"In 2000, total sales of software reached approximately $180 billion, supported by a large workforce encompassing 697,000 software engineers and 585,000 computer programmers."

The global software market had total revenues of $292.9 billion in 2011. -- MarketLine

- Scale
- The cost of change
- Users as bugs
- Evolution yields complexity and bugs
- Software engineering matters
Scale

U.S. MANNEFD
SPACEFLIGHT
PROGRAM

SOURCE: Barry W. Boehm

PROJECT SIZE (FUNCTION POINTS)

U.S. AVERAGE
PROJECT SCHEDULE

SOURCE: Software Productivity Research

PLANNED

ACTUAL

MONTHS

U.S. AVERAGE CANCELLATION PROBABILITY

SOURCE: Software Productivity Research

The Cost of Change

Steve McConnell, Software Quality at Top Speed, Software Development, August 1996
Evolution yields Complexity/Bugs

Figure 4 Serial and average growth trends of a particular attribute

Figure 7 Complexity growth during the interval prior to each release

Users as Bugs

Boehm, SE as it is, ICSE'79
Scale, Bugs, Evolution

It’s a wonder software works at all.
And it’s so cheap, too.
What’s up with that?
RAYTHEON HAS SAVED $17.2 million in software costs since 1988, when its equipment division began using rigorous development processes that doubled its programmers' productivity and helped them to avoid making expensive mistakes.
The Changing Face of Software

• Applications
 - Web 2.0, Mobile 2.0, …
 - Ubiquitous computing
 - Developing world
 - Big data, AI, ….

• Methodologies
 - Open Source
 - Agile (XP, Scrum)

• Technologies
 - Web services, javascript, AJAX, JQuery, …
 - Programming environments (Eclipse), AOP
 - Component-based, Model-driven software development

Do we rewrite the rules, or just reinterpret them?
Technical Themes of the Course

Scale
All of computer science, especially CS research, is about *managing scale*. So is SE.

Risk
SE is all about *managing risk*. Doing something important requires taking risks. SE seeks to increase upside risk (great products), while decreasing downside risks (late, buggy, etc.)
Goals of the Course

• Learn **foundational concepts** of SE
• Exposure to the foundational literature
• Improve reading papers critically
• Improve discussing technical ideas
• Take ideas and skills into your own practice
• Ultimately, **software engineering literacy**
 • *Conversant in issues – think and talk like a software engineer(ing researcher)*
My Promise

Authentic practice

A minimum of busy work
Your Promise

Come prepared every day
Rest of Today

• Structure of course
• Grading
• How to read and discuss papers
• Project
• Questions (at any time)
The Computer for the 21st Century

Mark Weiser
Palo Alto Research Center, Xerox, CA, USA

Specialized elements of hardware and software, connected by wires, radio waves and infrared, will be so ubiquitous that no one will notice their presence.

The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it. Consider writing, perhaps the first information technology. The ability to represent spoken language symbolically for long-term storage freed information from the limits of individual memory. Today this technology is ubiquitous in industrialized countries. Not only do books, magazines and newspapers convey written information, but we do street signs, billboards, shop signs and even graffiti. Candy wrappers are covered in writing. The constant background presence of these products of "literacy technology" does not require active attention, but the information to be transmitted is ready for use at a glance. It is difficult to imagine modern life otherwise.

Silicon-based information technology, in contrast, is far from having become part of the environment. More than 50 million personal computers have been sold, and the computer nonetheless remains largely in a world of its own. It is approachable only through complex jargon that has nothing to do with the tasks for which people use computers. The state of the art is perhaps analogous to the period when scribes had to know as much about making ink or tallowing clay as they did about writing. The arcane aura that surrounds personal computers is not just a "user interface" problem. My colleagues and I at the Xerox Palo Alto Research Center think that the idea of a "personal" computer itself is misplaced and that the vision of laptop machines, desktops and "knowledge navigators" is only a transitional step toward achieving the real potential of information technology. Such machines cannot truly make computing an integral, invisible part of people's lives. We are therefore trying to conceive a new way of thinking about computers, one that takes into account the human world and allows the computers themselves to vanish into the background.

Such a disappearance is a fundamental consequence not of technology but of human psychology. Whenever people learn something sufficiently well, they cease to be aware of it. When you look at a street sign, for example, you absorb its information without consciously performing the act of reading. Computer scientist, economist and Nobel laureate Herbert A. Simon calls this phenomenon "competing": philosopher Michael Polanyi calls it the "tactile dimension"; psychologist J. J. Gibson calls it "visual invariance"; philosophers Hans Georg Gadamer and Martin Heidegger call it the "horizon" and the "ready-to-hand"; John Seely Brown of PARC calls it the "periphery." All say, in essence, that only when things disappear in this way are we freed to use them without thinking and so to focus beyond them on new goals.

The idea of integrating computers seamlessly into the world at large runs contrary to a number of present-day trends. "Ubiquitous computing" in this context does not mean just computers that can be carried to the beach, jungle or airport. Even the most powerful notebook computer, with access to a worldwide information network, still focuses attention on a single box. By analogy with writing, carrying a super-laptop is like owning just one very important book. Customizing this book, even writing millions of other books, does not begin to capture the real power of literacy.

Furthermore, although ubiquitous computers may use sound and video in addition to text and graphics, that does not make them "multimedia computers." Today's multimedia machine makes the computer screen into a demanding focus of attention rather than allowing it to fade into the background.

Perhaps most dramatically opposed to our vision is the notion of virtual reality, which attempts to create a world inside the computer. Users don special goggles that project an artificial scene onto their eyes; they wear gloves or even body suits that sense their mot ions and gestures so that they can move about and manipulate virtual objects. Although it may have its purpose in allowing people to explore realms otherwise inaccessible—the insides of cells, the surfaces of distant planets, the information web of data bases—virtual reality is not only a map, not a territory. It excludes desks, offices, other people, not wearing goggles and body suits, weather, trees, walls, chance encounters and, in general, the infinite richness of the universe. Virtual reality focuses on an enormous apparatus for simulating the world rather than on invisibly enhancing the world that already exists.

Indeed, the opposition between the notion of virtual reality and ubiquitous, invisible computing is so strong that some of us use the term "embodied virtuality" to refer to the process of drawing computers out of their electronic shells. The "virtuality" of computer-readable data on all the different ways in which they can be altered, processed and analyzed is brought into the physical world.

How do technologies disappear into the background? The handling of electric motors may serve as an instructive example. At the turn of the century, a typical workshop or factory contained a single engine that drove dozens or hundreds of machines through a system of shafts and pulleys. Cheap, small, efficient electric motors made it possible first to give each tool its own source of motive force, then to put many motors into a single machine. A glance through the shop manual of a typical automobile, for example, reveals 22 motors and 25 solenoids. They start the engine, clean the windshield, lock and unlock the doors, and so on. By paying careful attention, the driver might
In-Class Discussion – First K Weeks

Directed by me. Repeat:
1. I will ask a question (see next slide)
2. I will select one of you to answer
3. An assessment of the answer will be made
4. If appropriate, I will open the question for you to discuss with neighbors
5. I will select someone to elaborate the first answer [iterate as necessary]

(I will experiment with variants of the above)
In-Class Discussion – First K Weeks

Questions will come from a few places:

• Paper-reading rubric
 – people problem, technical problem…
• One of your questions from the paper
• One of my questions

(The better your questions are, the fewer of my questions I’ll ask. :)
“Socratic Circles” round-table discussion
More dynamic, less controlled, more open-ended
“Peer learning”
Alternative Formats Throughout

About a half-dozen class sessions will use alternative formats

- "Workshop"
 - working or problem-solving in small groups
- Lecture (talk) – me or visitor
- *No class on Tuesday before Thanksgiving* (week 9 – work on your project)