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Abstract

This paper explores the user-perceived Web per-
formance of downloading entire pages, and how
various common Web enhancements impact overall
page performance. We use Medusa, a non-caching
forwarding proxy, to collect user traces and replay
them under various configurations of HTTP request
optimizations. These optimizations include parallel
and persistent connections, DNS caching, and the
use of CDNs. We then use Medusa to characterize
whole-page performance and measure the impact of
request optimizations on downloading entire Web
pages.
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1 Introduction

This paper explores the user-perceived Web per-
formance of downloading entire pages, and how
various common Web enhancements impact over-
all page performance. Extensive previous work has
studied how various techniques, such caching (e.g.,
[5,7,12,16,19]), prefetching (e.g., [1,3,4,14], con-
tent distribution networks (CDNs) (e.g., [6, 8, 10,
11]), and DNS resolution (e.g., [9, 17, 18]), impact
the performance of downloading individual objects.
But when browsing the Web, users are much more
concerned with the performance of entire pages.
Although whole-page performance is determined
by the performance of its components, optimiza-

tions like parallel and persistent connections make
it difficult to directly map from individual object
performance to whole-page performance. As a re-
sult, even though whole-page performance is what
users ultimately are most interested in, it has re-
ceived scarce attention.

The most extensive work on this topic is by Kr-
ishnamurthy and Wills [13]. They studied the im-
pact of parallel, persistent, and pipelined connec-
tions on user-perceived Web performance for em-
bedded objects in top-level pages from a set of pop-
ular servers. In effect, our study is a follow-on to
theirs from a somewhat different perspective. First,
we employ real user workloads. We look at whole-
page performance for all pages accessed by users,
not just the top-level pages on popular servers. Sec-
ond, in addition to embedded objects, we include
the time of downloading the base page as a factor
in whole-page performance. Finally, in addition to
the connection optimizations, we also single out the
contribution of CDNs and DNS to whole-page per-
formance.

Exploring whole-page performance opens up
a number of interesting questions about user-
perceived Web performance. How does whole-page
performance compare to individual object perfor-
mance? How do various downloading optimiza-
tions improve whole-page performance? Con-
tent distribution networks (CDNs) can improve ob-
ject download performance [8, 10, 11], but how do
CDNs impact whole-page latency given that typi-
cally only a subset of objects comprising a page are
fetched from a CDN? Since DNS resolution can in-
crease download latency [2, 18], particularly when



using CDNs [11], how does DNS caching amor-
tize resolution costs across all of the objects down-
loaded in a page?

The primary challenge in studying user-perceived
whole-page performance is the difficulty in mea-
suring the overall effect of Web download opti-
mizations at the page level. With objects being
download over parallel connections, for example,
pinpointing where exactly where slowdowns occur
during user browsing can be a difficult task.

Our approach for exploring whole-page perfor-
mance uses the Medusa proxy [10]. The Medusa
proxy is a non-caching forwarding proxy deployed
in conjunction with a user’s browser. Its key fea-
tures are that it can transform requests and mirror
them to multiple destinations. For this study, we
extend the Medusa proxy to support HTTP con-
nection optimizations, including parallel and per-
sistent connections, as well as measuring DNS and
CDN effects. We then use the Medusa proxy on
user traces to characterize whole-page performance
and measure the impact of request optimizations on
downloading entire pages.

In general, our results show what one would ex-
pect when comparing the relative contributions of
the performance optimizations. The easiest and rel-
atively most effective connection optimization is
simply to use parallel connections. Persistent con-
nections offer further incremental benefits, with the
added cost of implementation complexity. Also, the
connection optimizations have a greater effect the
larger the pages. With an average number of 15
objects per page in our user traces, there is ample
opportunity for parallelism and connection reuse.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes
the extensions to the Medusa proxy to support the
HTTP request optimizations we use to study whole-
page performance. Sections 4 and 5 presents our
methodology and experimental results. Finally,
Section 6 concludes.

2 Related Work

There have been numerous studies on the impact of
various optimizations on the latency of download-
ing individual objects, including caching, prefetch-
ing, CDNs, and DNS resolution. These studies
tend to examine particular optimizations in isola-
tion, whereas our goal is to examine their relative
effects on whole-page performance.

Surprisingly, there have been relatively few stud-
ies on whole-page performance. Liston and Ze-
gura [15] describe a proxy used in a similar way as
Medusa to measure client-side Web performance.
Their initial goal is to study the contribution of
DNS resolution to the latency of downloading web
pages, although they only describe the design and
implementation of the proxy and do not include any
experimental results.

As discussed in the introduction, Krishnamurthy
and Wills have done the most extensive published
research on this topic. This work extends theirs by
looking at (1) real user workloads, (2) we look at
all pages accessed by users, (3) we look at base
page download times in addition to embedded ob-
ject times, (4) we examine CDN and DNS contri-
butions.

In [11], the authors look at a variety of different per-
formance aspects of CDNs. They found that, while
CDNs improve performance, they can also incur
high DNS costs. They also quantified DNS effects
on persistent connections and pipelining. While our
study does consider many of these same factors, we
look at real web pages encountered in actual web
browsing. In addition we look at optimizations on
a whole page basis, rather than per object.

In [18], Wills et al. use bundling to deliver em-
bedded web objects from a server as an alterna-
tive mechanism to pipelining and parallel connec-
tions when fetching multiple objects. They find that
fetching compressed bundles offers faster down-
loads than pipelining or parallel retrieval. We look
at the use of parallel options, as well as other fac-
tors that influence web download performance such



as CDNs and DNS usage. However, we do not con-
sider bundling in the optimizations we explore.

3 The Medusa Proxy

The Medusa proxy is a non-caching forwarding
proxy [10]. It was designed to explore user-
perceived Web performance, and is typically con-
figured as a personal proxy for the Web browser
and executes alongside the browser on the same ma-
chine. Medusa has a number of features, including:

Transformation. The Medusa proxy can install fil-
ters to transform HTTP requests. We use this fea-
ture to transform Akamaized URLs (ARLs) to the
original URLs that refer to customer origin servers.

Tracing and replay. As it receives requests, the
Medusa proxy can record them in a trace for subse-
quent replay in non-interactive experiments.

Performance measurement. As it handles in-
teractive or replayed requests, the Medusa proxy
tracks and records performance information, such
as request latency, DNS overhead, and connections
used.

Optimization options. Different download opti-
mizations can be toggled in the Medusa proxy dur-
ing object requests, such as using parallel and per-
sistent connections.

The initial version of the Medusa proxy only sup-
ported basic HTTP 1.0 request functionality. For
the experiments in this paper, we extended Medusa
to support a number of new features, including page
delimitation, parallel connections, and persistent
connections.

To capture the effects of downloading entire pages,
Medusa records page delimiters in its traces and
supports the concept of page downloads during
trace replay. In this mode, Medusa requests all ob-

jects in a page according to its configured optimiza-
tion mode, and then waits for all responses before
requesting the objects in the subsequent page.

To support parallel connections, Medusa records
the number of different connections used by the
browser during trace collection, as well as which
requests are sent over which connection. With this
information, Medusa is able to faithfully recreate
the connection behavior used during browsing. Re-
quests are fetched in a sequential fashion on each
connection in the order in which they were origi-
nally requested, with all connections beginning re-
quests at the same time. As a result, parallel down-
load time is optimistic but also consistent and re-
peatable.

Persistent connections are implemented according
to both the HTTP 1.0 convention and the HTTP 1.1
specification. Medusa has several persistent con-
nection modes: it can attempt to always keep the
connection open, it can attempt to mirror the orig-
inal connection state found in the trace, or it can
always close the connection. Should a persistent
connection fail, we re-establish the connection and
continue.

The Medusa proxy is highly configurable. Any
of the connection options can be enabled in any
configuration. In addition, Medusa now records
the DNS resolution time for each object. Medusa
can either replay traces using recorded DNS resolu-
tions or re-resolve DNS resolutions. In either case,
DNS resolution time (previously recorded or cur-
rent lookup) can be toggled to count towards object
download cost (or not).

As with the original version, Medusa can still trans-
form requests, such as converting Akamai requests
to origin server requests, online or during replay.
This is limited to Akamai Freeflow ARLs, however,
and does not consider sites completely hosted on
CDNs. We use these options in various configura-
tions to explore whole-page download performance
as described in the following section.



4 Methodology

In this section, we describe the traces, measure-
ments, and request optimizations we use to explore
whole-page performance. To generate a workload
for our experiments, we collected traces of every-
day Web browsing from six different users in our
research lab from Saturday, April 27 through Tues-
day, April 30, 2002.

Table 1 summarizes our user traces. We originally
recorded 22,338 objects in 1,455 pages. However,
upon replaying the traces, not all of the objects in
the traces could be successfully downloaded again
due to connections errors and 4XX/5XX responses.
We therefore removed all pages with any objects
that failed to download from the original trace. The
result was a workload of successfully downloaded
pages consisting of 13,747 HTTP requests compris-
ing 920 pages, for an average of 15 requests per
page.

To explore the individual and combined impact
of different download optimizations, we replayed
these traces using Medusa while enabling differ-
ent optimization configurations. In all replay ex-
periments, we executed the Medusa proxy on a
1133MHz PIII with 512KB cache and 1GB of
memory running Linux 2.4.2-2. We ran the Medusa
proxy using Sun’s Java 2 Runtime Environment
(v1.4.0) with the same version of HotSpot. We
used Internet Explorer 5 (IE), Netscape V4.79, and
OmniWeb v4.1b5 as the browsers to generate our
workloads. Replay measurements were gathered
overnight on May 6–7 and June 22–27 with each
of seven machines replaying parts of the traces. To
minimize warming effects, for each object we take
the median download time across five downloads.

4.1 Measurements

In this study, we define user-perceived latency for
whole pages to be the total wall clock time required
to download the base page and all of its embedded
objects. We refer to this time as the page download

User Reqs Pgs Ave Reqs/Pg

A 1212 87 13.9
B 872 103 8.5
C 10341 568 18.2
D 650 70 9.3
E 477 68 7.0
F 195 24 8.1
Total 13747 920 15.0

Table 1: The six user traces of successfully re-
played pages collected from Saturday, April 27,
2002 through Tuesday, April 30, 2002.

time. Of course, the browser can display useful in-
formation before all of the page’s objects are down-
loaded. In practice, though, it is difficult to deter-
mine at what point the user considers a page down-
loaded, and we consider the total time to download
the page a reasonable conservative and repeatable
metric.

The Medusa proxy calculates download times from
just after the DNS lookup until it closes the connec-
tion; this cost includes the TCP connection setup
and close. Where relevant we have added DNS
overhead to object download time after replay. For
our timings in our Java implementation of Medusa,
we used a custom native timer implementation with
a 3ns granularity to gather accurate results. Al-
though the native call to the timer incurs a 51 mi-
crosecond overhead, this overhead is still negligible
relative to the time durations we measure.

Calculating the total page download time depends
on the download optimizations used. For experi-
ments that do not use parallel connections, we sum
the total object download time for all objects on
a page (as dictated by the page delimitation algo-
rithm) to get total page download time. For exper-
iments with parallel connections enabled, we sum
up the total object download time for each connec-
tion and take the maximum connection time as page
download time.

To account for variation in individual download
times, we download each page in the trace five
times, one right after another. We then take the me-
dian page value as the representative page down-



load time for that page. Across sets of pages, we
report both average page download time and me-
dian page download time.

4.2 Optimizations

For each experiment, we used the Medusa proxy to
replay user traces. During playback, we enabled
different optimization options to mimic optimiza-
tions that are commonly used by Web browsers and
servers. Below we describe our methodology for
page delimitation and the optimizations we study.
We number the optimizations for convenient refer-
ence when we evaluate them in Section 5.

Page Delimitation. To divide user traces into pages
we used the relatively common heuristic of calcu-
lating inter-object times in the original trace to dis-
tinguish page boundaries. While [4] used an intra-
page reference time of 2.25 seconds, we found that
a value of 2 seconds was sufficient for our users
who had excellent connectivity to the Internet. We
have verified that using 2 seconds as a page break
allows us to match known page boundaries in our
traces.

We use page delimitation both in calculating total
page costs and in limiting optimizations to a page.
Specifically, Medusa uses the page delimitation to
limit parallelization to within a page.

(1) Parallel Connections. We used previously
recorded connection numbers to recreate parallel
connection page downloads during replay. The
Medusa proxy tracks the number of unique parallel
connections used by the browser during trace col-
lection. These connection numbers are then used to
replay parallel download.

n parallel replay mode, all parallel downloads are
begun at the same time, even though this is not the
case during browser download. As a result, our
numbers represent an optimistic lower bound for
parallel page performance.

To report parallel page costs, we compute the time
spent per connection downloading objects. We then
take the maximum connection download time as
the page download time, since this connection will
dominate page download time. Although this may
underestimate download time, it excludes overhead
Medusa may introduce.

(2) CDN Usage. As explained in [10], some objects
hosted on Akamai servers are named with URLs
that reveal their location on origin servers. When
the CDN usage optimization is disabled, Medusa
uses a filter to remove the references to Akamai
servers and replace them with references to the ori-
gin servers. When CDN usage is enabled, Medusa
leaves the traces in their original state. We do not
attempt to simulate more CDN usage than is found
in the original trace.

Since Akamai accounts for 85–98% of CDN-hosted
objects [11], we have focused on identifying and
removing Akamai hosted objects only.

(3) DNS Caching. We simulate idealized optimal
DNS caching by simply not including DNS timing
information when Medusa replays objects. When
idealized DNS caching is turned off, we simply
add the original DNS lookup cost (as measured by
Medusa when the trace was originally generated
during user browsing) to the object cost. In both
cases, Medusa does not record DNS lookup during
replay. Note that this original cost will reflect the
benefits of standard locality-based DNS caching,
or the cost of DNS redirection as the case may be,
since Medusa measures and records the time to do
the original DNS resolution. As a result, the dif-
ference between enabling and disabling Medusa’s
DNS caching reflects the overhead of DNS resolu-
tion in the original trace.

(4) Persistent Connections. As with parallel con-
nections, with persistent connections Medusa at-
tempts to mirror the connection state of the original
trace. Medusa supports both HTTP 1.0 KeepAlive
and HTTP 1.1 style persistent connections; in our
experiments, we use whichever request syntax the



Download Time DNS Time

Obj1 150 5
Obj2 200 40
Obj3 100 4
Obj4 250 90

Table 2: Example object download and DNS times
for a page with four objects. All times in millisec-
onds.

Seq. With
Method Downlaod Sequence Time DNS

Serial Obj1, Obj2, Obj3, Obj4 700 839
Total page download time: 700 839

Parallel Obj1, Obj3 250 259
Obj2, Obj4 450 580

Total page download time: 450 580

Table 3: Example page download times when using
(1) serial connections, and (2) parallel connections
using two connections. All times are in millisec-
onds.

original browser used. As with CDN usage, we
do not attempt to model more aggressive persis-
tent connection usage than would be possible given
the number of connections in the original trace;
Medusa only uses persistent connections during re-
play for objects that were downloaded over persis-
tent connections in the original trace. We assume
that the browser has already attempted maximum
persistent connection usage, and has recorded fail-
ures as close connection events in our user trace.
We are thus simulating persistent connections with
perfect knowledge. We do not count failed persis-
tent connection attempts in our timing data, we sim-
ply begin timing at the new connection open.

4.3 Example

We use an example to illustrate the calculation of
page download time. Suppose we replay a trace to
download a 4-object page with the object download
times and DNS resolutions times as shown in Ta-
ble 2. Note that, even in trace replay, we would use

the DNS times from the original user trace.

Table 3 shows how we would determine page
download times when downloading the page using
serial connections and when using parallel connec-
tions. With serial connections, Medusa opens and
closes new connections to download the objects one
after the other in sequence. In this case, the total
page download time is simply the sum of the indi-
vidual times: 700ms without the DNS times, and
839ms with them.

With two parallel connections, Medusa downloads
the objects in parallel. It first opens two connec-
tions to download the first two objects. When the
first object finishes, it opens another connection to
download the third object; when the second object
finishes, it opens another connection to download
the fourth. Since these object download sequences
happen in parallel due to the use of parallel connec-
tions, the total page download is the maximum total
download time of either sequence of object down-
loads: 450ms without the DNS times, and 580ms
with them.

Note that in both methods Medusa opens and
closes a new connection for each object; if we had
used persistent connections in this example, then
Medusa would have reused connections if the ob-
jects came from the same server.

4.4 Configurations

We ran experiments with the following optimiza-
tion combinations. Note that we are using the nota-
tion introduced above, where (1) indicates parallel
connections are used, (2) indicates CDNs are used,
(3) indicates DNS caching is used, and (4) indicates
persistent connections are used. (X,Y) indicates op-
tions (X) and (Y) are being used in conjunction.

� No optimization options (serial download).

� Persistent connections only (4).

� Parallel connections only (1).



� Parallel connections and CDNs (1,2).

� Parallel connections and DNS caching (1,3).

� Parallel connections and persistent connec-
tions (1,4).

� Parallel connections, CDN usage and persis-
tent connections (1,2,4).

� Parallel connections, CDN usage and DNS
caching (1,2,3).

� Parallel connections, DNS caching and persis-
tent connections (1,3,4).

� Parallel connections, CDN usage, DNS
caching, and persistent connections (1,2,3,4).

5 Results

This section characterizes the pages in our trace and
evaluates whole-page performance using the com-
binations of download optimizations listed above.

5.1 Page Characterization

We first characterize the pages in our traces in terms
of the number and types of objects per page, as well
as the use of embedded objects from Akamai and
advertisement servers.

5.1.1 Objects per page

Figure 1 shows the distribution of different page
sizes in terms of the number of objects in each page.
The values on the x-axis correspond to the number
of objects in a page, and the values on the y-axis
correspond to the number of pages in the traces that
have a given number of objects. Pages with only
one object have no embedded objects. The large
number of small object pages is due to a combina-
tion of factors, such as caching and refresh effects.
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Figure 1: Distribution of objects per page.

Objects
per Page No. of Pages No. of Objects

1 235 (25.5%) 235 (1.71%)
2-5 240 (26.1%) 720 (5.24%)
6-15 165 (17.9%) 1577 (11.5%)
16+ 280 (30.4%) 11215 (81.6%)
Total 920 13747

Table 4: Number of pages successfully downloaded
in each page size category. Mean objects per page
is 15, median is 5.

Because of this we categorize pages according to
the number of objects they contain.

Table 4 shows the breakdown of pages in the trace
according to the number of objects in the pages.
Since the median number of objects per page is 5
and the average is 15, we use those values as cat-
egory boundaries. Note that, although relatively
small pages (1–5 objects per page) comprise 51.6%
of the pages, they only constitute 9% of the requests
in the trace.

5.1.2 Object Type

In terms of the types of objects requested, we found
that 80.7% of URLs were images, 3.3% were java
script, and 3.0% were CSS files. 3.8% were found
to be cgi, perl, or class files. Surprisingly, only
5.6% identified as “.html” or “.htm” files (this does



exclude pages with no identifying suffix). The re-
maining 3.6% of pages were either pages with no
suffix, and miscellaneous files (pdf, txt, etc.).

5.1.3 CDNs

We found that the number of pages with explicit
Akamai-hosted objects is small, with 48 pages or
5.2% of pages containing Akamai-hosted objects.
Akamai-hosted objects accounted for only 216, or
1.6%, of total downloaded objects. For pages that
contained an akamai reference, there were an aver-
age of 216/48 = 4.5 CDN objects per page.

5.1.4 Ad-Servers

We searched for ad servers by looking for refer-
ences to hosts that were named with the phrases
“ads” or “adservers”. Thus, objects such as

http://rmads.msn.com/images 47144 date0429 50.jpg

were flagged, but objects such as

http://graphics4.nytimes.com/ads/scottrade sov.gif

were not.

The number of total ads served by identifiable ad-
servers in our dataset was 211, which were dis-
tributed across 87 (9.5%) pages. This is an average
of 2.4 ads per page for those pages that contained
ads.

5.2 Optimizations

In this section we evaluate the performance of the
different download optimizations. Figure 2 shows
the average page performance with different op-
timizations enabled. The x-axis corresponds to a
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Figure 2: Average page cost with different opti-
mization options enabled. Numbers along the bot-
tom correspond to numberings in methodology sec-
tion. Averages are the top points for each option,
and medians are the bottom points.

configuration of optimizations numbered according
to the list in Section 4, and the y-axis corresponds to
the page download time. As this figure shows, the
optimization that has the greatest incremental effect
across all pages is enabling parallelism. Also, all
two option settings perform better than one option
settings, and all three option settings perform better
than two option settings with the four option set-
ting of using parallelism (1), CDNs (2), complete
DNS caching (3), and persistent connections (4) be-
ing the most effective.

While none of the optimizations are ineffectual, be-
sides parallelism the other settings all offer incre-
mental improvements when considering all pages.
In part, this is an artifact of the fact that not all of the
pages in our trace can take advantage of optimiza-
tions like persistent connections. As a result, those
optimizations have a reduced overall effect. To ex-
plore this issue in more detail, in Section 5.2.1 we
characterize the effect of persistent connections on
those pages that can benefit from them.

The figure also shows that DNS overhead is signif-
icant for entire page download times as other work
has found for individual objects. Recall that the ide-
alized DNS caching time corresponds to the DNS
overhead in the original trace. Looking at Figure 2,
we see that idealized DNS caching is the only op-



tion that is relatively helpful in all cases. We see
that DNS cost is 12.2% of parallel page cost, 6.3%
of parallel/CDN page cost, 5.1% of parallel, per-
sistent connection page cost, and 6.3% of parallel,
persistent, CDN page cost.

In addition, it is interesting to note that while
CDNs do give improvement in our overall results
(2.5% of cost with all other options enabled), over-
all their contribution is small and corresponds to
the similarly small number of CDN hosted objects.
As in [10], from an overall workload perspective,
CDNs have an impact on whole-page download
performance that corresponds to their limited part
of user workloads.

Persistent connections are more helpful in the par-
allel case. Lack of persistent connections con-
tributes only 1.4% to the cost of downloading a
serial page, while contributing 12.5% in the par-
allel case. This appears to be due to the fact
that requests in the serial case may get interleaved
when they are sent on one connection in the or-
der in which they were originally downloaded by
the user’s browser. For example, two requests to
the server www.cnn.com get sent on connection 0
while one request to ar.atwola.com may get sent
on connection 1. When Medusa serializes these
requests, it is possible that they may get ordered
as (www.cnn.com, ar.atwola.com, www.cnn.com),
thus negating persistent connection benefits for one
connection. Thus, the opportunity for taking advan-
tage of persistent connections is smaller.

The easiest optimization to implement (parallel
connections) gives the most relative improvement
across all pages. Figure 2 also shows that paral-
lelism and any one option gives almost equivalent
improvement to having all options enabled. The
maximum overall benefit comes from adding the
first two optimizations. Finally, notice that the me-
dians are much lower than the means in this graph.
This is both because of the high variance for page
download, and a skew towards smaller pages in the
data set (distribution of page sizes). In the next sec-
tion, we narrow the focus of our analyses to explore
the effect of persistent connections on those pages
that have the potential to benefit from their use.
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Figure 3: Average page download time where ob-
jects are grouped by page size.
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Figure 4: Median page download time where ob-
jects are grouped by page size.

5.2.1 Persistent connections

We have observed that persistent connections do
not appear to have a substantial impact on perfor-
mance across all pages. The primary reason why
persistent connections do not have a substantial
overall impact on our trace is that, for a variety of
reasons, most pages in the trace do not have much
opportunity to benefit from them. For those pages
that do have the opportunity to benefit from the use
of persistent connections, we find that they indeed
do. In this section, we first characterize the poten-
tial for the pages in our trace to benefit from persis-
tent connections, and then present the performance
impact of persistent connections on those pages.

Table 5 shows various characteristics of the pages



Objects Ave. # Ave. # Persistent Ave. # Servers Ave. # Persistent
per Page No. Pages of Objects Objects (% Objects) per Page Objects/Server

2-5 59 3.02 1.95 (64.57%) 1.48 1.32
6-15 25 9.68 6.00 (61.98%) 2.16 2.77
16+ 100 46.42 17.81 (38.38%) 4.54 3.92
All 184 23.76 9.66 (40.66%) 2.89 3.34

Table 5: Various characteristics of pages where persistent connections were used in the original trace.

in our trace that have the potential to benefit from
persistent connections. The pages are broken down
into categories determined by the number of ob-
jects in the page; we omit the one-object category
since one-object pages cannot benefit from persis-
tent connections in isolation. These pages are the
ones that used persistent connections in the original
trace; recall that Medusa only uses persistent con-
nections during replay when downloading objects
that were downloaded using persistent connections
originally. Table 5 shows the number of these pages
in the first column of the table; comparing the All
row with the Total row in Table 4, we see that only
(184/920 = 20%) of all pages in the trace used per-
sistent connections.

The remaining columns in Table 5 give further in-
sight into the potential benefit of persistent connec-
tions for these pages. For persistent connections to
be useful when Medusa replays traces, two condi-
tions must hold: (1) multiple objects were down-
loaded over persistent connections in the original
trace, (2) these objects were downloaded from few
servers to benefit from connection reuse. The “Ave.
# of Objects” column in the table shows the aver-
age number of objects in the pages in the category.
Since not necessarily all of the objects of a page
were originally downloaded using persistent con-
nections, the next column shows the average num-
ber of objects downloaded in the pages in the cat-
egory; the percentage of all objects in the page is
given in parentheses.

From the table we see that, for pages with less than
six objects per page, on average only two out of
three objects are downloaded using persistent con-
nections. For these pages, then, the use of persis-
tent connections only has the potential to save the

connection overhead for one object compared to us-
ing serial connections. For pages with many objects
(“16+”), a substantial number of objects are down-
loaded over persistent connections on average ( 18)
and we would expect persistent connections to ben-
efit these pages. Note, though, that the full poten-
tial of using persistent connections for these pages
is only partially realized since only 38% of the ob-
jects on these pages are downloaded using persis-
tent connections.

The “Ave. # Servers per Page” column shows the
average number of different servers used to down-
load the objects for the pages, and the final col-
umn shows the average number of objects down-
loaded using persistent connections in the page di-
vided by the number of servers. For example, if a
page used persistent connections to download six
objects equally from two servers, then its corre-
sponding entries in the columns would be 2.0 and
3.0. The final column characterizes the average
“opportunity” of using persistent connections for
these pages: it measures the average number of ob-
jects downloaded per persistent connection for the
pages in each category. For the “2-5” pages, this
metric is 1.32: on average, using persistent connec-
tions will save the connection overhead for the re-
maining 0.32 objects beyond the initial object from
the connection (or, 1 out of every 3 such pages).
On the other hand, for the “16+” pages four objects
are downloaded per persistent connection on aver-
age. Furthermore, since the objects on these pages
are downloaded from 4.5 servers on average, they
also have good potential for using parallel persis-
tent connections.

In Figures 2– 4 we found that the use of persistent
connections did not have a significant impact on



Objects � 50% Persistent ��� 50% Persistent
per Page Method Pages Mean Median Pages Mean Median

2-5 serial 7 566 476 52 1550 865
persistent 601 482 1630 741

6-15 serial 11 1670 811 14 4000 1780
persistent 1530 779 2680 1580

16+ serial 63 7160 3960 37 6180 3620
persistent 7410 4040 4660 3390

Table 6: Page download times for those pages where persistent connections were used. For comparison,
page download times when using both serial and persistent connections are shown. Pages are categorized
by the number of objects they contain, and divided by whether more or less than half of the objects in the
pages were downloaded over persistent connections. All times are in milliseconds.

page download time across all pages. Table 5 above
showed that the primary reason is that most pages
in the trace cannot benefit from the use of persis-
tent connections. To focus on the impact of persis-
tent connections on just those pages that can ben-
efit from their use, Table 6 shows the page down-
load times for those pages that used persistent con-
nections in the original trace. We categorize the
pages according to the number of objects they con-
tain, and compare the performance of using the se-
rial and persistent connection optimization methods
(corresponding to “Serial” and “(4)” shown in Fig-
ures 2– 4). We further divide the pages by whether
more or less than half of the objects in the pages
were downloaded over persistent connections.

The page download times in Table 6 show that the
use of persistent connections does improve perfor-
mance for those pages that can benefit from them.
These are the pages one would expect: they have
a substantial number of objects in the page, and
most of those objects are downloaded over persis-
tent connections. For the pages with 6–15 and 16+
objects, and at least half of the objects are down-
loaded over persistent connections, persistent con-
nections improve page download times by 33–50%
over using serial connections.

5.3 Page Breakdown

Figures 3 and 4 show the effect the different opti-
mizations have on pages with differing numbers of

embedded objects. First, not surprisingly, the dif-
ferent optimizations have more effect when there
are more objects per page. This is because there
is more opportunity to take advantage of parallel
and persistent connections. For example, persistent
connections provide a more significant improve-
ment for larger pages, reflecting the fact that larger
pages contain more objects on the same servers.
Second, many of these optimizations are cumula-
tive. Finally, single object pages can only be im-
proved by the elimination of DNS overhead and
CDNs (unless they are located on the same server
as the previous page, in which case persistent con-
nections might be useful). Thus, these pages do not
exhibit much improvement overall.

5.4 DNS

In addition to characterizing DNS overhead in com-
bination with other optimizations, we also looked at
the overall cost breakdown for DNS lookups on a
per page basis. We found that in our original traces
(gathered while users were browsing), that the aver-
age DNS cost per object is 7.1 ms, the average DNS
cost per page is 529.7 ms.

This represents total time spent doing DNS
lookups, not time the browser spends waiting on
a DNS lookup, since with parallel connections
lookups can also be done in parallel. We can quan-
tify the amount of time that the browser spends
waiting on a DNS lookup by comparing average



whole-page latency with and without DNS caching.
With parallel connections, DNS lookup adds 12.2%
to whole-page latency, and with parallel and per-
sistent connections DNS costs contribute 5.09% to
whole-page latency.

We also examine the interactions between DNS and
CDNs at the page level. The total number of Aka-
mai requests in our trace is 216 from 48 pages
(5.2% of pages).

As expected due to DNS request routing, pages
containing Akamai references have noticeably
higher DNS costs. For example, in the parallel con-
nections case, DNS adds 12.2% to page cost in av-
erage pages, and DNS adds 1.0% to page cost in
those pages that use Akamai. With parallel persis-
tent connections DNS adds 5.1% to page cost for
average pages, while adding 6% for pages using
Akamai.

5.5 Ad Servers

We also looked at the relative improvements of the
different options on only pages containing ads. We
find that all optimizations improve the performance
of pages containing ads. Adding CDNs to the paral-
lel case improves performance 9.9%. Adding DNS
caching improves the parallel case 10.9% (com-
pared with an of average 12.2% over all pages), im-
proves the parallel/CDN case 8% (compared with
6.3% over all pages), and improves the 4.7% paral-
lel, persistent, CDN 4.7% (compared to 6.3%).

6 Conclusion

In this paper we have explored user-perceived Web
performance of downloading entire pages, and how
various optimizations impact overall page perfor-
mance. To explore whole-page performance, we
have extended the Medusa proxy to support paral-
lel and persistent connections, as well as to record
DNS lookup times. We then use the Medusa proxy
on user traces to characterize whole-page perfor-

mance and measure the impact of request optimiza-
tions on downloading entire pages.

In general, we found that the connection optimiza-
tion that has the largest impact across all pages in
our trace is simply parallel connections. We found
that persistent connections, for example, were not
as widely used as we expected. They were only
used in 20% of the original page downloads in our
trace, and they primarily benefit those pages that
have at least six objects in the page and most of
those objects are actually downloaded over persis-
tent connections. Also, the connection optimiza-
tions have a greater effect the larger the pages. With
an average number of 15 objects per page in our
user traces, there is greater opportunity for paral-
lelism and connection reuse. Of course, as with any
trace-based analysis, these results reflect our work-
loads and our computing and network environment,
and results can differ for other environments.
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