We use HDnn encoding [GLVLSI'22] for more complex data such as sound and images
 - A pretrained and frozen NN for feature extraction



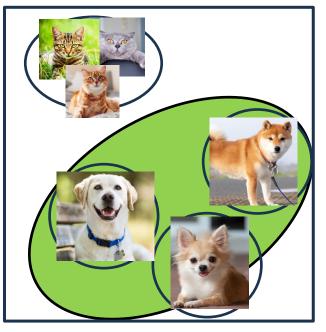
System Energy Efficiency Lab seelab.ucsd.edu

Intuition of LifeHD's Working Memory Designs

- LifeHD's designs draw inspiration from human cognitive processes
- *Question:* How does a baby continually improve knowledge without supervision?



Cluster Update



Cluster Merge

System Energy Efficiency Lab seelab.ucsd.edu see

Novelty Detection and Cluster HV Update

- Novelty Detection
 - If the new incoming HV φ(x) is very dissimilar from all existing cluster HVs m_j

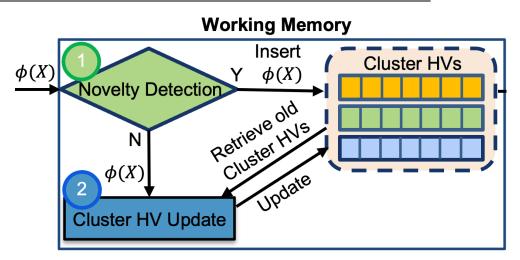
If $\cos(\phi(X), m_j) < \mu_j - \gamma \hat{\sigma}_j$, then flag novel

• Online Cluster HV Update

- Update the assigned cluster HV m_i
- Update params in a moving average manner
 m_j ← m_j ⊕ φ(X)
 μ_j ← (1 − α)μ_j + α cos(φ(X), m_j)

 ^ˆ_j ← (1 − α)^ˆ_j + α | cos(φ(X), m_j) − μ_j|

System Energy Efficiency Lab seelab.ucsd.edu

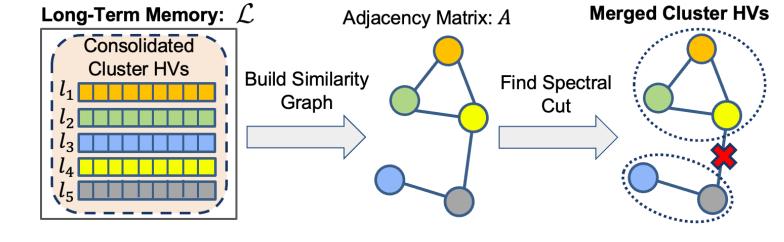


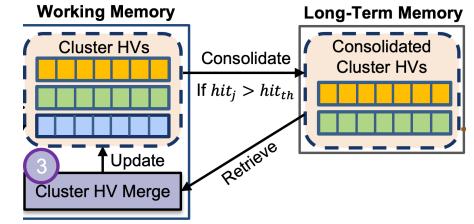
Sym.	Meaning
$\phi(x)$	Incoming encoded HV
m_j	The <i>j</i> th stored cluster HV
$\mu_j, \widehat{\sigma_j}$	Mean and standard difference of similarity threshold
γ,α	hyperparameters

System Energy Efficiency Lab seelab.ucsd.edu

Cluster HV Merge

- Analyze the global similarity relationship between long-term cluster HVs
- Group "similar" cluster HVs into a "coarser" one if appropriate
- Update the working memory





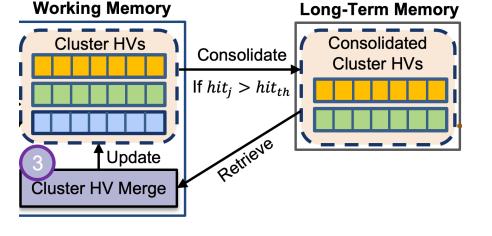
Step 1: Build a similarity graph

Step 2: Compute the eigendecomposition of the similarity matrix

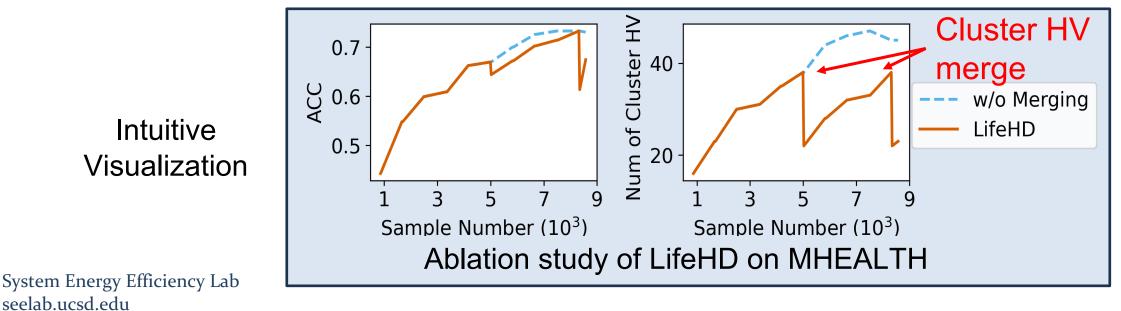
Step 3: Group the cluster HVs by running K-Means on eigenvectors

Cluster HV Merge

- Analyze the global similarity relationship between long-term cluster HVs
- Group "similar" cluster HVs into a "coarser" one if appropriate
- Update the working memory



Working Memory



Experimental Setup

- We implement LifeHD in Python and PyTorch on
 - Raspberry Pi Zero 2W
 - Raspberry Pi 4B

seelab.ucsd.edu

- NVIDIA Jetson TX2 (w/ GPU)
- We test on three typical IoT applications

Dataset	Application	Classes (Balanced?)	Total Samples	Pretrained Neural Network in HDnn		
MHEALTH [1]	Human activity recognition	12 (N)	9K	/		
ESC-50 [2]	Sound recognition	50 (Y)	2K	ACDNet [4]		
CIFAR-100 [3]	Image classification	20 (Y)	60K	MobileNet [5]		
	[1] Karol J Piczak. ESC: Dataset for environmental sound classification. 2015[2] Garcia Rafael Banos, et al. MHEALTH Dataset. UCI Machine Learning Repository. 2014					

[3] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009

[4] Md Mohaimenuzzaman et al. Environmental Sound Classification on the Edge: A Pipeline for Deep Acoustic Networks on Extremely Resource-

- System Energy Efficiency Lab Constrained Devices. Pattern Recognition 133 (2023), 109025.
 - [5] Mark Sandler et al. Mobilenetv2: Inverted residuals and linear bottlenecks. CVPR'18.

Experimental Setup (Cont.)

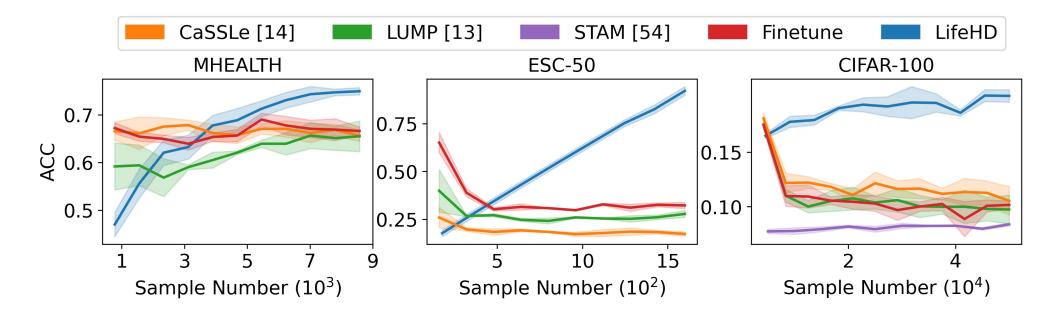
Baselines

- We compare with SOTA neural network-based unsupervised lifelong learning
 - STAM [IJCAI'21]: progressive memory architecture
 - CaSSLe [CVPR'22]: past knowledge distillation
 - LUMP [ICLR'22]: memory replay
- We also compare with the fully Supervised HDC baseline
- Metrics
 - Unsupervised Clustering Accuracy (ACC)
 - ACC computes the accuracy under the "best" mapping between clusters and labels
 - Training time per batch
 - Energy consumption per batch
 - Memory usage

• On all platforms

System Energy Efficiency Lab seelab.ucsd.edu

LifeHD vs. SOTA Neural Network-based Baselines



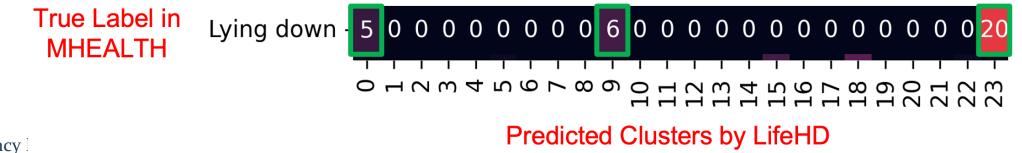
- All NN-based baselines start from higher ACC but experience forgetting
- LifeHD achieves up to **9.4%, 74.8% and 11.8%** accuracy increase on MHEALTH, ESC-50 and CIFAR-100 compared to NN-based baselines

LifeHD vs. Supervised HDC

The gap of final ACCs: LifeHD vs. Supervised HDC

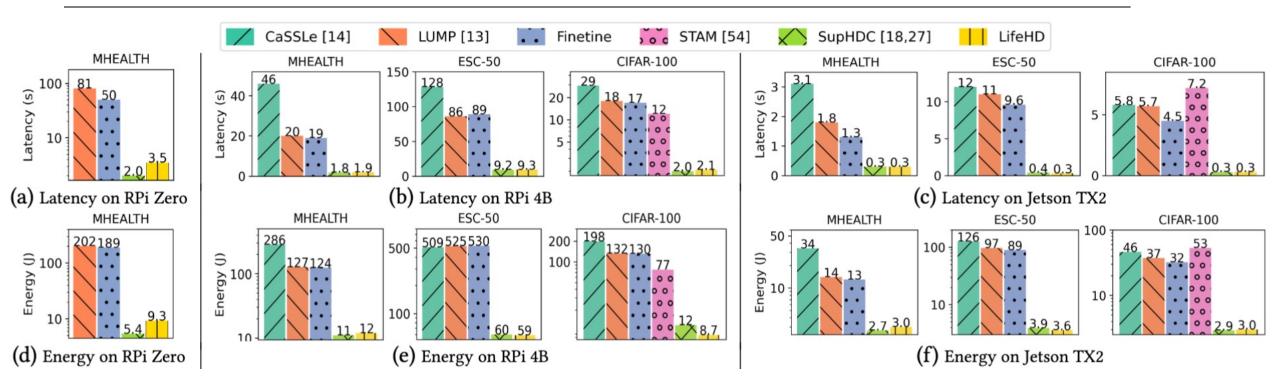
Method	MHEALTH	ESC-50	CIFAR-100
LifeHD	0.75	0.92	0.2
Supervised HDC	0.9	0.95	0.26
Gap	-0.15	-0.03	-0.06

- LifeHD approaches the ACC of supervised HDC with a gap of 15%, 3% and 6% on MHEALTH, ESC-50 and CIFAR-100
- Visualization of a valid learning outcome



System Energy Efficiency Escalab.ucsd.edu

Training Latency and Energy



- LifeHD vs. NN-based baselines
 - Up to 23.7x, 36.5x and 22.1x faster to train on RPi Zero, RPi 4 and Jetson TX2
 - Up to 22.5x, 34.3x and 20.8x more energy efficient on RPi Zero, RPi 4 and Jetson TX2

Conclusion

- On-device lifelong learning should be the future of edge intelligence
- Prior works require label supervision or intensive resources to train
- We design and implement LifeHD, the first end-to-end system for on-device unsupervised lifelong learning using Hyperdimensional Computing
- We further propose two variants of LifeHD to deal with practical scenarios
- LifeHD improves ACC by up to 74.8% compared to the SOTA NN-based unsupervised lifelong learning baselines with as much as 34.3x better energy efficiency on Raspberry Pi 4B
- Our code is available at https://github.com/Orienfish/LifeHD

References

- McCloskey, Michael, and Neal J. Cohen. "Catastrophic interference in connectionist networks: The sequential learning problem." Psychology of learning and motivation. Vol. 24. Academic Press, 1989. 109-165.
- Enrico Fini, et al. Self-Supervised Models are Continual Learners. CVPR'22
- Divyam Madaan, et al. Representational Continuity for Unsupervised Continual Learning. ICLR'22
- James Smith, et al. Unsupervised Progressive Learning and the STAM Architecture. IJCAI'21
- Shen, Yang, Sanjoy Dasgupta, and Saket Navlakha. "Algorithmic insights on continual learning from fruit flies." arXiv preprint arXiv:2107.07617 (2021)
- Bricken, Trenton, et al. "Sparse distributed memory is a continual learner.", ICLR'23
- Moin, Ali, et al. "A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition." Nature Electronics 4.1 (2021): 54-63
- Dutta, Arpan, et al. "Hdnn-pim: Efficient in memory design of hyperdimensional computing with feature extraction." Proceedings of the Great Lakes Symposium on VLSI 2022. 2022.
- Imani, Mohsen, et al. "Semihd: Semi-supervised learning using hyperdimensional computing." ICCAD'19
- Khaleghi, Behnam, Mohsen Imani, and Tajana Rosing. "Prive-hd: Privacy-preserved hyperdimensional computing." DAC'20