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Abstract

Dynamic voltage and frequency scaling (DVFS) has long been used
as a technique to save power in a variety of computing domains but
typically not in communications devices. A fundamental limit that
prevents decreasing the clock frequency is the Nyquist(-Shannon)
sampling theorem, which states that the sampling rate must be
twice the signal bandwidth. Recently, researchers have leveraged
compressive sensing to demonstrate the possibility of decoding a
sparse signal below Nyquist rate. In this work, we dramatically ex-
tend the state of the art by showing how to decode non-sparse sig-
nals, in particular, OFDM systems at sub-Nyquist rates. We exploit
the aliasing that results from under-sampling and observe that there
exists well-defined structure in terms of how OFDM signals are
“folded up” under aliasing. Based on our observations, we present
Enfold, which allows existing WiFi chipsets to decode standards-
compliant WiFi frames while operating at 50% and 25% of their
rated clock rate. Our design is able to attain greater than 96% and
83% raw packet reception rates for moderate SNR while reducing
the clock rate by 2× and 4×, respectively. Moreover, our approach
can be easily applied to other communication systems based on
OFDM modulation. When evaluated on popular smartphone app
traces, Enfold reduces energy consumption by up to 34%.

Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design—Wireless Communication

General Terms

Algorithms, Design, Experimentation, Measurement, Performance
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1. INTRODUCTION
The link rate of popular wireless technologies, such as 802.11,

has increased markedly over the past two decades: 802.11ac
promises near-gigabit speeds in handset form factors. Yet only
a small fraction of the devices outfitted with such radios actually
make use of the full channel capacity, and, even if they do, only do
so sporadically. Hence many existing wireless devices frequently
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under-utilize the channel, yet reap no particular benefits for do-
ing so. In particular, neither transmission nor reception is power
proportional in typical devices, even when the channel quality is
sufficiently high to support far more energy-efficient modulations
and encodings. While devices aggressively try to move their radios
into low-power states whenever possible, studies show [13, 23] that
many common applications for both smartphones and laptops keep
radios in full-power mode a large fraction of the time.

Given the importance of energy efficiency in power-constrained
environments like battery-powered laptops, smartphones, and the
like, a number of recent research efforts have focused on bring-
ing a widely used technique for energy savings in CMOS, namely
dynamic voltage and frequency scaling (DVFS), to standards-
compliant radios. In particular, researchers have demonstrated that
it is possible to downclock a radio when channel quality is suffi-
ciently high, yet still detect [23], receive, and even transmit [13]
WiFi frames. Modern WiFi chipsets typically have a single clock
driving both RF and baseband. The potential power savings are
significant—over 40% in some cases—yet the existing systems
have limited application. Specifically, they either require modi-
fying the 802.11 standard [23], or limit communication to 1 or 2
Mbps (DSSS) encodings [13].

In this work, we demonstrate that it is feasible to success-
fully receive and decode OFDM modulation while sampling below
the Nyquist frequency. In particular, we show that a standards-
compliant 802.11a/g frame transmitted at 6 or 9 Mbps can be de-
tected, received, and decoded by a receiver running at a 50% or
even 25% clock rate given sufficient channel quality. While our im-
plementation focuses specifically on WiFi to demonstrate that we
are able to overcome the various challenges in addition to decod-
ing, such as synchronization, frequency offset and phase recovery,
our basic approach can be applied to any communications system
based upon OFDM modulation, significantly broadening the appli-
cability of downclocking when compared to the state of the art.

Technically, our approach is based on exploiting the aliasing that
is inherent in under-sampling an OFDM signal. Unlike previous
work, which assumed the signal was sparse, OFDM signals are
extremely dense and, therefore, downclocking yields significant in-
terference across subcarriers. We show, however, that the particular
structure of this interference can be used to convert the modulation
into a more complicated, but still decodable, form. In particular,
by folding the subcarriers on top of each other, we decode frames
transmitted with a form of QAM as if they were encoded with a
more dense QAM modulation.

This paper makes three main contributions:

• We explore the fundamental structure of downsampled
OFDM encodings, and demonstrate that it can be leveraged
to decode QAM-based modulations at both half and quarter
clock rates.

• We design and implement a standards-compliant WiFi re-
ceiver based on the Microsoft Sora software radio platform



that is able to inter-operate with commercial WiFi chipsets
while using downclocked reception.

• Through experimentation with our prototype, we quantify
the effectiveness of our design, and explore the limitations
of our prototype implementation.

The remainder of this paper is structured as follows. We be-
gin in Section 2 with a brief survey of related work. Section 3
describes the fundamental underpinnings of our approach, while
Section 4 surveys the practical challenges to implementing a real
downclocked WiFi receiver. We describe how our design addresses
each of these challenges in Section 5. We then introduce our imple-
mentation and the modifications needed to support Enfold on exist-
ing infrastructure in Section 6. Section 7 evaluates our approach,
both in simulation and in practice with real WiFi devices. Finally,
in Section 8 we evaluate the energy saving benefits of Enfold based
on network traces of popular smartphone apps.

2. RELATED WORK
Our work follows on the heels of several recent efforts to bring

DVFS to radios. In particular, in order to reduce power consump-
tion, researchers have applied compressive sensing or sparse re-
covery to bring the sampling rate under Nyquist. As a result, the
clock frequency and hardware complexity can be reduced substan-
tially. For example, compressive sensing has been widely used in
the field of spectrum sensing, which could potentially lower the
ADC sampling rate by orders of magnitude [19]. Recently, Has-
sanieh et al. [10] showed how to reduce the runtime of GPS syn-
chronization by exploiting the sparse nature of synchronization.

Our own previous work on the SloMo system [13] leverages
the inherent sparsity in Direct Sequence Spread Spectrum (DSSS)
modulation used by 802.11b at 1 and 2 Mbps to allow WiFi
transceivers to operate their radios at lower clock rates. The ap-
proach taken by SloMo, however, is limited to these rates and can-
not be applied to OFDM. Enfold fundamentally differs both from
SloMo and from all previous approaches we are aware of because
there is no sparsity anywhere in the system. Instead, we exploit the
fact that there exists well-defined structure within the signal spec-
trum when aliasing occurs.

3. HARNESSING ALIASING
Nyquist sampling theory dictates that to successfully receive a

signal, the receiver must sample the channel at twice the bandwidth
of that signal. When the sampling rate is below Nyquist rate, alias-
ing occurs, where the signal spectrum folds up and the transmitted
signal is no longer recoverable. Clearly, aliasing is an undesirable
effect in any communication system. Consequently, modern wire-
less transceivers are fundamentally gated by the Nyquist sampling
theory and must operate with a minimal clock frequency of Nyquist
rate. However, we observe that there exists well-defined structure
in terms of how the signal spectrum folds up under aliasing. Based
on the design of OFDM communication systems, we show how the
structure can be exploited to enable downclocked operation.

3.1 Downclocked OFDM modulation
At a high level, an OFDM communication system is defined by

the inverse FFT and FFT operations. In the context of 802.11, this
implies the following: a) data bits are modulated and coded on a
number of subcarriers and inverse FFTs are taken over these coded
values to produce the time domain signal at the transmitter; b) the
time domain signal is sampled at the receiver and FFTs are per-
formed over the data samples to recover the encoded values. To

focus on the essence of our idea, we defer details related to tim-
ing, frequency synchronization, channel estimation, etc., to later
sections, and focus for the moment entirely on modulation.

Here, we consider a single OFDM symbol and denote the data
encoded on each subcarrier as Ci, and channel impulse response for
each subcarrier as Hi, where 0 ≤ i ≤ 63 in the case of 802.11g.
Thus, the sampled signal at the receiver, when expressed in the
frequency domain, will be CiHi for subcarrier i. Correspondingly,
the 64 time domain data samples at the receiver can be written as:

Dk =
1

64

63∑

i=0

CiHie
j2πki/64 +Wk, k = 0, . . . , 63 (1)

where Wk is the channel noise. To recover the transmitted data,
FFT is performed on the 64 data samples, Dk, and the resulting
frequency response is expressed as:

Fl =

63∑

k=0

Dke
−j2πkl/64, l = 0, . . . , 63 (2)

Now let us substitute Eq. (1) to Eq. (2):

Fl =

63∑

k=0

(
1

64

63∑

i=0

CiHie
j2πki/64 +Wk)e

−j2πkl/64

=
1

64

63∑

i=0

63∑

k=0

CiHie
j2πk(i−l)/64 +Nl

= ClHl +Nl

where Nl =
∑63

k=0 Wke
−j2πkl/64 is the channel noise expressed

in the frequency domain at subcarrier l, which results in a non-zero
decoding error. Subsequently, the transmitted data is estimated as
Fl/Hl.

Now let us suppose the incoming data is sampled at a 50% clock
rate. 32 samples will be produced, i.e., D2k(k = 0, . . . , 31). Cor-
respondingly we perform a 32-point FFT operation on these data
samples to yield the following frequency response:

F̃l =

31∑

k=0

D2ke
−j2πkl/32

=

31∑

k=0

(
1

64

63∑

i=0

CiHie
j2π2ki/64 +W2k)e

−j2πkl/32

=
1

64

63∑

i=0

31∑

k=0

CiHie
j2πk(i−l)/32 + Ñl

= 0.5 ∗ (ClHl + Cl+32Hl+32) + Ñl

(3)

Notice that
∑31

k=0 CiHie
j2πk(i−l)/32 equals to 0 if (i−l)/32 is not

an integer. We refer to 0.5 in Eq. (3) as the downclocking scaling
coefficient. One way to interpret the aliasing effect given Eq. (3)
is that the frequency response for subcarrier l is the average of the
responses for subcarrier l and l + 32 (if they were sampled at full
rate), for l = 0, . . . , 31. Similarly, the frequency response for sub-
carrier l at a 25% clock rate would be the sum of the responses for
subcarrier l, l+16, l+32, and l+48 (should the full sampling rate
have been applied), scaled by the downclocking coefficient, 0.25
under 25% downclocking.

Hence, aliasing effectively transforms the original n-QAM
(quadrature amplitude modulation) system to n2-QAM at the re-
ceiver side for a 50% clock rate. For example, if BPSK (binary
phase shift keying) is used at the sender, the resulting modulation
due to aliasing would be 4-QAM. Similarly when downsampling
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Figure 1: Frequency response (constellation diagrams) on sub-

carrier 6 for two real WiFi packets under downclocking.

at 25% clock rate, n-QAM transmissions will be transformed into
n4-QAM. Figure 1 shows the constellation diagram for a subcar-
rier of two real WiFi packets when received at 50% and 25% clock
rates, respectively, which serves as a concrete example of how the
modulation scheme is transformed.

In sum, when aliasing happens the signal spectrum folds up and
superimposes on itself in a well-defined manner, thereby enabling
a systematic decoding of the compounded frequency responses.

3.2 Decoding aliasing induced modulation
We now explain how to decode the original data bits. We choose

802.11g 6-Mbps transmissions and a 50% reception clock rate as
an example to illustrate our idea with an understanding that the ap-
proach holds for other rates and downclocking options. At 6 Mbps,
a group of 48 bits are mapped into 48 complex numbers during
the modulation mapping step, where each bit is mapped to either
1 + 0j or −1 + 0j using BPSK modulation. These 48 complex
numbers are then encoded on 48 out of the 64 subcarriers. Recall
from Eq. (3) that the frequency response is the sum of ClHl and
Cl+32Hl+32 for subcarrier l at the receiver side. Given the val-
ues of Cl the frequency response Fl takes one of the four values,
1
2
(±Hl±Hl+32), depending on the bits mapped to subcarrier l and

l + 32 on the sender side (e.g., 00, 01, 10, and 11). This encoding
functions identically to 4-QAM: two bits are mapped to one of four
possible complex numbers.

Therefore, similar to how a QAM system is decoded, we employ
minimum distance decoding to recover the original bits. However,
since the modulation transformation is induced by aliasing, and the
channel response for subcarriers is random,1 the resulting 4-QAM
modulation differs from a standard one. In the standard 4-QAM
scheme, two bits are mapped to one of the four complex numbers
(also known as constellation points) equispaced around a circle.
On the other hand, with aliasing induced modulation, the four code
points could be anywhere in the constellation diagram depending
on the channel response. Their separation depends on the relation-
ship between the channel responses. In the absolute worse case
where Hl = Hl+32, two constellation points collapse into one,
which leads to at least a 25% bit error rate (BER). We observe,
however, that this devastating scenario is unlikely in practice (Sec-
tion 7.2.1).

Similarly, when a 25% clock rate is used, the original BPSK
modulation becomes 16-QAM modulation. Aliasing induced mod-
ulation can be extended to other rates (e.g., 12 Mbps and higher)
as well; the resulting modulation scheme would simply yield
more densely packed constellation points compared to the original
scheme.

1Subcarrier response is not entirely independent, but we defer a
careful study of the impact of this phenomena to future work.

4. WIFI RECEPTION
Previous work has demonstrated that common smartphone apps

would benefit greatly from dynamic voltage and frequency scaling
(DVFS) by reducing the clock frequency. The only existing down-
clocked receiver design [13], however, is limited to 802.11b. Re-
cent WiFi generations (e.g., 802.11a/g/n/ac) are all OFDM-based
communication systems. We showed in the previous section that
it is entirely possible to decode OFDM signals by exploiting the
frequency spectrum structure under aliasing. However, real com-
munication systems are much more complex than what we have
discussed so far and there are many other components that need to
be in place before a receiver is in a position to decode the actual
OFDM symbol.

The designers of WiFi obviously never anticipated it would be
used by downclocked radios, so existing approaches to any or all
of clock synchronization, frequency compensation, pilot tracking,
etc., might not function when downclocked. We start in this section
with a brief overview of the 802.11 frame structure and the typical
decoding pipeline of a standard, full clock rate WiFi receiver, and
then address the challenges imposed by downclocked operation in
the following section.

4.1 Frame structure
Two key tasks for any OFDM communication system are timing

synchronization and frequency offset compensation. To meet these
requirements, a WiFi frame is prepended by a preamble, which
serves the purpose of preparing the receiver to decode the actual
data part. The top portion of Figure 3 shows the detailed structure
of an 802.11g WiFi frame. The preamble consists of 10 identical
“short” OFDM symbols and 2 identical “long” OFDM symbols,
with durations 0.8µs and 4µs, and sequence lengths 16 and 64 (80
including the cyclic prefix), respectively. We explain below how
a receiver uses the repetitive structure of the preamble to perform
both time and frequency synchronization.

Immediately following the preamble is the physical layer (PHY)
header, which contains information such as the data encoding rate,
payload length, service field, etc. The first 24 bits of the PHY
header are encoded at 6 Mbps while the remaining 16 bits are en-
coded at the same rate as the actual data; depending on the current
channel condition, the data may be transmitted at different modu-
lation rates. In most WiFi devices, the PHY header (first 24 bits) is
added by the hardware without the driver’s intervention.

4.2 Reception pipeline
In addition to decoding, a receiver performs five important steps

to correctly recover the transmitted signal.
Timing synchronization. A WiFi receiver will continuously sam-

ple the channel to look for a preamble. The 10 short OFDM sym-
bols in the preamble help the receiver to lock onto the data stream
and define the OFDM symbol boundary. Once the symbol bound-
ary is determined, FFT can be performed on the time domain sam-
ples to obtain their corresponding frequency-domain values.

Frequency compensation. Before computing the FFT, however,
since the clock oscillator frequency is never exactly the same at
the sender and receiver, the frequency offset needs to be estimated
and compensated. Otherwise, orthogonality among subcarriers will
be compromised and data transmitted on one subcarrier would in-
terfere with another. Hence, receivers also use both the short and
long OFDM symbols in the preamble to perform frequency offset
estimation (or frequency synchronization).

Channel estimation. Once both timing and frequency are syn-
chronized, the next decoding stage estimates the wireless channel
response, i.e., channel estimation. With the estimated channel re-



sponse, the results of computing the FFT on the time domain sam-
ples can be mapped to the actual data bits transmitted.

Viterbi decoding. To compensate and correct for bit errors, the
raw decoded bits are fed into a Viterbi decoder, whose output is
de-scrambled and subsequently passed on. (Obviously, symmetric
operations are performed at the sender before transmission.)

Phase compensation. There is one additional step that is per-
formed throughout the entire data decoding process: phase com-
pensation. Since the sampling clock could drift slowly as time goes
by, FFT results would vary even when the same OFDM symbol is
transmitted repeatedly. Therefore, phase compensation is used to
correct the variation of FFT results across OFDM symbols.

Viterbi decoding, scrambling, and subsequent stages work on the
decoded data bits and are therefore entirely agnostic to the underly-
ing clock and sampling rate. The remaining stages of the pipeline—
timing synchronization, frequency compensation, channel estima-
tion, and phase compensation—operate on the time domain data
samples, and are impacted by operating at lower clock rates.

5. DOWNCLOCKING WIFI
In this section, we systematically examine the impact of down-

clocking in detail and propose a series of techniques to address
these challenges.

5.1 Timing synchronization
The purpose of timing synchronization is to enable the receiver

to first detect the presence of a valid WiFi packet and then cor-
rectly locate the boundary between adjacent OFDM symbols. Tim-
ing synchronization uses the short preamble only, i.e., the 10 repet-
itive short OFDM symbols. The IEEE 802.11 specification [11]
does not mandate any particular timing synchronization algorithm.
Although there are many timing synchronization algorithms for
OFDM, we, like many others [17, 20, 22], use the auto(cross)-
correlation approach.

The short OFDM symbol has a sequence length of 16 and ex-
hibits very good cross-correlation properties. Let us denote the
incoming time domain data samples as r(.). Then the cross-
correlation is computed as:

cros(i) =

∑15
j=0 r(i+ j)S∗(j)
∑15

j=0 |S(j)|
2

(4)

where S∗(.) is the complex conjugate of the short OFDM sequence
expressed in the time domain. If sampling at full clock rate, there
will be 16 time domain samples corresponding to one short OFDM
symbol, and S(.) has the same length. The correlation output,
cros(i), produces a peak only when the incoming signal r(.) fully
aligns with S(.), i.e., r(i + j) ≈ S(j) (the approximation is due
to the presence of noise). Otherwise, the magnitude of the correla-
tion output is much smaller compared to the peak value. Thus, the
cross-correlation peak enables accurate OFDM symbol boundary
detection (i.e., fine timing synchronization).

Due to the repetitive structure of the short preamble, a receiver
can correlate the received data samples with themselves at one short
OFDM symbol delay. Specifically, the receiver tracks of the fol-
lowing auto-correlation output:

auto(i) =
15∑

j=0

r(i+ j)r∗(i+ j + 16). (5)

The rational is that, when a valid WiFi frame is present, r(i) =
r(i + 16) as 16 samples corresponds to one short OFDM symbol
duration. When the auto-correlation index i is within the range of
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Figure 2: Correlation responses at variout clock rates for raw

data samples of a real WiFi packet captured by USRP.

the short preamble, the output from Eq. (5) spikes and stays high.
This auto-correlation result produces a plateau over time, which
is known as coarse timing synchronization. Clearly, the cross-
correlation peak defined in Eq. (4) must happen within the plateau
to be meaningful. Thus, by combining the outputs of both results,
we can safely detect the presence of a WiFi frame and correctly
identify symbol boundaries.

Downclocking will reduce the number of time domain sam-
ples by half (or a quarter) depending on the clock rate. First we
note that, regardless of the sampling rate, Eq. (5) will hold when
r(i) = (i+ 8) or r(i) = (i+ 4) if sampling at 50% or 25% clock
rates, although the noise floor (when the auto-correlation is failing
within the short preamble) approaches the plateau. Nevertheless,
the plateau could still have separation and, perhaps more impor-
tantly, its width roughly equals the duration of the short preamble,
which is invariant among different clock rates (see Figure 2(a)).

Unfortunately for cross-correlation, the downsampled sub-
sequences no longer exhibit convenient correlation properties:
there could be multiple comparable peaks within one short OFDM
symbol. So we turn to the long OFDM symbols and evaluate its
cross-correlation properties. It turns out that the long preamble
sequence (consisting of 128 samples across two symbols) also ex-
hibits excellent cross-correlation properties, in part because its time
domain samples are generated similarly to the short preamble.

Figure 2(b) illustrates the effect of using the 128 sample long
OFDM symbols for timing synchronization on an actual WiFi
packet. The cross-correlation output produces three peaks. The
middle peak corresponds to full alignment, while the first corre-
sponds to a partial alignment with the first OFDM symbol and the



third corresponds to a partial alignment with the second OFDM
symbol. These correlation peaks make it straightforward to iden-
tify the starting sample index for the remaining OFDM symbols.
We also note that the peaks for different clock rates are superim-
posed on each other, confirming that the approach works for all
clock rates. In Section 7.1, we show in practice that timing syn-
chronization works quite well even for a 25% clock rate at low
SNR values.

5.2 Frequency compensation
Standard frequency compensation algorithms explore the fol-

lowing relationship between two transmitted back-to-back identical
OFDM symbols. Let r(1), . . . , r(n) and r(n+1), . . . , r(2n) cor-
respond to the time domain samples at the receiver for two identical
OFDM symbols, respectively. Then the following property always
holds for any 1 ≤ i ≤ n:

r(n+ i) = ej2π∆fcT r(i), (6)

where ∆fc is the frequency offset and T is the OFDM symbol du-
ration. Hence the frequency offset is estimated as the ratio between
r(n+ i) and r(i), taking the average for all possible values of i.

With downclocking, the relationship described by Eq. (6) still
holds for data samples spaced by one symbol duration, although
the average is now taken over fewer samples. Since downclocking
will only use half or a quarter of the samples compared to the full
clock rate, the frequency offset estimation accuracy is reduced by
3 dB and 6 dB, respectively. As discussed in the previous section,
the preamble consists of 10 repetitive short OFDM symbols and
2 repetitive long OFDM symbols. When downclocking, we use
both for frequency offset estimation (i.e., coarse and fine frequency
synchronization), taking the average over fewer data samples.

As with timing synchronization, in Section 7.1 we show that our
frequency compensation technique also works well in practice.

5.3 Channel estimation
Once the timing and frequency synchronization is achieved, the

next step is to understand the channel response. In a WiFi frame,
the long preamble supports channel estimation because the data bits
encoded on each subcarrier are known a priori. Let us assume that
the FFT results for the long OFDM symbol are F0, F1, . . . , F63;
the wireless channel response is estimated as

Hi = Fi/Ci, 0 ≤ i ≤ 63 (7)

where Hi is the channel response for subcarrier i and Ci is the
data encoded on subcarrier i (known to both sender and receiver).
However, when downclocking, the channel response will fold up
and estimating individual subcarrier channel responses is no longer
feasible. While there are approaches in the literature that determine
channel responses under such conditions [15, 21] using compres-
sive sensing, they make certain assumptions regarding the channel.
Unfortunately, these assumptions are not necessarily true in gen-
eral for the WiFi environment. Hence, we develop an alternative
method to find the per-subcarrier channel response (coefficients).

The aliasing effect, when translated into the frequency domain,
is equivalent to summing the channel coefficients at indices spaced
by 32 or 16, depending on downclocking rate. More specifically,
when sampling at full clock rate, FFT is taken over 64 time domain
samples and produces 64 subcarrier responses, which are used to
estimate channel response as defined by Eq. (7). Now when sam-
pled at 50(25)% clock rate, we obtain 32(16) equations after per-
forming FFT, where each equation consists of 2(4) unknowns (see
Eq. (3)). We leverage the fact that the WiFi channel response re-
mains invariant over the course of a single packet. Therefore, if

S S S S S S S S S S L L Header Data CRC

Preamble

(a) Original

S S S S S S S S S S L L Header TS ... TS Len Precoded Data CRC

(b) Precoded

Figure 3: WiFi packet structure for both original and precoded

versions. Note that our modifications are restricted to the data

payload only (gray area).

we transmit multiple known OFDM symbols (e.g., training sym-
bols), we could potentially recover all the unknowns by collecting
equations from multiple symbols. One caveat is that all the training
OFDM symbols must be phase compensated.

5.4 Phase compensation
To compensate for any possible phase shift across OFDM sym-

bols, the WiFi standard inserts known data in certain subcarriers
(pilots) for every OFDM symbol. By comparing the pilot subcar-
rier responses between symbols, the phase shift is estimated and the
data subcarrier values are compensated accordingly. Unfortunately,
due to the particular set of subcarriers selected to be pilots, when
downclocking the pilot subcarriers fold on top of data subcarriers
(which contain unknown data). Hence, downclocking cannot use
the pilots to compensate the phase difference. We could re-define
the pilot subcarriers such that their indices are spaced by 16 so that
one pilot subcarrier will always add up with another pilot under
downsampling rate of 50% or 25%. However, doing so would vio-
late our goal of being entirely 802.11 standard compliant.

5.5 Data precoding
Rather than change the WiFi frame structure or how the subcar-

riers are mapped, we elect to transmit additional symbols in the
payload of the frame. At a high level, we re-encode the original
data bits such that: 1) additional channel training symbols are in-
troduced; 2) pilot structure is restored. It is non-trivial to realize
both (1) and (2) for a number of reasons, however.

5.5.1 From bits to subcarriers

Up to now, our discussion has primarily centered around coded
values on subcarriers. However, there are multiple stages such as
scrambling, convolutional encoding, interleaving, and subcarrier
mapping sitting between raw data bits and the values encoded on
the subcarriers. In particular, the raw data bits are XOR-ed first
with scrambler bits, which then pass through a convolutional en-
coder. The output of the convolutional encoder not only depends
on the current bit but also the past bit history, where the history
length depends on the size of the convolutional encoder register. In
the context of 6-Mbps WiFi, every 24 scrambled input bits gener-
ate a block of 48 bits, i.e., input bit k will produce output bits 2k
and 2k + 1, where 0 ≤ k ≤ 23. These 48 bits, after interleaving,
modulation mapping and subcarrier assignments, generate a single
OFDM symbol. In addition, there is a fixed one-to-one correspon-
dence between the 48 bits and the 48 (out of 64) subcarriers. For
example, bit 16 maps to subcarrier 39: the coded values on subcar-
rier 39 will be 1 + 0j(−1 + 0j) if bit 16 is 1(0).

Conversely, if we want to set the coded value on subcarrier 39
to be 1 + 0j (i.e., for use as a pilot), we need to ensure that bit
16 is 1. Since the convolutional output bit is produced by taking
XOR operations among the current input bit and some past input
bits, there always exists some input bit value (i.e., could be 0 or
1) such that the output bit has the desired value. Therefore, we try



both values for input bit 8 and check which one produces a value 1
on output bit 16.

5.5.2 Pilot restoration

For 802.11g, the four pilots are inserted at the following sub-
carriers: 7, 21, 43 and 57. Under downclocking, these pilots will
fold up with various data subcarriers, which we coin pilot images.
For example, the pilot-image for subcarrier 7 is subcarrier 39 under
50% sampling rate. To restore these pilots with downclocking, the
pilot-images have to be encoded with known values. To simplify
our design, we set the data encoded on a pilot-image subcarrier to
be the same as its corresponding pilot. To enforce the same data en-
coded on both pilot and pilot-image, we modify the input bit stream
to the convolutional encoder in the following way.

Let us denote the original raw input data bits (excluding the ad-
ditional training symbols) as b0, b1, . . . , bn and the scrambler se-
quence output as x0, x1, x2, . . . . At 6 Mbps, each group of 48 con-
volutional encoder output bits is mapped to a single OFDM sym-
bol (48 out of 64 subcarriers). We run the convolutional encoder as
normal while the input bits are coming through. For each incoming
data bit bi, it first gets scrambled with some scrambler output xj .
The scrambled bit is then fed into the convolutional encoder and
two output bits are generated. Whenever we are about to produce
an output bit that is going to be mapped onto a pilot-image subcar-
rier, we “pause” the input bit stream to the convolutional encoder
and instead insert a new bit c such that the value encoded on the
pilot-image subcarrier is the same as the corresponding pilot value.

For example, if output bit 16 is about to be produced (which will
be mapped to subcarrier 39), we check the current value of pilot
subcarrier 7. If subcarrier 7 has value 1 + 0j, we need to ensure
that output bit 16 is 1, and 0 otherwise. The newly inserted bit
c is selected such that bit 16 yields the desired value. The two
convolutional encoder output bits (generated by the same input bit)
are never mapped onto pilot-image subcarriers at the same time,
thus there always exists a bit c such that the pilot-image subcarrier
possesses the same value as its respective pilot. We update the
convolutional encoder with bit c.

Next, given the desired input bit c, we then XOR it with the
current scrambler bit, say xk, to produce the raw data bit c̃. After-
wards, xk is discarded and the next raw data bit bi is scrambled with
xk+1 to produce the new input bit for the convolutional encoder,
which resumes normal operation. Correspondingly, the precoded
data will be: . . . , bi−1, c̃, bi, . . . . This process is repeated until all
input bits are exhausted and c̃ is inserted for every pilot-image sub-
carrier encountered. Since the positions of the convolutional output
bits that are mapped to pilot-images are fixed, the bit indices for in-
serted bits c̃ are known as well. Hence, the receiver can simply
discard the inserted pilot bits c̃ to recover the original data.

5.5.3 Training symbols

We describe how we generate the additional training symbols
with reference to 50% clock rate; the same strategy applies for a
25% clock rate. With 50% downclocking, the FFT is performed
over 32 data samples for one OFDM symbol. Let us denote the
data encoded on subcarrier i as Ci at the sender side and the chan-
nel response for subcarrier i as Hi (0 ≤ i ≤ 63); the frequency
responses after FFT can be written as:

F̃j =
Hj

2
Cj +

Hj+32

2
Cj+32, 0 ≤ j ≤ 31.

To recover the channel coefficients Hjs, we need at least two
such equations and thus two OFDM training symbols. Further-
more, the two equations must be independent from each other, i.e.,

(Cj , Cj+32) from symbol 1 and (Cj , Cj+32) from symbol 2 must
form a full rank 2× 2 matrix.

We first generate a random binary string of 48 bits (sufficient for
two OFDM symbols) and precode these bits so that the pilots are
restored. We then compute the rank of the resulting matrix (e.g.,
[Cj , Cj+32]

S1 , [Cj , Cj+32]
S2 ) for each subcarrier, where Si is the

ith OFDM symbol. If all the matrices have a rank 2, we use S1 and
S2 as the training symbols. If not, we repeat until they do. This
offline process only needs to be executed once and the resulting
training symbols are used for every precoded packet.

5.6 Additional considerations
So far we have covered the main components in enabling down-

clocked OFDM frame reception. Here, we mention a few addi-
tional details that are important for a standards-compliant design.

Transmission. While our approach allows downclocked recep-
tion of OFDM symbols, we cannot transmit OFDM symbols while
downclocked. There are two options. First, some WiFi chipsets
(e.g., MAXIM 2831 [13]) are able to switch their clocks within 9 µs
(i.e., less than SIFS), which would allow the WiFi chipset to spend
most of the time in downclocked mode and only switch back to full
clock rate for transmission. Alternatively, we could transmit using
802.11b encodings while remaining downclocked as proposed by
Lu et. al. [13]. We experimentally verified that a WiFi device will
accept 802.11b (DSSS) frames, e.g., layer-2 ACKs, when sending
802.11g (OFDM) frames. We used a commercial WiFi NIC (In-
tel 6200) to send OFDM frames to our prototype while the latter
replies with DSSS frames. Both nodes are able to communicate
with each other without any problem.

Scrambler Seed. Our design assumes that the scrambling se-
quence is known, which can be derived deterministically from the
scrambler seed. Commercial NICs often use an internal LFSR to
generate the scrambler seeds. If the LFSR design and its initial seed
are exposed, we could potentially determine the current scrambler
seed at any moment. Unfortunately, we are unable to find a spe-
cific NIC that currently does so. The closest that we have found
is the Atheros 93xx series chipset, where the scrambler seed can
be temporarily disabled by configuring the MAC_PCU_DIAG_SW

register. When scrambling is disabled, we could implement a soft
scrambler in the driver to avoid long runs of 1s and 0s. We believe
there is no reason the NIC could not expose either the scrambler
seed or the LFSR directly to the driver.

Extension to 802.11n/ac. Although our discussion focuses on
802.11g, our approach is generic to other OFDM communication
systems. The newer WiFi specs such as .11n and .11ac are based on
OFDM as well. A direct way of applying our solution to .11n/ac is
to configure these systems to operate in Single-Input-Single-Output
(SISO) mode [8], which is similar to the setup of .11g we described
here. In fact, 802.11n/ac include a channel sounding process to
estimate channel response and could apply channel precoding for
transmitted frames, both leading to simplified downclocked decod-
ing at the receiver and better performance. We leave combining
MIMO and downclocking for future study.

Added Complexity. Both Enfold transmitters and receivers have
additional tasks to perform when compared to regular nodes. How-
ever, most of these tasks employ standard communication algo-
rithms such as minimum distance decoding, correlation and etc.
Therefore, the additional computation power incurred is negligi-
ble compared to the communication cost. Although downclocking
does convert the modulation scheme into a denser one, the power
required to decode does not depend significantly on constellation
density in existing chipsets [8].



6. IMPLEMENTATION
We implement Enfold on the Microsoft Sora software defined

radio platform [20]. The modifications are standards compatible
and do not require any sender hardware changes.

6.1 Sender
Since Sora uses a fixed scrambler sequence for all packets, i.e., a

constant scrambler seed, we take advantage of this fixed sequence
to precode data before it is transmitted by the NIC. Depending on
the downclocked clock rate at the receiver (50% or 25%), we add 2
or 8 channel training symbols as part of the encoded data payload.2

The pilot restoration logic described in Section 5.5.2 consists of
about 300 LoC.

Since our modifications are restricted to the data portion only, the
NIC generates a standard physical layer packet header and CRC. As
a result, the OFDM symbols corresponding to the header and CRC
cannot be phase compensated by a downclocked device. Therefore,
on the sender side we also include the original CRC (computed
based on the uncoded data) as part of the precoded data. To ensure
that the precoded data is an integral number of OFDM symbols—so
that the entire coded data portion can be phase compensated—we
add trailing zero bits at the end. As a result, we also include an
additional OFDM symbol to encode the length of original data so
that the receiver knows when to stop decoding.

Figure 3 (bottom half) shows the structure of a precoded WiFi
packet. At a 50% downclock rate, the new pilots are subcarriers 7
and 21, and the pilot-image subcarriers 39 and 53 are used to code
pilot values. Similarly for 25% downclocking, the new pilots are 7
and 11, and the pilot-image subcarriers are 23, 39, 55, 11 and 59.
As a result, the effective throughput for 50% and 25% downclock-
ing are 91.6% and 79.1% of the original data rate (6 Mbps). In our
experiments, two pilot subcarriers are sufficient to bound the phase
estimation error within 0.12 radians (6.8 degrees).

Any non-Enfold node can receive and decode a Enfold-precoded
WiFi packet; the data content would simply not be recognizable,
similar to encrypted data.

6.2 Receiver
Due to hardware limitations with our Sora receiver, we cannot

change the clock rate of the hardware. Instead, we emulate down-
clocking by decimating every other raw channel sample at for a
50% rate, and three of every four samples for a 25% rate. We
modify and reimplement the timing and frequency synchronization
modules to accommodate downclocked rates. We postpone decod-
ing the physical layer header (one OFDM symbol), which contains
the packet length and payload modulation scheme, until after the
channel has been estimated.3

As the header symbol is not phase compensated, we exploit the
fact that there are limited possibilities (4 and 16 possibilities for
50% and 25% downclocking, respectively) that a data subcarrier
could be. Therefore, we use a data subcarrier as the pilot by enu-
merating all 4(16) possibilities (obtained from the training sym-
bols) when decoding the header symbol. The header symbol con-
tains sufficient information (e.g., parity and modulation) to enable
Enfold to determine the correct output among all possibilities.

Once the header is decoded, the number of data OFDM symbols
is known. For each incoming OFDM symbol, we first apply phase
compensation and then use a minimum distance decoder to deter-

2We tried other numbers of channel training symbols as well; 2 and
8 yield a good balance between overhead and estimation accuracy.
3Since our implementation currently assumes that the data payload
is fixed at 6 Mbps, we do not rely on the packet header to determine
the payload modulation scheme.

mine the data bits. These data bits go to the Viterbi decoding chain
and are subsequently descrambled. Once all symbols are decoded,
we start to decode the precoded data payload by essentially dis-
carding the inserted pilot bits. Finally, we compare the computed
CRC with the CRC included as part of the precoded data payload;
we ignore the default MAC layer CRC.

One subtlety not discussed earlier is the service field, which con-
sists of 16 bits with the first 8 bits set to zero so that the receiver can
determine the scrambler seed. In our implementation, we include
the service field as part of the training symbol since the receiver
knows the scrambler seed. In the general case where the scrambler
seed is not known at the receiver, we can place a known bit pattern
on the 8 reserved bits and use the same approach for decoding the
service field as the header symbol.

6.3 Network interactions
In this section, we discuss how Enfold nodes interact with Ac-

cess Point (AP) and share the network with regular nodes, in par-
ticular, the modifications needed to support Enfold in existing de-
ployed infrastructure.

Precoding at AP. Given the current pilot subcarrier placement, an
Enfold-capable AP has to precode the data to restore pilot structure
at downclocked receivers. To remain 802.11-standard compliant,
we implement the precoding step in Sora’s link-adaptation layer,
leaving the lower MAC/PHY layer untouched. To verify that our
implementation is truly standard compliant, we transmit a stream
of UDP packets with our prototype Enfold AP and use Wireshark
on a Macbook Pro to capture (in promiscuous mode) the precoded
WiFi packets and apply a corresponding decoding process on the
dumped packet trace. All packets sent by the Enfold transmitter are
correctly decoded, thus confirming the standard (or at least Apple)
compatibility of Enfold.

Beacon and Scanning. Although Enfold-precoded packets can
be correctly received by non-Enfold nodes, they would need to ap-
ply the corresponding decoding process to recover the original data.
Therefore, broadcast packets, such as beacon frames, are unlikely
to be understood by both Enfold and non-Enfold nodes simultane-
ously. Hence, to support Enfold-enabled nodes, an AP would need
to broadcast two types of beacon frames, original and precoded.
To reduce the network overhead due to two beacon frames, the AP
could broadcast Enfold beacons at larger time interval (e.g., every
a few hundred milliseconds). The reduced beacon time is unlikely
to impact the scanning and association process, given these hap-
pen on the order of several seconds. For traffic indication purposes
during PSM, since Enfold nodes choose to operate in downclocked
mode, it is very unlikely that the incoming network traffic is fre-
quent. Waking up on a larger interval would not impact app-level
performance such as user perceived response time.

Managing Downclocked Mode. Depending on the current net-
work traffic and SNR conditions, an Enfold node may choose to
switch from downclocked to normal mode and vice versa. Since
the AP must precode data for downclocked operation, it needs to
be notified of such mode transitions. We envision two ways of re-
alizing this process. Clearly, one could design customized packets
and protocol for such a purpose. Alternatively, realizing that most
deployed WiFi networks have good SNR [6], lower data rates such
as 6/9 Mbps may never be picked by the rate selection algorithm
of non-Enfold nodes.. Thus, and AP could dedicate 6 and 9 Mbps
for downclocked operation, and the AP would by default send pre-
coded frame for 6 and 9 Mbps. As a consequence, Enfold nodes
could leverage the existing re-association request frame to inform
the AP that it only supports 6/9 Mbps and enter downclocked mode.
An obvious concern is the potential loss of energy savings by not



Clock Rate Pd(9 dB) Pd(14 dB) Pd(24 dB) Pd(34 dB)

50% 0.993 1.0 1.0 1.0
25% 0.958 1.0 1.0 1.0

Table 1: Probability of detection Pd with different SNRs at

50% and 25% downclock rates.

using higher data rates while in downclocked mode. However, as
demonstrated in Section 8, the majority of the energy saving bene-
fits can be attained with 6 and 9 Mbps for most smartphone apps.

7. EVALUATION
In this section we evaluate downclocked OFDM reception in

practice. We first evaluate specific steps of frame decoding on raw
channel samples captured on the GNU Radio Universal Software
Radio Peripheral (USRP) [7], which allows us to control SNR over
a wider range. We then evaluate the Enfold prototype system im-
plementation on Sora [20], a fully programmable software defined
radio platform.

7.1 Microbenchmark results
For our microbenchmarks we use the GNU Radio USRP plat-

form to capture raw channel samples of 802.11g packets sent by a
Sora node. We use the USRP board for packet capture because, un-
like Sora, it has a hardware automatic gain control (AGC) on-board
whose gain is adjustable. By varying the hardware AGC gain from
0 to 50, we can experimentally sweep the SRN range from 9 dB to
35 dB (a gain above 50 leads to saturation in our experiments).

For each gain setting we capture 10 seconds of raw channel sam-
ples, containing approximately 3000 WiFi packets. With the raw
channel samples, we can emulate the effect of downclocking on
various aspects of frame reception on the same data at all clock
rates. At the full 100% clock rate, we use all the samples. At 50%,
we use every other sample, and at 25% we use every fourth sample.
In an actual implementation, unlike reduced bandwidth operations
where the number of digital samples remains unchanged [5], the
baseband logic needs to be similarly adjusted to take a correspond-
ingly lower number of samples.

7.1.1 Packet detection

First, we show that packet detection is not a constraint for OFDM
decoding at downclocked rates. We employ a simple energy-based
detector which tracks the average energy for a fixed duration and
compares the output with a pre-defined threshold. Table 1 shows
the detection probability for a range of SNR values. We treat the
detection results at the normal clock rate of 100% as ground truth.
If using the detection algorithm at full clock rate signals a packet,
but using it at a lower clock rate does not, then we count the detec-
tion as having failed at the lower clock rate.

When SNR is extremely poor (9 dB), Enfold operating at 50%
and 25% clock rates can still detect over 99% and 95% of the pack-
ets, respectively. For SNRs of 14 dB (which is still very poor) and
above, both clock rates yield a 100% detection rate. These results
indicate that packet detection is invariant with respect to clock rate
for much of the SNR range, and certainly for SNR regimes ex-
pected of 802.11 communication.4 Conversely, we find only 10–20
falsely detected packets (out of the roughly 3000 packets captured
in 10 seconds) when downclocked.

4To place these values in context, many vendors (e.g., AT&T [1],
Blackberry [2] and Cisco [3]) recommend coverage with a mini-
mum of 25 dB when planning WiFi deployments.
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Figure 4: Timing synchronization offset error with downclock-

ing at 50% and 25%.

7.1.2 Timing synchronization

Next, we confirm that we can make timing synchronization also
perform well for downclocked OFDM decoding. Recall from
Section 5.1 that, since the sub-sampled short preamble sequence
no longer exhibits excellent cross-correlation properties at down-
clocked rates, we instead perform cross-correlation on the long
preamble sequence. Figure 4 shows the timing estimation error
(measured in number of samples) for both 50% and 25% down-
clock rates relative to the timing estimation error at the full 100%
clock rate. In effect, it measures the additional error of downclock-
ing relative to the baseline error at 100%. Error bars show the stan-
dard deviation among the packets captured at each SNR.

When the SNR is extremely poor (9 dB), the synchronization
error is substantial for downclocking at 25%. However, the syn-
chronization error quickly converges to zero at 13 dB and above,
and certainly for the expected SNR operating regime for 802.11.
These results confirm our initial hypothesis that auto-correlation,
which looks for repetitively transmitted symbols, will likely per-
form poorly when the noise level is very high. At such high noise
levels, interference adds together rather than canceling out as in
the cross-correlation case. Since we rely on the output of auto-
correlation to begin the search for cross-correlation peak, at 9 dB
SNR, the 25% auto-correlation output already differs significantly
from the 100% output. However, even with just slightly lower noise
levels (at 13 dB in our case), our method can accurately determine
symbol boundaries.

7.1.3 Frequency offset estimation

In Section 5.2, we showed theoretically that frequency offset es-
timation is oblivious to clock rate. As a final microbenchmark,
we confirm that it is also not a constraint for downclocked OFDM
decoding in practice. As above, we consider the frequency offset
estimation obtained from decoding at the 100% clock rate as the
ground truth for comparing estimations performed at the 50% and
25% clock rates. For the SNR range we could measure across (9–
35dB), the estimation error at 50% and 25% clock rates are within
2.2% and 6.8% of the 100% rates on average. Previous work [12]
has characterized that a frequency estimation error of 10% leads to
≤ 2dB reduction in SNR, which is almost negligible for the SNR
regime we consider.

7.2 Prototype system evaluation
Our second set of experiments evaluates the Enfold implementa-

tion on the Sora platform at 6 Mbps data rates.5 In particular, we

59 Mbps shares the same BPSK modulation scheme per-subcarrier
as 6 Mbps while the coding rate changes to 3/4.
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explore the decoding performance of individual subcarriers, the de-
coding performance of entire packets across a range of SNR values,
and the ability to trade off decoding performance with raw data rate
at very fine subcarrier granularities. Note that, since the Sora radio
board does not have hardware AGC, in these experiments we use
their provided HWVeri tool [4] to calibrate the SNR of two Enfold
nodes at the start of each experiment.

7.2.1 Aliasing induced modulation

As discussed in Section 3.2, aliasing induced modulation intro-
duces additional constellation points that could lead to decoding
errors. Our first experiment with the prototype explores the effect
of aliasing on the constellations in practice. Lacking a precise met-
ric to quantify this impact, we calculate what we term the blocking
distance in constellations.

Each subcarrier at the original 100% clock rate will have a BPSK
constellation diagram. At a 50% clock rate, two subcarriers will
be aliased into a single 4-QAM constellation (twice the number
of points). And at 25%, four subcarriers will be aliased into a
single 16-QAM constellation (eight times the number of points).
Since decoding performance fundamentally depends upon a dis-
tance threshold in the constellation, we calculate a minimum dis-
tance among constellations to capture the effect of aliasing. If
aliasing multiple subcarriers introduces many bit errors, the con-
stellation points would have poor separation as represented by a
too small minimum distance.

As an example, consider the set of four subcarriers {10, 26, 42,
58} which would be aliased together when downclocking at 25%.
At a 100% clock rate, these subcarriers would each have their own
BPSK constellation diagram. At 50%, though, there will be just
two 4-QAM constellations for the subcarrier pairs {10, 42} and
{26, 58}, and at 25% there will be just one 16-QAM constellation
for all four.

For each packet, we calculate the minimal of minimum dis-
tances for all constellation diagrams for a particular clock setting.
At 100%, we calculate the minimum distance among constellation
points for each subcarrier and record the minimal among the four
subcarriers; at 50% it is the minimal among two constellations, and
at 25% it is the minimum of the one resulting constellation. For
each clock rate, we term this minimal distance the blocking dis-
tance. In an ideal decoding situation for downclocking, the block-
ing distance at 50% would be exactly half the blocking distance at
100%, and similarly the blocking distance at 25% would be one
quarter of 100%.

Figure 5 shows the CDF of the blocking distance for constella-
tion diagrams for the 50% and 25% clock rates normalized to the
blocking distance at 100%. Each curve is a distribution over 2000

packets received by our Sora implementation. We focus on just the
four subcarriers {10, 26, 42, 58}, which are representative of the
other subcarrier sets.6 The distribution of blocking distances at the
50% clock rate is close to ideal: nearly 90% of the packets have a
blocking distance that is half of the 100% distance. Performance at
25%, though, is notably worse: the blocking distances range from
0.03 to 0.25, with a median of 0.16; only 20% of the packets have
a blocking distance close to a quarter of the 100% distance. This
large variation at a 25% clock rate is not surprising. With four sub-
carrier responses added together, there will be more randomness in
the aliasing induced constellation diagram.

Translating these blocking distances into SNR for per-subcarrier
signal quality degradation, the penalty due to downclocking is 3 dB
and 7.9 dB for 50% and 25% on average, respectively. In our next
experiment we show how this degradation impacts overall packet
reception, which of course requires all subcarriers to be success-
fully decoded.

7.2.2 Packet reception rate vs SNR

With a sense of decoding performance per-subcarrier at down-
clocked rates, we now measure the overall packet reception ratio
(PRR) of our prototype implementation under a range of SNR con-
ditions. We measure packet decoding in two rounds of different
packet sizes, one with small packets (100 bytes) and another with
large packets (1000 bytes). Each round of packet sizes consists of
50 runs, where each run has 100 back-to-back packet transmissions
and attempted decodings. We disable retransmissions. We transmit
the two rounds back-to-back at a 100% clock rate, and then repeat
the transmissions at 50% downclocked decoding rates and again at
25%. Altogether, the experiment transmits 30,000 packets.

We also vary the distance between the two Enfold nodes to in-
duce different SNRs. Unfortunately, as noted above, due to the lack
of hardware AGC on the Sora platform our SNR dynamic range is
rather limited (20–30 dB as reported by Sora). As discussed above,
this SNR range is at the very low end for recommended 802.11
operation, with 25 dB the recommended minimum when planning
coverage. We could not receive any packet below 20 dB, i.e., it
represents a sharp cut off in terms of PRR.

Figure 6 shows the results of these experiments. When SNR is at
least 25 dB (the recommended minimum SNR for enterprise WiFi
networks [1, 2, 3]), decoding at both 100% and 50% clock rates
achieve ≥ 95% PRR for both packet sizes. For these operating
regimes, the performance difference between the two clock rates is
negligible. Below the 25 dB threshold, downclocking at 50% has a
67–75% PRR. Although lower than decoding at the full 100% rate,
it is quite reasonable at such a low SNR.

For the challenging 25% clock rate, when SNR is 30 dB (5 dB
above the recommended minimum), Enfold achieved 83% and 52%
PRR for small and large packet sizes, respectively. For small pack-
ets, such a PRR translates to reasonable application performance
with retransmissions, but the PRR for large packets will have a
noticeable impact. At the edge SNR (25 dB), downclocking at
25% had poor performance, achieving 46% (small) and 20% (large)
PRRs, respectively. Below 25 dB, downclocking at 25% is unus-
able for both packet sizes.

In sum, we find these results very promising. Note that the
highest SNR we could achieve with the Sora platform was 30 dB,
which is below typical operating conditions. A recent measure-
ment study [6] of deployed university WiFi networks indicates that

6Standard 802.11 uses only 52 subcarriers (including 4 pilot sub-
carriers) out of 64. The unused 12 subcarriers are set to zero, which
makes downclocked decoding involving these subcarriers easier. In
this experiment, we avoid these 12 subcarriers in the set we chose.



20 22 24 26 28 30

0
2
0

4
0

6
0

8
0

1
0
0

SNR (dB)

P
a
c
k
e
t 
R

e
c
e
p
ti
o
n
 R

a
te

 (
%

)

100%

50%

25%

(a) Small packet (100 bytes)

20 22 24 26 28 30

0
2
0

4
0

6
0

8
0

1
0
0

SNR (dB)

P
a
c
k
e
t 
R

e
c
e
p
ti
o
n
 R

a
te

 (
%

)

100%

50%

25%

(b) Large packet (1000 bytes)

Figure 6: Packet reception rate as a function of SNR.

only 3% of WiFi frames experience retransmission (PRR is roughly
97%). According to a WiFi hotspot study conducted by Pang et

al. [18], a near 100% PRR corresponds to an SNR regime around
40 dB or more. On the other hand, when SNR goes below 20 dB,
nodes struggle to even obtain IP addresses after association (9 out
of 181 successful DHCP attempts) [9]. Although we could not
measure at higher SNRs, our results show that downclocking at
50% already achieves excellent results even at low SNRs, nearly
matching the performance of decoding at 100% at 25 dB. When
downclocking at 25%, the situation is more complex. Our results
up to 30 dB show that PRR is increasingly close to maximum per-
formance for small packets. However, there is still substantial head-
room for large packets and we cannot yet estimate at what SNR
both curves will approach 100%. Thus, for poor or moderate SNRs
with 25% downclocking, it remains an open question as to whether
and when it is worthwhile trading off PRR for energy savings.

7.2.3 Impact of wireless environment

As measured in Section 7.2.1, the performance of aliasing in-
duced modulation entirely depends on the surrounding wireless en-
vironment, reflected in the blocking distance. In the extreme case
where the channel response is flat for the entire spectrum, given
how bits are mapped under BPSK, multiple constellation points
would collapse onto each other under aliasing. In our previous ex-
periments, all nodes were in the same room (a seven-person office).
In this experiment, we vary locations to evaluate the performance
of downclocking under a much wider range of wireless conditions.

We repeat the experiments in Section 7.2.2 at four additional lo-
cations in the same building but with significantly different propa-
gation environments. These locations are a meeting room (smaller
than the office), a long hallway, a floor lobby of mixed open space
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Figure 7: Raw packet reception ratio for different clock rates

at five different locations.

and furniture, and a lab (much larger than the office). In all loca-
tions we use a fixed SNR of 30 dB.

Figure 7 shows the packet reception ratios for all locations and
both packet sizes. Error bars show the standard deviation across 50
runs. For both the 100% and 50% clock rates, the PRRs are indis-
tinguishable for all locations regardless of the packet size. For the
25% downclock rate, though, the PRR does vary across locations.
The PRR varies moderately for small packets (78% to 85%), but
has a larger variation for larger packets (48% to 63%). These re-
sults confirm that the downclocking performance Enfold achieves
is stable across different wireless environments, and not tied the
opportune conditions of just one environment.

7.2.4 Trading throughput for PRR

In the last set of experiments, we explore one of the design free-
doms offered by Enfold. Recall from Section 5.3 that we restore the
pilot subcarriers by placing known values on selected subcarriers.
We explore this design parameter further by putting known values
on other data subcarriers. The benefits are twofold: these known
values (bits) improve the performance of the Viterbi decoder and
they help to reduce the size of constellation diagram. For instance,
for the subcarrier set from the experiment in Section 7.2.1, if we
put a known data value on subcarrier 10, the resulting constellation
diagram under 25% clock rate will degenerate to 8-QAM instead of
16-QAM. However, using more subcarriers will reduce the effec-
tive data throughput. In situations where both power and interfer-
ence are challenging, such as sensors, applications might want to
trade off reliability for throughput at lower power. To explore this
trade-off, we repeat the experiment in Section 7.2.2 at a 25% clock
rate while adding known bits to subcarriers.
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Figure 8: PRR with additional known bits on subcarriers for a

25% downclock rate (SNR = 30dB). The right y-axis shows the

corresponding effective throughput.

Figure 8 shows the PRR performance and effective data rate with
respect to the number of known bits sent (0 additional bit corre-
sponds to the results for 25% at 30 dB in Section 7.2.2). As dis-
cussed above, standard 802.11 only uses 52 out of 64 subcarriers
for data. As a result, only 3 out of the 16 subcarriers are 16-QAM
modulated when downclocked to 25%.

Therefore, we put the known bits on these three subcarriers first,
which helps PRR by reducing the original 16-QAM modulation to
8-QAM. Consequently, PRR improves substantially for both small
and large packet sizes. For example, with 3 known bits added, PRR
jumps to 96% and 85% for small and large packet, respectively.
After adding 3 bits, all constellation diagrams on the 16 subcarri-
ers are 8-QAM modulation (except subcarrier 0 which is 4-QAM).
Each additional bit then transforms one of the 8-QAM constellation
diagrams to 4-QAM. As expected PRR continues to improve, but
with a smaller delta than when transforming 16-QAM to 8-QAM.

The trade-off in improved PRR is a reduction in data throughput
in proportion to the number of additional known bits used for pilots.
The PRR eventually reaches excellent PRRs of 99.6% (small) and
94.7% (large) when adding 7 bits, but at that point the effective
data rate drops to 3 Mbps (half of the raw PHY layer data rate). In
summary, Enfold provides the flexibility to trade off effective data
rate for PRR performance, improving Enfold’s applicability in poor
SNR regimes where applications favor such a trade-off.

8. ENERGY CONSUMPTION
Finally, we evaluate the benefits of downclocking OFDM by es-

timating the energy consumption of Enfold compared to related
techniques on traces of smartphone app usage. We start with the
SloMo data set used by Lu et al. [13], which contains high fi-
delity WiFi packet traces from nine popular smartphone apps (each
with >5 million downloads) including familiar Internet services
like Facebook and Gmail as well as smartphone-specific services
such as Pocket Legends (an online massively multiplayer game)
and TuneIn Radio (a streaming audio service). Considering that the
majority of the SloMo traces focus on low data rate apps, we add
three traces of higher bandwidth apps: Wyslink (live TV streaming,
479 kbps), FaceTime (1499 kbps), and YouTube (588 kbps).

Given the lack of a real downclocked WiFi chipset with which
to measure power consumption, we use a device power model to
estimate the network energy consumption of each app given its
network behavior in the traces. We use the WiFi power model
from [13, 16], which is based on measurements of a Nexus One
reported by Manweiler et al. [14]. When a WiFi chipset is actively
transmitting or receiving, it stays in the high power state. Once net-
work transfers complete, it transitions to the idle state (note that the

power consumption in idle is still comparable to the active state).
When there is no network activity for a while (the tail time), it tran-
sitions to the light sleep state. Note that the light sleep state also
consumes a significant amount of power in anticipation of imme-
diate wake-up. When the chipset is not woken up for about 500
ms, it finally moves to the deep sleep state where the power con-
sumption is nearly negligible. The detailed parameters associated
with each state and clock rate are given in [13]. Furthermore, the
power model used is deliberately conservative.7 For example, the
idle power consumption for the 25% clock rate is only 65% of the
idle power at full rate.

We compare energy consumption among OFDM downclocking
with Enfold, DSSS downclocking with SloMo, and the default
power save mode (PSM) in 802.11g as a baseline. While our Enfold
prototype employs a 6-Mbps rate, we also introduce a hypothetical
case where the downclocked reception data rate is set to 54 Mbps
(the highest rate in 11g) with 100% PRR to estimate how much po-
tential energy savings remain unrealized because Enfold does not
operate at higher rates. We also conservatively assume the chipset
does not have a fast-switching clock. Therefore, although an En-
fold node can receive at a 6 Mbps OFDM data rate, it would have
to transition to a 2-Mbps DSSS data rate for transmission (includ-
ing ACKs). On the other hand, the data rates used for PSM are the
actual ones reported by the packet capture software in the trace.

Enfold consistently outperforms PSM for all the app traces,
and matches or exceeds SloMo depending on the app workload.
Figure 9 compares the normalized energy consumption of PSM,
SloMo (2-Mbps DSSS rate with 100% PRR) and Enfold (4.75-
Mbps with 63% PRR in Section 7.2.3). We focus on six repre-
sentative apps out of the twelve; the remaining apps have low data
rates with performance similar to Skype voice (i.e., both SloMo and
Enfold improve upon PSM, but behave similarly to each other).

Apps like Skype voice frequently require network access but the
amount of data transferred is low (data rates range from 10s to
100s kbps). As a consequence, the WiFi card either stays in con-
stant awake mode (CAM) or is woken up intermittently every few
seconds, and therefore the network energy consumption is largely
dominated by idle listening for the network tail time. Given their
small app data rates, the extra energy spent on transmission and re-
ception due to slower data rate or retransmissions is more than com-
pensated for by the energy saved during the idle state, and to a cer-
tain extent, sleep state. Even the 2-Mbps DSSS rate in SloMo are
sufficient for these apps. As a result, both SloMo and Enfold save
significant energy (up to 34%) for these apps compared to PSM.

However, as the app data rate increases (e.g., Skype Video, Wys-
link) or interactivity reduces (e.g., Pandora, which prefetches the
entire song before playing out) or both (YouTube, which down-
loads chunks of data every 10–20 seconds), SloMo has small or
negative benefits. The energy saved in the idle listening and sleep
states is matched or exceeded by the energy expended for transmis-
sion and reception at the slower data rate; for some apps, SloMo
consumes over 20% more energy than PSM. In contrast, given the
increased data rates supported (~2.4x SloMo rate for the current im-
plementation), Enfold is able to save appreciable energy for these
apps: from Skype Video (9%) to Pandora (19%). YouTube sees
little benefit (3%) because it already uses the network efficiently,
particularly in the face of retransmissions with Enfold’s 63% PRR.

In the best case of a network with good SNR conditions and an
improved PRR of 100%, energy savings are correspondingly better:
from Skype Video (10%) to Pandora (21%) (with YouTube at 8%,
showing the effects of PRR). In sum, Enfold significantly extends

7The maximum possible energy savings in this model is 35%.
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We also include a hypothetical case where the downclocked re-

ception data rate is 54 Mbps and PRR is 100%. Results are

normalized with respect to PSM.

the range of apps that benefit from downclocking. Compared to
the hypothetical 54-Mbps case at 100% PRR, the additional energy
gain over 6 Mbps in Enfold is small compared to the substantial
difference in data rate: Pandora (4.5%), FaceTime (3.6%), Skype
Video (3.9%), Wyslink (8.4%) and YouTube (12%). As a result,
for these popular apps Enfold at 6 Mbps already captures much of
the energy savings.

As a final note, we also evaluated energy consumption with En-
fold for other data rates and PRRs (the throughput-PRR trade-off
enabled in Section 7.2.4). The results among these Enfold variants
are roughly the same with a 2–3% variation. Although the differ-
ence in energy consumption is small, higher PRR leads to fewer
retransmissions and reduced network contention.

9. CONCLUSION
In this paper we present an approach for successfully receiv-

ing and decoding OFDM modulation while sampling below the
Nyquist frequency. We exploit the aliasing that results from under-
sampling and observe that there exists well-defined structure in
terms of how OFDM signals are “folded up” under aliasing. In par-
ticular, we show that a standards-compliant 802.11a/g frame can be
detected, received, and decoded by a receiver running at a 50% or
even 25% clock rate given sufficient channel quality. We design and
implement a standards-compliant 802.11 receiver on the Sora plat-
form and experimentally show that our aliasing induced modulation
can attain greater than 96% and 83% raw packet reception rates
while reducing the clock rate by 2× and 4×, respectively. Enfold
explicitly trades throughput (SNR) for energy savings by moving
to downclocked states with potentially reduced data rates in pro-
portion to downclocking ratio. Based on published WiFi traces, we
show such trade-off is worthwhile; Enfold could reduce network
energy consumption by up to 34% for many popular smartphone
apps. Even when nodes are in sleep mode, the energy saving bene-
fit still persists for downclocked beacon listening and AP scanning.
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