Slicing Spam with Occam’s Razor”

Chris Fleizach
U.C. San Diego
9500 Gilman Dr.

La Jolla, CA 92093-0404

cfleizac@cs.ucsd.edu

ABSTRACT

To evade blacklisting, the vast majority of spam email is sent
from exploited MTAs (i.e., botnets) and with forged “From”
addresses. In response, the anti-spam community has devel-
oped a number of domain-based authentication systems —
such as SPF and DKIM — to validate the binding between in-
dividual domain names and legitimate mail sources for those
domains. In this paper, we explore an alternative solution in
which the mail recipient requests a real-time affirmation for
each e-mail from the declared sender’s MX of record. The
Occam protocol is trivial to implement, offers authenticating
power equivalent to SPF and DKIM and, most importantly,
forces spammers to deploy and expose blacklistable servers
for each domain they use during a campaign. We discuss
the details of the protocol, compare its strengths and weak-
nesses with existing solutions and describe implementation
strategies.

1. INTRODUCTION

By almost any metric, spam email has become a pervasive
blight on e-mail users and service providers alike. The low
marginal costs of spam delivery combined with the effec-
tiveness of early content-based filtering and domain-based
blacklisting have led spammers to develop large-scale re-
mailing infrastructures in response. Thus, a modern spam
campaign can comprise hundreds of millions of messages, ad-
dressed from tens of thousands of domain names, and deliv-
ered via thousands of distinct Mail Transfer Agents (MTAs).
Indeed, with some reports indicating hundreds of millions of
compromised “bot” hosts on the Internet [5], the ability to
produce 100 million spam messages a day has become a triv-
ial task.

In response, the anti-spam community has focused con-
siderable attention on limiting domain address spoofing and,
through it, the ability to create an effective large-scale spam

mailing infrastructure. For example, the Sender Policy Frame-

work (SPF) [3] and DKIM [2] systems allow receivers to val-
idate if an email’s “From” domain address is consistent with
the source of the message (authenticated via digital signa-
ture or the IP address(s) of the sending MTA). While each
of these approaches has its benefits, neither is in pervasive

*An extended version of this paper is available as UCSD
CSE Technical Report 1235 at www.cse.ucsd.edu/tech.

CEAS 2007 - Fourth Conference on Email and Anti-Spam, August 2-3, 2007,
Mountain View, California USA

Geoffrey M. Voelker
U.C. San Diego
9500 Gilman Dr.

La Jolla, CA 92093-0404

voelker@cs.ucsd.edu

Stefan Savage
U.C. San Diego
9500 Gilman Dr.

La Jolla, CA 92093-0404

savage@cs.ucsd.edu

use today and at least some of the early adopters have been
spammers themselves.

In this paper we present a real-time challenge-based au-
thentication protocol called Occam based on an exceedingly
simple algorithm: when an email arrives, the receiving MTA
sends a validation query back to the server who “should”
have sent the message (the MTA responsible for the domain
claimed as the source). If this MTA responds that it has
indeed sent the message, then all is well; if not, then the
domain has been spoofed and the contents are likely a spam
or phish. In a real sense, this is mail authentication stripped
to its barest essentials.

We believe the Occam protocol offers two contributions
over previous approaches. First, Occam is extremely simple
to deploy. For all small to medium-sized domains, Occam
can simply be enabled — with no site-specific configuration
at all — and yet deliver equivalent authenticating power to
SPF or DKIM. In Section 4, we discuss how large domains
can use Occam. Second, because Occam is a challenge-
based authentication system, it shifts the burden of mail
authentication to the sender on a per-domain basis. Thus,
to participate in the protocol a spammer must provide on-
line server resources and these servers must be capable of
answering queries about any e-mail sent from that domain.
This requirement increases the infrastructure demand on the
spammer and, moreover, the addresses of these servers must
be exposed during a spam campaign, thus becoming prime
targets for blacklisting.

The remainder of this paper is structured as follows. In
Section 2 we describe our proposed Occam protocol. In Sec-
tion 3 we analyze how spammers might try to sidestep Oc-
cam and highlight the strengths and limitations revealed by
this evaluation. We describe how large and small domains
can implement Occam in Section 4 and discuss performance
overheads in Section 5. We conclude with a summary of our
findings in Section 6.

2. OCCAM’'SRAZOR

Occam is a new protocol for combating the growth of
spam email. Occam is motivated by the observation that
most spam email contains forged addresses typically sent by
botnets [7]. The strength of the protocol lies in its simplic-
ity. Using Occam, receivers simply ask the sending domains
identified in a message whether they actually sent the mes-
sage. With legitimate email, the domains will acknowledge
sending the message. Spam email that forges the domain,
however, will not be acknowledged and receivers can classify
the email as illegitimate. As a result, Occam requires spam-



Time s p
_':: Py | Message is received .-
B — L3 =
Sender.org Receiver

©sS”

Addr
o-\d, From
- o <Mess2d Receiver finds domain in

Occam-Header and asks domain
if they sent the message

b

<To addresgs
Sender looks up [z

the To address and .
informs the Receiver

cdgmen™

Receiver validates
To address and
informs the Sender

N;\mow\
>
\F

Sender knows receiver
handled message and can
v remove log information

Figure 1: Outline of the Occam protocol for a valid
email exchange.

mers to provide available resources for acknowledging the
spam they send, and induces spammers to control their own
domains and identify those domains in their spam email.
These requirements increase the resource burden on spam-
mers and further expose spammers to effective blacklisting.
In this section we focus on the operation and implementa-
tion of the protocol, and further discuss the implications of
Occam in Section 3.

Figure 1 illustrates the operation of the Occam proto-
col. When a receiving server receives a message, it parses
the Occam-Header to determine the sending domain. The
Occam-Header looks like an email address, with a user and
a domain, but the domain specifies the server to contact for
confirmation:

Occam-Header: bob@serverB.org

In most situations, the Occam-Header will be identical to
the envelope-sender, also known as the Return-Path. The
receiver should only use the DNS MX records when resolv-
ing the domain. This requirement helps prevent using bot-
nets as valid domain servers, since many botnets are desk-
top computers and generally do not have MX records (even
though they may have A records). As a concrete exam-
ple, assume that server A receives a legitimate message for
the user alice@serverA.org that contains the Occam-Header
bob@serverB.org. The Message-1d listed in the email mes-
sage is Id-12534.

The receiver then sends a query message to the server for
that domain. In this case, server B is the server that resolves
to the MX record for serverB.org. The query includes the
email “From” address together with the Message-1d:

From: bob@serverB.org
Message-Id: Id-1234

The domain server uses these fields to identify the mes-
sage that was sent in a log of recently sent messages. As a
result, Occam requires each domain server to maintain a log
of sent messages. Each log entry only needs to include the
“To” address, the “From” address and the Message-Id. The
“From” address is not always necessary, but provides infor-
mation for a domain server to identify potentially abusive
clients that try to guess Message-Ids and subvert Occam.

The domain server can expire the log entries when the re-
ceiver acknowledges the response from the server. These
fields can be compressed to about 30 bytes per record; even
an outstanding log of 100 million entries would only require
300 MB, small by any standards for contemporary servers.
If the domain server finds the message in the log, it returns
the “To” address of the corresponding message back to the
receiver as acknowledgement. The acknowledgment allows
the sending server to remove the entry from its log. In our
example, server B responds with:
To: alice@serverA.org
Note that since the domain server synchronously sends the
response to the receiver using the same socket binding as the
query request, it does not need to specify the Message-1d;
the receiver knows which request the response matches.
The receiver validates that the “To” address from the do-
main server matches the “To” address in the original email
message; requiring the “To” address in responses prevents
malicious domain servers from simply acknowledging all Oc-
cam queries. If the “To” addresses match, then the receiver
finally delivers the message to the user’s mailbox and ac-
knowledges the match to the domain server:
Status: Received
Message-Id: Id-1234
The domain server can now remove the corresponding en-
try from its log of messages sent. Note that, in this exchange,
the receiver asynchronously acknowledges the match to the
domain server and must explicitly specify the Message-Id.
These exchanges correspond to the case when the domain
sender has sent legitimate email. There are three cases
where the protocol detects illegitimate email. First, if the
domain server does not find the message in its log when
queried, it responds to the receiver accordingly:
Status: Unknown
Or, if the domain server does not find the message logged
and it wants to know who the message was sent to, it can
respond to the receiver asking for the “To” address:
Status: Unknown To
The receiver can then respond with the “To” field from the
message and remove the email as it sees fit. In our example,
server A would return:
To: alice@serverA.org
Second, if the receiver finds that the “To” address does
not match what was in the email, then the receiving server
concludes that the sending server did not actually send the
message. In both cases the receiver can then take appropri-
ate action against the illegitimate email.
Third, if the receiving server does not immediately receive
a response from the domain server, it can limit the rate of
querying, much like SMTP does when repeatedly trying to
deliver messages to bad addresses. After each attempt that
does not succeed, the receiving server doubles the amount
of time to wait before retrying. After a timeout, the mes-
sages can be marked as illegitimate if no response was ever
received.

3. SLICING SPAM

Having described the operation of the Occam protocol, we
now discuss how spammers might respond to Occam, and
what constraints and burdens Occam places on spammers
for them to continue to deliver spam successfully. We then
discuss the advantages Occam offers compared to current
methods, as well as its limitations.



3.1 How might spammersrespond?

The goal of Occam is to impose a substantially higher
resource burden on spammers, and to further expose spam-
mers to effective blacklisting. Naturally, spammers will re-
spond to Occam and change how they deliver spam.

Put the bots to work. Occam requires senders to validate
and acknowledge the email they send. Spammers could try
to distribute this load across the bots they already use to
send out their spam and use the existing domain name for
the bots in the Occam-Header. Occam, however, identifies
senders using only the MX records to resolve domain names
for servers. As a result, Occam makes it challenging for
spammers to use generic bots for this purpose. Since many
bots are hosts that will not have MX records that resolve
to them, such bots would not be able to validate spam that
they send. The implication is that bots cannot be used for
the crucial step of validating messages with Occam, although
they can, of course, continue to send messages.

In response, spammers could compromise or purchase bots
that do have appropriate MX records, but harvesting spe-
cialized bots increases their cost and diminishes spammer
profits. Alternatively, spammers could establish a DNS do-
main structure where each bot is assigned a separate sub-
domain or entirely new domain. Spammers could create MX
records to have the domains used in the Occam-Header re-
solve to the bots spending the spam. Such an elaborate DNS
domain structure, though, makes spammers more vulnera-
ble to blacklisting and increases cost. If spammers use many
sub-domains, one per bot, the sub-domain structure would
create a telling signature that the entire domain is being
used as a source of spam. Given this signature, all of the
sub-domains could then be easily blacklisted by blacklist-
ing the entire domain. Spammers could use many domains
instead of sub-domains, but doing so greatly increases the
cost and burden of managing the bots for sending spam.
Further, the list of domains directly expose the identity of
the bots and expose them to blacklisting. Finally, allowing
bots to respond to Occam queries assumes they can accept
incoming connections on low numbered ports, a policy which
many ISPs do not allow.

Centralization. Rather than distributing the load across
many bots, spammers could instead use a centralized server
to handle the request load for validating the spam messages
they send. In this scenario, spam would have an Occam-
Header that resolves to this server. This server would then
acknowledge requests from receivers so that spam could suc-
cessfully be delivered. Spammers could still successfully de-
liver spam, but Occam forces this server to stay online as
spam is sent. It increases the complexity and cost of manag-
ing and operating a spam campaign, and the server becomes
an obvious target for blacklisting.

With Occam, spammers have to keep track of the email
targets that they distribute to each of their bots. Because
Occam requires the validating server to respond with the
“To” address used in the original email, the validating server
cannot blindly acknowledge all requests from receivers. In-
stead, spammers must precompute and distribute Message-
Ids with “To” and “From” addresses to the bots being used
for spam relay. The validation server must keep this list
so that it can successfully reply to receiver requests. And

spammers must provision the server so that it can handle
a validation request load that grows in proportion to the
number of spam messages sent. A spammer can use a bot-
net to send out millions of spam emails, but for them to be
successfully delivered the spammer will need a server that
has the resources to handle responding to millions of val-
idation requests. As a result, Occam shifts the resource
burden from the receiver to the spam sender. In other ap-
proaches, such as DKIM, the burden remains on the receiver,
which must download keys and cryptographically validate
each message. Furthermore, Occam requires spam senders
to keep their validating server available and responsive dur-
ing a spam campaign. Concentrating validation on a cen-
tralized server exposes that server to blacklisting. Once the
server is associated with spam, adding the server to a black-
list will prevent spam validation and thereby delivery. Since
spam campaigns can persist for days [1], early blacklisting
can substantially impede spam delivery.

DDoS Reflector. Finally, spammers could use the protocol
as a reflector DDoS attack. A spammer could send millions
of messages claiming to be from a targeted domain identified
in the Occam-Header. As a result, receivers will then direct
millions of validation requests to that domain. If a site has
multiple MX entries in DNS, this configuration could re-
sult in a multiplicative increase in the number of queries.
Larger sites could likely handle this load, but smaller sites
could be overwhelmed (we show in Section 4 how larger sites
can avoid the amplification problem). However, when over-
loaded, a site could just as easily start dropping requests and
rely on Occam’s backoff and retry mechanism to distribute
the load over time. More generally, though, if attackers want
to use Occam to launch DDoS attacks, it would be easier for
them to launch the attacks directly rather than use Occam.
If an attacker can send out millions of messages, they are
capable of a straightforward DDoS attack on the domain
rather than performing an indirect attack through Occam.
Indeed, they could simply send millions of messages directly
to that domain, independent of whether Occam is used.

3.2 Advantages

The Occam protocol offers a number of distinct advan-
tages over other methods that are currently in use.

Ease of administration. Occam does not require effort by
administrators to make the system work, an important con-
sideration for the thousands of small domains that may not
have the technical expertise for more complex approaches.
To use DKIM, for instance, domain administrators must cre-
ate and insert a public key into a special DNS record. They
then must configure the outgoing MTA to append signatures
to all messages using a private key on each message. Pre-
sumably, they would also want to set up the MTA to handle
incoming mail using DKIM as well. This process requires a
certain degree of proficiency that may not be available for
many small domains. The Occam protocol, however, can
be implemented directly in MTA software packages, such as
Sendmail, qmail or Microsoft Exchange Server. It can then
be rolled out into a software upgrade, a process that is more
familiar to users. We note that Occam is straightforward
to deploy for a small domain. Larger domains will need a
more involved process to implement Occam than with SPF,
which only requires a DNS entry to be inserted. We argue



that adoption of a protocol depends equally on its accep-
tance by small and large domains, and Occam makes this
process easy for the small ones.

Enhanced culpability. The Occam protocol enhances what
approaches like SPF and DKIM can accomplish. Both sys-
tems validate that a message came from a specific domain
or that a sender is authorized, but the burden of proof rests
with the receiver; again, with DKIM, the receiver must per-
form a cryptographic operation on each message. Moreover,
the approach is still open to abuse. For instance, a spammer
can just as easily set up a domain that has a perfectly valid
SPF rule that specifies any IP address can send mail for
the domain. A botnet can then send an unlimited number
of messages that all look legitimate from the standpoint of
SPF. They could alternatively find “open SPF relays” that
allow any sender to send messages. This workaround un-
dermines the values of blacklisting domains based on SPF
abuse. Occam, however, shifts more of this burden to the
spammer. It forces the actual sender of a message to be in-
volved in its authentication in an online manner. Legitimate
hosts stay online and available as a matter of course. Spam-
mers have gone to extreme lengths to avoid being detected
and pinned down to a valid online presence. Thus Occam
makes spamming more difficult to accomplish without cre-
ating an exposed and more expensive centralized infrastruc-
ture. Occam, in effect, undermines the value that botnets
provide to spammers.

Real-time validation. Occam requires that the “work”, in
our case responding to a validation query, be performed on-
line by the sender of the message. This requirement con-
trasts with protocols like Hashcash, where the “work” can
be precomputed during idle time across thousands of botnets
before any spam campaign begins. With Occam, the spam-
mer must be able to respond successfully to all the queries
that arrive in real-time. The effect of responding in a timely
fashion is that the spammer must have a valid domain name
that resolves to a server in their employ. This server must be
available to accept queries on the Occam port and be provi-
sioned well enough to respond to many queries. The Occam
protocol forces the spammer to expose this higher value tar-
get, presumably more expensive to obtain, and makes the
domain and IP used an easy target for blacklisting. If the
spammer attempts to switch to a different IP address, the
domain still remains blacklisted. Since the spammer must
own that domain, blacklisting a domain can no longer affect
the credibility of domains that are normally “hijacked,” as
is done currently.

Input for reputation systems. As mentioned above, a spam-
mer could register many domains and keep changing DNS
records so that they point to new servers able to answer
queries. However, these rapid DNS changes would create
a telling signature in their short TTL and IP churn. Ac-
cording to [9], webmail services are establishing reputations
for domains that allow them to filter spam more effectively.
These two characteristics, IP churn and short TTL, would
be clear indications that the domain was involved in sending
spam, evidence that reputation systems could use to reliably
identify spamming domains.

Anti-Phishing capability. An unexpected benefit of us-
ing Occam is that domains will immediately become aware
of when they are being phished (or, more generally, being
spoofed). Since receivers will begin querying a spoofed do-
main for non-existent messages, Occam enables domains to
discover immediately when they are being spoofed. More-
over, Occam provides a mechanism for a receiver to deter-
mine the “To” address to which a phishing email was sent.
Such information would be useful to companies that must
often deal with phishing attacks, as it allows them to flag
accounts to watch for suspicious activity or to take other
measures to contact the users that they know have been
exposed. The ability to be notified immediately of phish-
ing and spoofing would consequently be available not only
to large and well-funded companies, but any organization,
thereby reducing the effectiveness of more elaborate attacks
like spear-phishing.

Phishers could try to avoid having the original domain
know about the phishing attempt by specifying one of their
domains in the Occam-Header. However, aside from the
difficulties spammers would have in using their own servers,
the discrepancy provides a strong indication that a message
is illegitimate if the domain in the Occam-Header lies outside
of the top level domain for an organization.

Low overhead. The Occam protocol is simple to imple-
ment and straightforward to deploy. It also imposes low
overhead to operate. The overhead is proportional to the
number of messages received and sent, imposing little addi-
tional burden on both small and large sites.

3.3 Disadvantages

As with any approach, Occam has disadvantages as well,
which we discuss below. For the large majority of domains,
though, we believe the benefits of Occam outweigh these
disadvantages.

Mobile mailers. There are some legitimate reasons that
a sending server might not be able to respond to an Oc-
cam query. One is to retain the ability to send mail from a
host intermittently connected to the Internet, while allowing
another server to handle incoming mail and SMTP related
functions, like error messages. We believe this flexibility in
SMTP is abused by spammers and that it is in the best in-
terest of most servers to exert greater control over who is
allowed to send mail claiming to be from their domains.

Denying service. The Occam protocol also opens up a po-
tential denial-of-service attack against email receipt. An ad-
versary could potentially try to query for and acknowledge
email requests from a sending server in an attempt to make
them remove their logs prematurely, thereby preventing de-
livery of the email by the receiver to the original recipient.
As an example, if server A sends a message to server B, a
malicious server C could try to guess the Message-Id and the
From address and reply more quickly to server A than server
B does. Server A would acknowledge sending the message
and remove its log information about the message, causing a
subsequent validation by the real receiver, server B, to fail.

However, precisely since the Message-1d and the From ad-
dress are required information for querying a server, there
is a reduced chance such an attack would succeed since
an attacker has to guess these fields. Correspondingly, it



would benefit all MTA software to add more entropy to the
Message-Id fields. Further, most queries by the legitimate
receiver would happen in a relatively short amount of time,
limiting the window of opportunity of an attacker. Finally, a
sending server could keep the necessary information around
for some period of time after it has been successfully queried
before removing it.

4. IMPLEMENTATION

‘We have developed a prototype implementation that works
with the Sendmail MTA [8]. Given its ease of implementa-
tion, it should be straightforward to extend any MTA with
an implementation of the Occam protocol. For the sake of
brevity, we focus here on the more interesting discussion of
implementation in large domains.

For sites that handle much larger volumes of email, scal-
ing could add complexity to the implementation, but need
not. Moreover, these sites likely have support to address
scaling issues already. The Occam protocol requires only ba-
sic logging and querying functionality, operations that can
be streamlined with database servers if necessary. Over-
head due to the Occam protocol would not then be signifi-
cant for domains already sending large quantities of email.
More significantly, Occam imposes the same requirements
on spammers: large-volume spammers would have to sim-
ilarly scale their logging and querying ability, often under
the constraints of using bots. This operation is another re-
quirement that reduces their return on investment, making
spamming less profitable.

Our prototype implementation is unsuited for domains
that have dozens or hundreds of mail server. These do-
mains can approach Occam in a different manner, however.
One option would be to centralize their logging and query
operations, although doing so may be awkward for large
sites. Instead, large domains can load balance logging and
querying in a straightforward fashion. A mail server send-
ing mail can add an Occam-Header that points back to that
specific server, instead of the entire domain. Doing so dis-
tributes load naturally and associates, on the same server,
the process of sending mail and answering queries, requiring
no coordination among large, distributed mail server farms.
This solution also eliminates the amplification DDoS attack.
Each of these mail servers do not need to have multiple MX
values. On the other hand, receiving mail servers who do
not respond to Occam can refuse incoming Occam queries,
and these packets can be dropped at border gateways.

5. ESTIMATED IMPACT

An important consideration for any new protocol is the
impact it would have on the current Internet infrastructure
and the servers responsible for deploying it. The Occam
protocol does have the potential to raise bandwidth costs
and server utilization. We argue that these costs, however,
have minimal impact.

We examined the time overhead for our Occam prototype
implementation compared to similar approaches, DKIM [2]
and SPF [4]. We sent 1,000 messages from one server to
the other five times. Without any additions, Sendmail took
100.4s to transfer the messages. With SPF enabled, it took
100.03s. With DKIM, the total time was 251.2s, a significant
additional overhead. Finally, with Occam, it took 102.4s,
showing that the overhead is not burdensome.

The communication overhead of Occam is proportional to
the amount of email, particularly spam email, sent on the
Internet. Given the amount of spam sent on a daily basis,
this overhead might be substantial. To estimate the overall
communication overhead on the Internet, we can perform a
back-of-the-envelope calculation to indicate the added data
costs that the protocol would impose. If we take an upper
estimate on the number of email messages sent [6], there
were 171 billion messages delivered daily in the first quarter
of 2006, of which 71% were spam. If every one of those
email messages required three UDP packets to determine
their status, plus one MX record lookup, where we assume
the packet size is a generous 200 bytes, then 800 bytes would
be needed by Occam per email. This overhead would add
136 TB of total data into the Internet per day. Spread out
over an entire day, the load averages 1.58 GB/s, a very small
rate at Internet scales.

6. CONCLUSION

The Occam protocol provides a simple light-weight mech-
anism for authenticating e-mail messages. Its simplicity
makes it easy to understand and, as well, easy to admin-
ister. Moreover, spammers who would choose to adhere to
the protocol are forced to support and expose dedicated in-
frastructure for the duration of their campaign. Finally, as a
side-effect, the Occam protocol notifies domain owners when
their addresses are being spoofed, a useful feature for com-
bating phishing attacks. Occam is not a silver bullet for
solving the spam problem and, like most anti-spam technol-
ogy, is most effective in tandem with existing approaches
including spam filtering and blacklisting services. However,
we believe Occam’s advantages make it a valuable addition
to the repertoire of weapons in the fight against spam.

7. REFERENCES

[1] D. S. Anderson, C. Fleizach, S. Savage, and G. Voelker.
Spamscatter: Characterizing Internet Scam Hosting
Infrastructure. In 16th USENIX Security Symposium
(Security’07), Aug. 2007.

[2] domainkeys-milter, 2007.
http://sourceforge.net/projects/dk-milter/.

[3] E. Kurmanin. smf-spf Sendmail SPF milter, 2007.
http://smfs.sourceforge.net/smf-spf.html.

[4] libspf2 - SPF libary, 2007. http://www.libspf2.org/.

[5] J. Markoff. Attack of the zombie computers is a
growing threat, experts say. New York Times, Jan.
2007. http://wuw.nytimes.com/2007/01/07/
technology/O7net.html.

[6] Radicati Group. Worldwide daily email traffic climbs to
171 billion messages, spam rises to 71 percent, says
radicati group, May 2006. http:
//wwu.tekrati.com/research/News.asp?id=6933.

[7] A. Ramachandran and N. Feamster. Understanding the
network-level behavior of spammers. In Proceedings of
the ACM SIGCOMM Conference, Pisa, Italy, Sept.
2006.

[8] Sendmail Consortium. Sendmail, 2007.
http://www.sendmail.org.

[9] B. Taylor. Sender reputation in a large webmail service.
In In Proc. of the Conference on Email and Anti-Spam
(CEAS’06), 2006.



