
The Phoenix Recovery System:
Rebuilding from the ashes of an Internet catastrophe

Flavio Junqueira Ranjita Bhagwan Keith Marzullo Stefan Savage Geoffrey M. Voelker
Department of Computer Science and Engineering

University of California, San Diego

1 Introduction

The Internet today is highly vulnerable to Internet catas-
trophes: events in which an exceptionally successful In-
ternet pathogen, like a worm or email virus, causes data
loss on a significant percentage of the computers con-
nected to the Internet. Incidents of successful wide-scale
pathogens are becoming increasingly common on the In-
ternet today, as exemplified by the Code Red and related
worms [6] and LoveBug and other recent email viruses.
Given the ease with which someone can augment such In-
ternet pathogens to erase data on the hosts that they infect,
it is only a matter of time before Internet catastrophes oc-
cur that result in large-scale data loss.

In this paper, we explore the feasibility of using data re-
dundancy, a model of dependent host vulnerabilities, and
distributed storage to tolerate such events. In particular,
we motivate the design of a cooperative, distributed re-
mote backup system called the Phoenix recovery system.
The usage model of Phoenix is straightforward: a user
specify an amount

�
of bytes from its disk space the sys-

tem can use, and the goal of the system is to protect a pro-
portional amount

�����
of its data using storage provided

by other hosts.
In general, to recover the lost data of a host that was a

victim in an Internet catastrophe, there must be copies of
that data stored on a host or set of hosts that survived the
catastrophe. A typical replication approach [10] creates �
additional replicas if up to � copies of the data can be lost
in a failure. In our case, � would need to be as large as the
largest Internet catastrophe. As an example, the Code Red
worm infected over 340,000 computers, and so � would
need to be larger than 340,000 for hosts to survive a sim-
ilar kind of event. Using such a large degree of replica-
tion would make cooperative remote backup useless for at
least two reasons. First, the amount of data each user can
protect is inversely proportional to the degree of replica-
tion, and with such a vast degree of replication the system
could only protect a minuscule amount of data per user.
Second, ensuring that such a large number of replicas are
written would take an impractical amount of time.

Our key observation that makes Phoenix both feasi-
ble and practical is that an Internet catastrophe, like any
large-scale Internet attack, exploits shared vulnerabilities.

Hence, users should replicate their data on hosts that do
not have the same vulnerabilities. That is, the repli-
cation mechanism should take the dependencies of host
failures—in this case, host diversity—into account [5].
Hence, we formally represent host attributes, such as its
operating system, web browser, mail client, web server,
etc. The system can then use the attributes of all hosts in
the system to determine how many replicas are needed to
ensure recoverability, and on which hosts those replicas
should be placed, to survive an Internet catastrophe that
exploits one of its attributes. For example, for hosts that
run a Microsoft web server, the system will avoid plac-
ing replicas on other hosts that run similar servers so that
the replicas will survive Internet worms that exploit bugs
in the server. Such a system could naturally be extended
to tolerate simultaneous catastrophes using multiple ex-
ploits, although at the cost of a reduced amount of recov-
erable data that can be stored. Using a simulation model
we show that, by doing informed placement of replicas, a
Phoenix recovery system can provide highly resilient and
available cooperative backup with low overhead.

In the rest of this paper, we discuss various approaches
for tolerating Internet catastrophes and motivate the use
of a cooperative, distributed recovery system like Phoenix
for surviving them. Section 3 then describes our model for
dependent failures and how we apply it to tolerate catas-
trophes. In Section 4, we explore the design space of the
amount of available storage in the system and the redun-
dancy required to survive Internet catastrophes under var-
ious degrees of host diversity and shared vulnerabilities.
We then discuss system design issues in Section 5. Fi-
nally, Section 6 concludes the paper.

2 Motivation

Backups are a common way to protect data from being
lost as a result of a catastrophe. We know of three ap-
proaches to backup.

Local backup is the most common approach for recov-
ering from data loss, and it has many advantages. Users
and organizations have complete control over the amount
and frequency with which data is backed up, and tape
and optical storage is both inexpensive and high capac-

ity. However, large organizations that have large amounts
of data have to employ personnel to provide the backup
service. Individual home users often do not use it because
of the time and hassle of doing so, causing home systems
to be highly vulnerable to exploit and potential data loss.

Another approach is to use a commercial remote backup
service, such as DataThought Consulting [4] or Protect-
Data.com [9]. This approach is convenient, yet expensive.
Currently, automatic backup via a modem or the Internet
for 500MB of data costs around $30-$125 a month.

Cooperative remote backup services provide the con-
venience of a commercial backup service but at a more
attractive price. Instead of paying money, users relinquish
a fraction of their computing resources (disk storage, CPU
cycles for handling requests, and network bandwidth for
propagating data). pStore [1] is an example of such a ser-
vice. However, its primary goal is to tolerate local failures
such as disk crashes, power failures, etc. Pastiche [2] also
provides similar services, while trying to minimize stor-
age overhead by finding similarities in data being backed
up. Its aim is also to guard against localized catastrophes,
by storing one replica of all data in a geographically re-
mote location.

We believe that a cooperative, distributed system is a
compelling architecture for providing a convenient and
effective approach for tolerating Internet catastrophes. It
would be an attractive system for individual Internet users,
like home broadband users, who do not wish to pay for
commercial backup service or do not want the hassle of
making their own local backups. Users of Phoenix would
not need to exert any significant effort to backup their
data, and they would not require local backup systems.
Specifying what data to protect can be made as easy as
specifying what data to share on a file sharing peer-to-
peer system. Further, a cooperative architecture has little
cost in terms of time and money; instead, users relinquish
a small fraction of their disk, CPU, and network resources
to gain access to a highly resilient backup service. A user
specifies an amount

�
of bytes from its disk space to be

used by the system, and the system would protect a pro-
portional amount

�����
of their data. We observe that the

value
�

depends on the diversity of hosts and therefore can
differ among them. In addition, the system would limit the
network bandwidth and CPU utilization to minimize the
impact of the service on normal operation.

To our knowledge, Phoenix is the first effort to build a
cooperative backup system resilient to wide-scale Internet
catastrophes.

3 Taking Advantage of Diversity

Traditionally, reliable distributed systems are designed us-
ing the threshold model: out of � components, no more

than ����� are faulty at any time. Although this model
can always be applied when the probability of having a
total failure is negligible, it is only capable of expressing
the worst-case failure scenario. The worst-case, however,
can be one in which the failures of components are highly
correlated.

Failures of hosts in a distributed system can be corre-
lated for several reasons. Hosts may run the same code
or be located in the same room, for example. In the for-
mer case, if there is a vulnerability in the code, then it can
be exploited in all the hosts executing the target software.
In the latter case, a power outage can crash all machines
plugged in to the same electrical circuit.

As a first step towards the design of a cooperative
backup system for tolerating catastrophes, we need a con-
cise way of representing failure correlation. We use the
core abstraction to represent correlation among host fail-
ures [5]. A core is a reliable minimal subset of compo-
nents: the probability of having all hosts in a core fail-
ing is negligible, for some definition of negligible. In a
backup system, a core corresponds to the minimal replica
set required for resilience. Replicas on additional hosts
beyond a core set will not significantly contribute to data
resilience since, by the definition of a core, those addi-
tional hosts will fail together with at least one host in the
core with high probability.

Determining the cores of a system depends on the fail-
ure model used and the desired degree of resilience for the
system. The failure model prescribes the possible types
of failures for components. These types of failures de-
termine how host failures can be correlated. In our case,
hosts are the components of interest and software vulner-
abilities are the causes of failures. Consequently, hosts
executing the same piece of software present high failure
correlation. This information on failure correlation is not
sufficient, however, to determine the cores of a system. It
also depends on the desired degree of resilience. As one
increases the degree of resilience, more components are
perhaps necessary to fulfill the core property stated above.

To reason about the correlation of host failures, we as-
sociate attributes to hosts. The attributes represent char-
acteristics of the host that can make it prone to failures.
For example, the operating system a host runs is a point
of attack: an attack that targets Linux is less likely to be
effective against hosts running Solaris, and is even less ef-
fective against hosts running Windows XP. We could rep-
resent this point of attack by having an � -ary attribute that
indicates the operating system, where the value of the at-
tribute is 0 for Linux, 1 for Windows XP, 2 for Solaris,
and so on.

To illustrate the concepts introduced in this section,
consider the system described in Example 3.1. In this sys-
tem, hosts are characterized by three attributes and each

attribute has two possible values. We assume that hosts
fail due to crashes caused by software vulnerabilities, and
at most one vulnerability can be exploited at a time.

Example 3.1 :

Attributes: Operating System = � Unix, Windows � ;
Web Server = � Apache, IIS � ;
Web Browser = � IE, Netscape � .

Hosts: ������� Unix, Apache, Netscape � ;
�	�
��� Windows, IIS, IE � ;
�	�
��� Windows, IIS, Netscape � ;
������ Windows, Apache, IE � .

Cores ����� � � ��� � � � � � � � .

There are a few interesting facts to be observed about
Example 3.1. First, ��� and �	� form what we call an
orthogonal core, which is a core composed of hosts that
have different values for every attribute. Note that in this
case the size of the orthogonal core is two because of our
assumption that at most one vulnerability can be exploited
at a time. This implies that it is necessary and sufficient
to have two hosts with different values for every attribute.
Even though it is not orthogonal, �����	���	� is also a core
since it covers all attributes. Second, when choosing a
core for host � � to store replicas of its data, there are two
possibilities: � � � � and � � � � � � . The second option for
a core is larger than the first. Thus, choosing the second
leads to unnecessary replication. The optimal choice in
terms of storage overhead is therefore �����	� .

Choosing the smallest core available may seem a good
choice at first because it requires less replicas. We ob-
serve, however, that such a choice can adversely impact
the system. In environments with highly skewed diver-
sity, the total capacity of the system may be impacted by
always choosing the smallest core1. Back in Example 3.1,
��� is the only host which has some flavor of Unix as the
operating system. Consequently, a core for every other
host has to contain ��� . For a small system as the one in
the example this should not be a problem, but it is a poten-
tial problem for large-scale deployments. This raises the
question of how diversity of attributes impacts the trade-
offs between storage overhead and resilience in the sys-
tem. We explore this tradeoff in the next section.

4 Host Diversity

We now develop a metric for specifying attribute diversity
among a set of hosts, and a system model for representing
sets of hosts with various degrees of attribute diversity.
We then use this model to quantify the core sizes, and

1By skewed diversity, we mean a distribution of attribute configura-
tions that is not uniform.

hence the amount of replication, required to achieve high
degrees of resilience to Internet catastrophes under a wide
range of diversities of host vulnerabilities.

4.1 Diversity and Core Sizes

If one knew the probability of attack for each vulnerabil-
ity, then given a target system resilience one could enu-
merate minimal cores with that target resilience. In our
case, it is not clear how one would determine such prob-
abilities. Instead, we define a core � for a host � to be a
minimal set of hosts with the following additional proper-
ties: 1) ����� ; 2) for every attribute ����� , either there is
a host in � that differs from � in the value of � or there is
no host in the system that differs from � in the value of � .
Such a subset of hosts is a core for a host � if we assume
that, in any Internet catastrophe, an attack targets a single
attribute value. Although it is not hard to generalize this
definition to allow for attacks targeted against multiple at-
tribute values, in the rest of this paper we focus on attacks
against a single attribute value.

Smaller cores means less replication, which is desirable
for reducing the storage overhead. A core will contain be-
tween 2 and � ��! #" hosts. If the hosts’ attributes are well
distributed, then the cores will be small on average: for
any host � , it is likely that there is a host $ that has differ-
ent values of each of the attributes, and so � and $ consti-
tute a core. In other words, a fair number of orthogonal
cores are likely to exist. If there is less diversity, though,
then the smallest cores may not be orthogonal for many
hosts, thus increasing storage overhead.

A lack of diversity, especially when trying to keep core
sizes small, can lead to a more severe problem. Suppose
there are

�
hosts �%�&� � �'� �)(�()(�+*,� and an attribute � such

that all have the same value for � . Moreover, there is only
one host � that differs in the value of � . A core for each
host �'- hence contains � , meaning that � will maintain
copies for all of the �'- . Since the amount of disk space
� donates for storing backup data is fixed, each � - can
only use " ��� of this space. In other words, if � donates�

bytes for common storage to the system, then each � -
can back up only

��� �
bytes. Note that

�
can be as large

as the number of hosts, and so
��� �

can be minuscule. In
Example 3.1, host � � is the only one to have a different
value for attribute “Operating System”, and hence has to
store copies for all the other hosts.

Characterizing the diversity of a set of hosts is a chal-
lenging task. In particular, considering all possible dis-
tributions for attribute configurations is not feasible. In-
stead, we define a measure . that condenses the diversity
of a system into a single number. According to our defi-
nition, a system with diversity . is one in which a share
. of the servers is characterized by a share /0"�12.&3 of the

combinations of attributes. Although this metric is coarse
and does not capture all possible scenarios, it is expres-
sive enough to enable one to observe how the behavior
of a backup system is affected by skewed diversity. Note
that . is in the interval � � (� � "�3 . The value . ��� (�� corre-
sponds to a uniform distribution, and a value of . close to
1 indicates a highly skewed diversity.

We use this metric to study how the storage overhead
and resilience for systems vary with skew in diversity. The
storage overhead for a host is given by the size of the core
it uses to backup its data. The resilience depends on the
number of attributes covered in a core, and it decreases as
the number of non-covered attributes increases.

The problem of finding a smallest core given a set of
hosts and an attribute configuration for each host, how-
ever, is NP-hard (reduction from SET-COVER). For this
reason, we used a randomized heuristic to find cores. This
heuristic finds a core for a host � as follows:

1. It tries to find other hosts that have a fully disjoint set
of attributes. If there is more than one host, then it
picks one randomly;

2. If there is no host found in the previous step, then it
randomly chooses hosts that have at least one differ-
ent attribute until a core is constructed or it cannot
find any more hosts to choose.

This is a very simple heuristic, and it may not be the
best; we have not yet done a thorough study of heuristics
for finding cores. The results we present below, however,
indicates that it is good heuristic in terms of the sizes of
the cores it computes.

4.2 Modeling Diversity

To better understand the impact of diversity skew, we sim-
ulate a system of hosts with various attributes and quantify
the storage overhead for replicating data and the conse-
quent resilience provided by the system. On the Internet
most hosts run some version of Windows with Internet
Explorer as the web browsers [8], so we biased the at-
tribute distribution towards having some fixed subset of
attributes. The size of this subset depends on the value
. chosen for the diversity of the system. To see this, con-
sider a subset of size � . Assuming that each attribute has �
possible values, for such a subset the total number of dis-
tinct configurations is ��� 	
� ��� . Thus, there is some integer
� , �� � �� , for which the following equation is satisfied:

� � 	
� ���
� � 	
�

� / " 1 .&3 � � � 	
� ������� ���
� � 	
�

� "
� �

� / " 1 .&3 � "
� ��� � ((1)

In our simulations, we compute the value of � using
Equation 1, and then pick a subset ����� � of attributes
such that � ��� � ��� . For every attribute � in ��� , we fix the
value of � for a fraction . of the hosts. We then randomly
choose values for the remaining attributes for this fraction
of hosts. For the remaining hosts, we pick attribute con-
figurations at random, but we make sure that each config-
uration does not have any configuration assigned to a host
in the first fraction.

1

2

3

4

5

6

7

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

e
S

iz
e

R
es

ili
en

ce

Diversity (f)

Core size Resilience

Figure 1: Core sizes as a function of diversity for 8 at-
tributes, 2 values each.

4.3 Simulation Results

Figures 1, 2, and 3 show the results of our simulations.
We simulate a system of 1,000 hosts and present results
for two scenarios: 8 attributes with 2 values each (8/2)
and 8 attributes with 4 values each (8/4). The choice
of 8 attributes is based upon an examination of the most
targeted categories of software from public vulnerability
databases, such as [7, 11]. From these databases, we ob-
served 8 significant software categories. Consequently,
we chose this value as a parameter for our simulations.
The number of values per attribute, however, were not ex-
tracted from the data available at these databases. Our in-
tention by picking these numbers is to show the difference
in core sizes and storage load as the number of attribute
configurations vary.

We only show the results for one sample generated for
each value of . , as we did not see significant variation
across samples. Figures 1 and 2 show the core size aver-
aged over cores for all of the hosts for different values of
the diversity parameter . . We also include a measure of
resilience that shows whether our algorithm was able to
cover all attributes or not. In our context, we define re-
silience as the percentage of attributes covered in a given
core. A point in the resilience curve is hence the number

1

2

3

4

5

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

or
e

S
iz

e

R
es

ili
en

ce

Diversity (f)

Core size Resilience

Figure 2: Core sizes as a function of diversity for 8 at-
tributes, 4 values each.

of covered attributes averaged across all hosts divided by
the total number of attributes. Note that resilience one (1)
means that all attributes are covered.

To show the variability in core size, we include error
bars in the graphs showing the maximum and the mini-
mum core sizes for values of . . The variability in core
size is noticeably high in the 8/2 scenario, whereas it is
lower in the 8/4 scenario. Because there are more con-
figurations available in the 8/4 setting, it is likely that a
host � finds a host $ which has different values for every
attribute even when the diversity is highly skewed.

Regarding the average core size, in the 8/2 scenario, it
remains around 2 for values of . under 0.7, and goes up
to average sizes around 3 for higher values of . . In either
case, the storage overhead is low, although it is overall
higher than the average core size for the 8/4 scenario. The
result of adding more attribute values to each attribute is
therefore a reduction in the storage overhead. In this sce-
nario, the average core size remains around 2 for most of
the values of . . It only increases for .�� � (����� .

It is important to note that there is a drop in resilience
for .�� � (����� in both scenarios. For such a highly skewed
diversity, there are some hosts for which there is no core
covering all attributes. Observe that for such a value of
. there are 999 hosts sharing some subset � � of attributes
with a fixed value for each attribute and a single host � not
sharing this subset. As a consequence, host � has to be in
the core of a host $ sharing ��� . Host � , however, may
not cover all the attributes of $. This being the case, there
are possibly other hosts that cover the remaining attributes
of $ that � does not cover. If there are no such hosts,
then there is no core for $ which covers all attributes. The
resilience of the system for this host is therefore lower.

An important question that remains to be addressed is
how much backup data a host will need to store. We ad-

dress this question with the help of Figure 3. In this figure,
the � -axis plots the largest value of

�
such that there is a

host that must be in
�

cores given the core compositions
that we computed. This means that there will be hosts that
will be able to backup only

�����
data in the case the sys-

tem does not impose a threshold on the number of cores a
host can belong to. We call this value

�
the storage load

of the system. As expected, the storage load
�

increases as
. approaches 1, and reaches 1,000 for .�� � (����� in both
scenarios. This is due to our previous observation that,
for this value of . , there is a single host which has to be
in a core of every other host. We conclude that the storage
overhead for such a highly skewed diversity is small, but
the total load incurred in a small percentage of the hosts
can be very high.

1

10

100

1000

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
to

ra
ge

 L
oa

d

R
es

ili
en

ce

Diversity (f)

Storage Load 8/2
Resilience 8/2

Storage Load 8/4
Resilience 8/4

Figure 3: Storage load as a function of diversity for the
8/2 and the 8/4 scenarios.

Although we have presented results only for 1,000
hosts, we have also looked into other scenarios with a
larger number of hosts. For 10,000 hosts and the same
attribute scenarios, there is no reduction in resilience, and
the average core size remains in the same order of mag-
nitude. As we add more hosts to the system, we increase
the probability of a host having some particular configura-
tion, thus creating more possibilities for cores. The trend
for storage load is the same as before: the more skewed
the distribution of attribute configurations, the higher the
storage load. For highly skewed distributions and large
number of hosts, the storage load can be overwhelmingly
high. One important observation, however, is that as the
population of hosts in the system increases, the number of
different attribute configurations and the number of hosts
with some particular configuration are likely to increase.
Thus, for some scenario and fixed value of . , the storage
load does not increase linearly with the number of hosts.
In our diversity model, it actually remains the same order
of magnitude.

Suppose now that we want to determine a bound on .

for a real system given our preliminary results. Accord-
ing to [8], over

�����
of the hosts that access a popular

web site run some version of Internet Explorer. This is
the most skewed distribution of software they report (the
second most skewed distribution is the percent of hosts
running some version of Windows, which is

� � �). There
are vulnerabilities that attack all versions of Internet Ex-
plorer [11], and so . for such a collection of hosts can be
no larger than � (��� . Note that as one adds attributes that
are less skewed, they will contribute to the diversity of the
system and reduce . .

In the lists provided by [8], there are 14 web browsers
and 11 operating systems. For an idea of how a scenario
like this would behave, consider a system of 1,000 hosts
with 2 attributes and 14 values per attribute. For a value
of . � � (��� we have an average core size of � , a maxi-
mum core size of � , and storage load of ��� . We did not
see significant changes in these values when changing the
number of values per attribute from 14 to 11.

A storage load of 24 means that there is some host that
has to store backup data from 24 other hosts, or � � of its
storage to each host. We observe that this value is high be-
cause our heuristic optimizes for storage overhead. In an
environment with such a skewed diversity, a good heuris-
tic will have to take into account not only storage over-
head, but storage load as well.

5 System Design Issues

The previous section gives us an idea of how much repli-
cation and how much storage is required in Phoenix. We
end by briefly mentioning a number of design issues that
an implementation of Phoenix needs to address as well.

The heuristics used for core identification need to use
an index that maps hosts to the different attributes they
possess. Phoenix therefore needs to maintain this index,
which we intend to implement using a distributed hash ta-
ble (DHT). Once Phoenix has identified a core, it stores
copies of data on the hosts in the core. To ensure the
integrity of the data, we plan on using some encryption
mechanism. Thus, data is encrypted before releasing it to
the hosts of a core. As observed in the previous section,
it is also necessary to ensure fairness of storage alloca-
tion across users. For this, our heuristic to find cores will
have to be modified to take storage load into account. Fi-
nally, we need to more carefully model the set of vulner-
abilities and allow for dynamically adding and removing
attributes/values.

In the wake of an Internet catastrophe, Phoenix itself
has to continue functioning satisfactorily. Since we in-
tend to use a DHT as a platform, it will need to survive a
scenario where a large number of hosts suddenly leave the
system [3]. Moreover, once there is a catastrophe, many

users may try to recover files at the same time, potentially
overloading the system; since recovery time is not criti-
cal, a distributed scheduler using randomized exponential
wait times can ease recovery demand.

We are currently working on addressing these issues in
a prototype design and implementation of Phoenix.

6 Conclusions

In this paper, we have explored the feasibility of using
a cooperative remote backup system called Phoenix as
an effective approach for surviving Internet catastrophes.
Phoenix uses data redundancy, a model of dependent host
failures, and distributed storage in a cooperative system.
Using a simulation model we have shown that, by per-
forming informed placement of replicas, Phoenix can pro-
vide highly reliable and available cooperative backup and
recovery with low overhead.

References

[1] C. Batten, K. Barr, A. Saraf, and S. Treptin. pStore:
A secure peer-to-peer backup system. Unpublished
report, December 2001.

[2] L. P. Cox and B. D. Noble. Pastiche: Making backup
cheap and easy. In Proceedings of Fifth USENIX
Symposium on Operating Systems Design and Im-
plementation, Boston, MA, December 2002.

[3] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS.
In proceedings of the 18th ACM Symposium on Op-
erating System Principles (SOSP) , 2001.

[4] Datathought website, http://www.datathought.com.
[5] F. Junqueira and K. Marzullo. Synchronous Consen-

sus for dependent process failures. In Proceedings of
the ICDCS 2003, to appear, 2003.

[6] D. Moore, C. Shannon, and J. Brown. Code-Red: a
case study on the spread and victims of an Internet
worm. In Proceedings of the 2002 ACM SICGOMM
Internet Measurement Workshop, pages 273–284,
Marseille, France, Nov. 2002.

[7] National Institute of Standards and Technology
(NIST). ICAT vulnerability database. http://
icat.nist.gov/icat.cfm.

[8] OneStat.com. Provider of web analytics. http:
//www.onestat.com.

[9] Protect-data website, http://www.protect-data.com.
[10] F. B. Schneider. Implementing fault-tolerant ser-

vices using the state machine approach: A tutorial.
ACM Computing Surveys, December 1990.

[11] SecurityFocus. Vulnerability database. http://
securityfocus.com.

