
Chronos: Predictable Low Latency for Data Center
Applications

Rishi Kapoor∗, George Porter∗, Malveeka Tewari∗, Geoffrey M. Voelker∗, Amin Vahdat∗†
∗ University of California, San Diego † Google Inc.

{rkapoor, gmporter, malveeka, voelker, vahdat}@cs.ucsd.edu

ABSTRACT
In data center applications, predictability in service time and con-
trolled latency, especially tail latency, are essential for building
performant applications. This is especially true for applications
or services built by accessing data across thousands of servers to
generate a user response. Current practice has been to run such ser-
vices at low utilization to rein in latency outliers, which decreases
efficiency and limits the number of service invocations developers
can issue while still meeting tight latency budgets.

In this paper, we analyze three data center applications, Mem-
cached, OpenFlow, and Web search, to measure the effect of 1)
kernel socket handling, NIC interaction, and the network stack, 2)
application locks contested in the kernel, and 3) application-layer
queueing due to requests being stalled behind straggler threads on
tail latency. We propose Chronos, a framework to deliver pre-
dictable, low latency in data center applications. Chronos uses a
combination of existing and new techniques to achieve this end, for
example by supporting Memcached at 200,000 requests per second
per server at mean latency of 10 µs with a 99th percentile latency
of only 30 µs, a factor of 20 lower than baseline Memcached.

Categories and Subject Descriptors
D.4.4 [Communications Management]: Network communication

General Terms
Algorithms, Design, Performance

Keywords
Cloud Computing, Predictable Latency, User-level Networking, Load
Balancing

1. INTRODUCTION
Modern Web applications often rely on composing the results of

a large number of subservice invocations. For example, an end-
user response may be built incrementally from dependent requests
to networked services such as caches or key-value stores. Or, a set

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’12, October 14-17, 2012, San Jose, CA USA
Copyright 2012 ACM 978-1-4503-1761-0/12/10 ...$15.00.

of requests can be issued in parallel to a large number of servers
(e.g., Web search indices) to locate and retrieve individual data
items spread across thousands of machines. Hence, the 99th per-
centile of latency typically defines service level objectives (SLOs):
when hundreds or thousands of individual remote operations are
involved, the tail of the performance distribution, rather than the
average, determines service performance. Being driven by the tail
increases development complexity and reduces application qual-
ity [32].

Within the data center, end-to-end application latency is the sum
of a number of components, including interconnect fabric latency,
the endhost kernel and network stack, and the application itself.
The interconnect fabric is not likely to be a significant source of
latency unless it is heavily congested, since these networks are
designed to deliver both high bandwidth and low latency to better
support scale-out applications [2, 3], and ongoing efforts aim to
minimize congestion, and thus latency [4, 5, 40]. On the other
hand, the latency of applications is decreasing as well, due to the
interwoven trends of increased cores per server, increased DRAM
capacity, and the availability of low-latency, flash-based SSDs.

What remains in large part is kernel latency, which includes in-
terrupt handling, buffer management, the network stack, data copy-
ing and protection domain crossing. Despite recent improvements
in kernel performance [14], kernel overheads can be an order of
magnitude larger than the data center network fabric and applica-
tion latency combined. In this paper, we examine the latency over-
heads of several common data center applications—Memcached [26],
Web search, and an OpenFlow [25] controller—and find that kernel
latency overhead can account for over 90% of end-to-end applica-
tion latency. This overhead also accounts for a significant source of
latency variation, especially at high request loads.

To eliminate this kernel and network stack overhead, we leverage
user-level, kernel bypass, zero-copy network functionality. These
APIs are known to minimize latency by eliminating the kernel from
the critical message path, and thus avoiding overheads due to mul-
tiple copies and protection domain crossings [11, 16, 30, 39]. An
interesting aspect of data centers that we focus on in this work
is its very high link speeds, often 10 Gbps, and the need to sup-
port a dozen or more cores per machine. One key barrier to the
adoption of user-level networking APIs has been supporting legacy
applications. However, an advantage in data centers is that this
barrier is much lower than before, since operators control the entire
stack, from hardware to the operating system to the application.
The result is that we can eliminate a major source of latency in the
end-to-end path with minimal, and in some cases no, change to the
application.

While user-level networking removes kernel overhead, it is not
enough to fully realize low-latency applications. Removing the

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

M
ax

im
u
m

 E
x

p
ec

te
d
 L

at
en

cy
 (

in
 u

s)

Simulated Number of Servers

99% N(90,50) distribution
50% N(90,50) distribution

(a) Predicted by probabilistic analysis.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

L
at

en
cy

 (
in

 u
s)

Number of Servers

Empirically observed latency
99% latency single server
50% latency single server

(b) Empirically-observed.

Figure 1: As the scale of the Partition/Aggregate communication pattern increases, latency increases due to stragglers.

kernel from the network path leaves the application responsible for
handling hotspots in load, and if application threads contend for
locks, that contention still occurs in the kernel. To address these
challenges, we propose Chronos, a communication framework that
leverages both kernel bypass and NIC-level request dispatch to de-
liver predictable low latency for data center applications. Chronos
directs incoming requests to concurrent application threads in a
way that drastically reduces, and in some cases eliminates, appli-
cation lock contention. Chronos also provides an extensible load
balancer that spreads incoming requests across available processing
cores to handle skewed request patterns while still delivering low-
latency response time.

Our evaluation shows that Chronos substantially improves data
center application throughput and latency. We show that Mem-
cached implemented on Chronos, can support 200,000 requests
per second with a mean operation latency of 10µs with a 99th

percentile latency of only 30 µs, a factor of 20 lower than unmod-
ified Memcached. We find similar benefits for Web search and the
OpenFlow controller.

Contributions: In summary, Chronos makes the following con-
tributions: We (1) analyze impact of tail latency on data center
traffic patterns; (2) analyze sources of latency and latency varia-
tion, exposing application bottlenecks with user-level networking
APIs; (3) design a framework using user-level networking APIs
that leverages NIC-support to reduce lock contention and perform
efficient load balancing to reduce the tail latency in data center
networks; and (4) evaluate the resulting performance of three rep-
resentative applications on a testbed with 50 servers.

2. BACKGROUND AND MOTIVATION
In this section we discuss the effect of latency and high latency

variation on two data center workload patterns — (1) Partition/Ag-
gregate, (2) Dependent/Sequential traffic pattern and how high la-
tency variation impacts the end-to-end performance and operation
of data center applications. We use Memcached as an example of
each of these communication patterns. Memcached is a popular,
in-memory Key-Value (KV) store, deployed at Facebook, Zynga,
and Twitter [10, 26]. Its simple API consists of operations that
get, set, delete, and manipulate KV pairs. For high throughput,
Memchached requests are typically issued using UDP [33].

In this section, we seek to show that the end-to-end latency for
the Partition/Aggregate communication pattern is driven by the tail-
latency at scale. In the case of the Dependent/Sequential pattern,

the tail latency determines the number of service invocations al-
lowed within the SLO. Thus, it is important to reduce the variance
in service latency in addition to bringing down overall latency.

2.1 The Partition/Aggregate Pattern
In the Partition/Aggregate communication pattern, data is re-

trieved from a large number of servers in parallel prior to being
combined into a response for the requesting service. An example of
this pattern is a horizontally scaled Web search query that must ac-
cess state from hundreds to thousands of inverted indices to gener-
ate the final response. The achievable service-level objective of an
application relying on this pattern is limited by the slowest response
generated, since all requests must complete before a response can
be sent back to the user. In practice, this means that the latency seen
by the end user approaches the tail latency of the underlying ser-
vices. Here, the key insight is that increasing the number of servers
increases the probability of hitting the tail latency more often, and
hence increases the overall latency seen by the end user. We now
show this straggler behavior both theoretically and experimentally.

Analysis: We first consider a client issuing a single request to
each of S service instances in parallel. For simplicity, we assume
the service time is an independent and identically distributed (i.i.d.)
random variable with a normal distribution. Consider an S-length
vector of the form:

~v =< N(µ, σ), N(µ, σ), ..., N(µ, σ) >

where N() is the normal distribution, and µ = 90µs and σ =
50µs (these values are based on our observations of Memcached’s
latency, described in Section 3). We estimate service time by com-
puting values of sets of i random variables, where i ranges from 1
to 100. For each set we compute the maximum over the values of
the variables in the set, repeating each measurement five times to
determine the latency and variance. Figure 1(a) shows the result.

As the number of servers increases, the maximum observed value
in ~v increases as well. We also plot the 50th and 99th percentiles of
the underlyingN(90, 50) distribution. In this simulation, when the
number of servers is small, the maximum expected latency is close
to the mean of 100 µs (the 50th percentile of the random variable).
However, as S grows the maximum observed value approaches the
99th percentile value of 254.25µs. In this way, the end-to-end
latency of the Partition/Aggregate communication pattern is driven
by the tail-latency of nodes at scale.

 1000

 10000

 100000

 1e+06

 1e+07

 5 10 15 20 25 30 35 40 45 50

#
R

eq
u

es
ts

 w
it

h
in

 S
L

A

Server load in requests/sec x(1000)

50ms SLA stddev=2us
50ms SLA stddev=1us

(a) Predicted by queueing analysis.

 10

 100

 1000

 10000

 0 20 40 60 80 100

#
R

eq
u

es
ts

 w
it

h
in

 S
L

A

Server load in requests/sec x(1000)

SLA 50ms Baseline
SLA 50 ms Chronos

(b) Empirically-observed.

Figure 2: For the Dependent/Sequential communication pattern, the number of subservice invocations permitted by the developer
to meet end-to-end latency SLAs depends on the variance of subservice latency.

Experimental validation: To validate the above probabilistic
analysis, we perform the following experiment on our testbed. We
set up six Memcached clients, each on different machines, and
measured the latency seen by one of these clients. Each client
issues S parallel get requests to a set of S server instances (where
S ranges from 1 to 24). Clients waits for response from all the
servers before generating next set of requests. Each server instance
runs on its own machine. In addition, we used the memslap load
generator included with Memcached to generate requests uniformly
distributed across the key-space at a low request rate, so as not to
induce significant load on the servers.

Figure 1(b) shows the results of experiments and observed single-
server median latency (approximately 100µs) and the 99th per-
centile of latency (approximately 255µs). As expected, when issu-
ing a single request to a single server the observed latency is nearly
the 50th percentile of service time. However, as S increases, the
observed latency of the set of requests quickly approaches the long
tail of latency, in this case just below the 99th percentile.

2.2 The Dependent/Sequential Pattern
A second network communication pattern in data centers is the

dependent/sequential workflow pattern, where applications issue
requests one after another such that a subsequent request is de-
pendent on the results of previous requests. Dependent/sequential
patterns, for example, force Facebook to limit the number of re-
quests that can be issued to build a user’s page to between 100 and
150 [32]. The reason for this limit is to control latency, since a
large number of sequential requests can add up to a large aggregate
latency. With a large number of sequential requests the number
of requests hitting the tail latency will also increase, thus lowering
the number of otherwise possible sequential invocations. Another
example of this pattern is search queries that are iteratively refined
based on previous results.

In both cases, increasing the load on the subservices results in
increased service time, lowering the number of operations allowed
during a particular time budget. This observation is widely known,
and in this subsection we show how it can be validated both through
a queueing analysis as well as a simple microbenchmark.

Consider a simple model of a single-threaded server where clients
send requests to the server according to a Poisson process at a rate
λ. The server processes requests one at a time with an average

service time of µ. Since the service time is variable, we model the
system as an M/G/1 queue. Using the Pollaczek-Khinchine trans-
formation [7], we compute the expected wait time as a function of
the variance of the service time using

W =
ρ+ λµV ar(S)

2(µ− λ)
where ρ = λ/µ.

Based on this model, we can predict the service latency as a
function of service load, mean latency, and the standard deviation
of variance. To observe the effect of latency variation, we evaluated
the model against σ = 1 (based on our observations of Mem-
cached), and σ = 2 (representing a higher variance service). For
each σ value, we use the model to compute the latency, and from
that, we compute the number of service invocations that a developer
can issue while fitting into a specified end-to-end latency budget,
and plot the results in Figure 2(a). As expected, that budget is
significantly reduced in the presence of increased latency variance.

To validate this model, we compare the predicted number of
permitted service invocations to the actual number as measured
with Memcached deployment in our testbed, shown in Figure 2(b).
The experimental setup and experiments are described in detail in
Section 5.2. Here, we measure the 99th percentile of latency for
both baseline Memcached as well as Memcached implemented on
Chronos (CH) with uniform inter-arrival time and access pattern
for requests. Each point in figure represents the number of service
invocations permitted with the specified SLA, as a function of the
server load, in requests per second.

The overall trends in these simple studies confirm the intuition
that delivering predictable, low latency response requires not just a
low mean latency , but also a small variation from the mean.

3. LATENCY CHARACTERIZATION
In this section, we give a detailed analysis of the main com-

ponents contributing to the end-to-end latency in the data center
applications. We summarize the results in Table 1 and report the
contribution of each component in the end-to-end latency. This
includes one-way network latency for a request to reach from the
client to the server, the latency at endhost server to deliver the
request to the application and application latency for processing

Component Description Mean latency (µs) 99 %ile latency (µs) Overall share

DC Fabric Propagation delay < 1 - -
Single Switch 1-4 40-60 1%
Network Path† 6 150 7 %

Endhost
Net. serialization 1.3 1.3 1.4 %

DMA 2.6 2.6 3 %
Kernel (incl. lock contention) 76 1200-2500 86-95 %

Application Application∗ 2 3 2 %
Total latency 88 1356-2656 100 %

Table 1: Latency sources in data center applications. The underlying operating system is Linux 2.6.28. †The network fabric latency
assumes six switch hops per path and at most 2-3 switches congested along the path. Switch latency is calculated assuming 32 port
switch with a 2MB shared buffer (i.e., 64KB may be allocated to each port). ∗Application latency is based on Memcached latency.

the request and sending the out the response from the server. As
a concrete example, we further analyze the impact of server load
and lock contentions due to concurrent requests on the Memcached
server latency.

3.1 Sources of End-to-End Application Latency

Data center Fabric: The data center fabric latency is the amount
of time it takes a packet to traverse the network between the client
and the server. This latency can be further decomposed into prop-
agation delay and in-switch delay. Within a data center, speed
of light propagation delay is approximately 1 µs. Within each
switch, the switching delay is approximately 1–4 µs. Low-latency,
cut-through switches further reduce this packet forwarding latency
to below one microsecond. A packet from client to server typi-
cally traverses 5–6 switches [3]. A packet can also suffer queueing
delay based on prevailing network congestion. We calculate the
queueing delay by measuring the additional time a packet waits in
switch buffers. Typical commodity silicon might have between 1–
10MB buffers today for 10Gbps switches. However, this memory
is shared among all ports. So for a 32-port switch with relatively
even load across ports and with 2MB of combined buffering, ap-
proximately 64KB would be allocated to each port. During periods
of congestion, this equates to an incoming packet having to wait for
up to 50 µs (42 1500-byte packets) before it can leave the switch.
If all buffers along the six hops between the source and destination
are fully congested, then this delay can become significant. Several
efforts described in Section 7 aim to minimize congestion and thus
latency. We expect that, in the common case, the networks paths
will be largely uncongested. While in network bottlenecks such as
delay in data center fabric are outside the scope of this effort, the
value of Chronos is that it addresses the key latency bottlenecks in
the endhost to deliver low-latency services.

End-host: Endhost latency includes the time required to receive
and send packets to and from the server NIC, as well as delivering
them to the application. This time includes the latency incurred due
to network serialization, DMA the packet from the NIC buffer to an
OS buffer, and traversing the OS network stack to move the packet
to its destination user-space process.

To understand the constituent sources of endhost latency under
load, we profile a typical Memcached request. We issued 20,000
requests/second to the server, which is approximately 2% network
utilization in our testbed. We instrumented Memcached 1.6 beta
and collected timestamps during request processing. To measure
the server response time, we installed a packet mirroring rule into
our switch to copy packets to and from our server to a second mea-
surement server running Myricom’s Sniffer10G stack, delivering

precise timestamps for a 10Gbps packet capture (at approx. 20ns
resolution). Section 5 presents full details on the testbed setup.

A median request took 82µs to complete at low utilization, with
that time divided across the categories shown in Table 1. Net-
work Serialization latency is based on a 100B request packet and a
1500B response at 10Gbps. DMA latency is the transfer time of a
1600B (request and response) calculated assuming a DMA engine
running at 5GHz.

Application: This is the time required to process a message or
request, perform the application logic, and generate a response. In
the case of Memcached, this includes the time to parse the request,
look up a key in the hash table, determine the location of value in
memory and generate a response for the client. We measured the
Memcached application latency by wrapping timer calls around the
application. We record the start time of this measurement immedi-
ately after the socket recv call is issued; the end time is measured
just before the application issues the socket send call. The applica-
tion latency in Memcached is 2µs. In Section 3.2 we discuss other
factors that contribute to application latency, including application
thread lock contention.

The remainder of the time between the observed request latency
and the above components includes the kernel networking stack,
context switch overhead, lock contention, kernel scheduling over-
head, and other in-kernel, non-application endhost activity. The
contribution of kernel overhead alone accounts for more than 90%
of the end-host latency and approximately 85% of end-to-end la-
tency. In the next section, and in rest of the paper, we focus our
efforts on understanding the effect of kernel latency on the end-
host application performance, aiming to reduce this important and
significant component of latency.

3.2 End-to-End Latency in Memcached
In this section we further analyze Memcached latency. We show

how increasing the load at the server results in queueing of pending
requests in the kernel which significantly increases the tail latency.
We further show that lock contention for processing concurrent
requests also results in significant latency variation.

Effect of server load: To measure Memcached performance,
we use a configurable number of Memslap clients [1], which are
closed-loop (i.e., each client sends a new request only after re-
ceiving the response from the previous request) load generators
included with the Memcached distribution to send requests to a
Memcached server with four threads. Each client is deployed on
its own core to lower measurement variability. We observe that
Memcached can support up to 120,000 requests/second with sub
millisecond tail latency. We next subject the Memcached server
to a fixed request load, and observe the distribution of latency.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Latency (in us)

46 clients
92 clients

115 clients
161 clients

(a) Memcached latency distribution at 30% (low) utilization,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
D

F

Latency (in us)

46 clients
92 clients

115 clients
161 clients

(b) Memcached latency distribution at 70% (high) utilization

Figure 3: Latency of a Memcached server at a fixed load with varying numbers of closed-loop clients.

We evaluated the server at a low request load of 40,000 requests
per second, which is approximately 30% of the server’s maximum
throughput, and also at a high load of 90,000 requests per second,
or about 70% of its maximum throughput. On each of the 23 client
machines, we reserve one CPU core for Linux, leaving seven for
client instances, which means we can support up to 161 clients.

At low server utilization (30%), increasing the number of clients
had little effect on distribution of latency as shown in Figure 3(a).
By increasing the number of clients we increase the number of
concurrent requests at the server, even though load offered by each
client drops. Most responses completed in under 150 µs, with the
tail continuing up to approximately 300 µs, shown in Figure 3(a).
This corresponds to lower levels of load at which developers run
their services to ensure low tail-latency. However, at high server
utilization (70%), increasing the number of clients had a pronounced
effect on observed latency. High load resulted in a significant la-
tency increase as the number of clients increased, reaching a maxi-
mum at about 2,000µs, shown in Figure 3(b). These measurements
aid our understanding of current practices of running services at
low levels of utilization. Operating these services at higher utiliza-
tion necessitates reining in the latency outliers.

Request queueing in the application plays a significant role in
the latency increase. Two sources of this queueing are variance
in kernel service time and an increase in lock contention within
the application due to an increase in concurrent requests. Profiling
CPU cycles spent during the experiment shows that the bulk of the
time is spent copying data and context switching.

Lock contention: We used the mutrace [27] tool during runtime
to validate this last point and saw a significant amount of lock
contention. We evaluated a Memcached instance with concurrent
requests from 20 memslap clients and found that more than 50% of
lock requests were contested, with that contested time accounting
for about a third of the overall experiment duration. We found
that the source of this lock contention in Memcached was a shared
hash table protected by a pthread lock. This lock must be acquired
both for update as well as lookup operations on the table. With
pthread locks (used by Memcached), contention not only induces
serialization, but must also be resolved in the kernel, adding further
delay and variance to observed latency.

To quantify lock overhead, we modified a Memchached based
Web search application to use two different synchronization prim-
itives, (1) read/write locks and (2) an RCU (read copy update)
mechanism [37] in place of the conventional pthread system locks

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300

L
at

en
cy

 (
in

 u
s)

Number of clients

Mean RCU search
Mean CH search
Mean R/W lock search
99% RCU search
99% CH search
99% R/W lock search

Figure 4: Web search latency of single Index server.

in Memcached. These synchronization primitives are more efficient
for the read-dominant workloads that are common in applications
like key-value stores (where the number of get requests is much
larger than set requests) and search (where index-update is less
frequent than index-lookup).

In addition to using the new locking primitives, we also mod-
ify the applications to use user-level networking APIs to bypass
the kernel and eliminate kernel overheads in latency. We describe
the user-level APIs in more detail in Section 4, but for illustration
we can assume that use of these APIs removes kernel overhead
completely. Bypassing the kernel with user-level APIs allows us
to quantify the overhead caused due to application lock contention
alone. For evaluation, we vary the number of memslap clients that
send requests to the modified Memcached instances. We used 10-
byte keys and 1400-byte values with a get/set requests ratio equal
to 9:1 as suggested in [19]. Figure 4 shows the results of this
experiment (the 99% and Mean CH search curves correspond to
the Chronos results and can be ignored for now). Here, we see
that even with an implementation based on read/write locks and
RCU, latency remains high. Read/write locks do not scale because
the state associated with them (number of readers) still needs to be
updated atomically. For a small number of concurrent clients RCU
performs well but as load increases there is significant variation

Partition
1

Partition
3

Partition
2

Partition
4

Memory

Thread 1 Thread 3 Thread 2

Packet

CPU

Data

Partition ID: 2

Header

NIC

Partition Thread
1 1
2 2
3 1
4 3

Hash

Load
Balancer (LB)

Module
1. Request

Handling at NIC
2. Early Request

Partitioning

3. Load Balance
Requests	

Thread Assignment

Figure 5: Chronos system overview.

in latency. Note that the performance of these synchronization
primitives would be reduced if the workload pattern shifted towards
a more write-heavy demand.

4. DESIGN
In this section we describe Chronos, an architecture for low-

latency application deployment which can support high levels of
request concurrency.

4.1 Goals
Our goal is to build an architecture with these features:

1. Low mean and tail latency: Achieve low predictable la-
tency by reducing the overhead of handling sockets and com-
munication in the kernel. Reducing the application tail la-
tency improves the latency predictability and the application
performance.

2. Support high levels of concurrency with reduced or no
lock contention: Reduce or eliminate application lock con-
tention by partitioning requests across application threads
within a single endhost.

3. Early request assignment and introspection: Partition in-
coming client requests as early as possible to avoid application-
level queue build-up due to request skew and application lock
contention.

4. Self tuning: Dynamically load balance requests within a
single node across internal resources to avoid hotspots and
application-level queueing, without assuming apriori knowl-
edge of the incoming request pattern and application behav-
ior.

4.2 Design and Implementation
We now describe the design of Chronos (shown in Figure 5).

Chronos partitions application data to allow concurrent access by
the application threads (described in Section 4.2.2). It maintains a
dynamic mapping between application threads and data partitions
in a lookup table, and when a packet arrives at the server, Chronos
examines the partition ID in the application header and consults the
lookup table to steer the request to the proper application thread.

The Chronos load balancer periodically updates the mapping be-
tween partitions and application threads to balance the load on
each thread such that the request response time is minimized. In
Chronos, requests are demultiplexed between application threads
early, in the NIC, to avoid lock contention and multiple copies. At
a high level, the Chronos request servicing pipeline is carried out
in three stages: (1) request handling, (2) request partitioning and
(3) load balancing.

4.2.1 Request Handling
As described in Section 3, a major source of latency in end host

applications is the operating system stack. Chronos eliminates the
latency overhead introduced due to kernel processing by moving
request handling out of the kernel to user-space by using zero-copy,
kernel-bypass network APIs. These APIs are available from several
vendors and can be used with commodity server NICs [28, 34, 35].

We now explain one possible way of implementing user-level
networking. When the NIC driver is loaded, it allocates a region
of main memory dedicated for storing incoming packets. This
memory is managed as send and receive ring buffers, called NIC
queues. To bypass the kernel, an application can request an ex-
clusive handle to one or more receive ring buffers for its different
threads. The receive ring buffers are mapped to addresses in the
application address space. Outgoing packets from the application
are enqueued into a selected ring, and are sent on the wire by the
NIC. The incoming packets at the NIC are classified to a receive
ring based on the output of a hash function. This classifying func-
tion can be implemented in the hardware or in software. Though
in-NIC request classification will be most efficient, it is less flexible
than a software classifier. Chronos is not tied to any specific NIC
implementation for user-level networking as long as it can correctly
classify the incoming packets and assign them to the right appli-
cation thread. For hardware classification, one could extend the
receive-side scaling (RSS) feature in the NICs such that it hashes
packets into rings based on a custom offset instead of hashing on
the fixed 5-tuple in the packet header.

For prototyping Chronos, we use a custom hash function imple-
mented in user space for request classification. The custom hash
function enables deep packet inspection and arbitrary processing
over the packet contents by executing the hash function on any one
of the CPU cores. This function works by registering a C function
with the NIC API, and then when a new packet arrives, the NIC will
call the function, passing it a pointer to the packet and the packet
length. This function returns the receive ring buffer id which the
packet should be classified to. Note that there is no additional copy-
ing involved. However, software hashing has performance cost as it
may cause cache misses. This is because the custom hash function
would read the packet header first and then assign it logically to a
ring buffer. The packet may then be processed by an application
thread on a different CPU core, which may not share an L2 cache
with the classifying core. For our implementation, the performance
penalty due to user space processing was outweighed by the latency
incurred in the kernel. For the simple custom hash functions we
implemented the execution overhead is in nanoseconds, less than
the packet inter-arrival times for 10 Gbps links.

Finally, note that the application is not interrupted as the packets
arrive at the server. Instead, it must poll the receive ring buffer
for new packets using receive(). For Chronos, we have a dedicated
thread monitoring the NIC queues that registers packet reception
events with the applications.

4.2.2 Request Partitioning
Bypassing the kernel significantly reduces the latency, since a

request can now be delivered from the NIC to the application in
as low as 1-4 µs. However, this reduction in packet transfer la-
tency exposes new application bottlenecks namely lock contention,
core overloading or processing hot-spots due to skewed requests.
These bottlenecks are responsible for significant variation in la-
tency causing unpredictability. A classic approach to reducing lock
contention is to separate requests that manipulate disjoint appli-
cation state as early as possible. Chronos uses this approach and
minimizes shared state with static division of the state into disjoint
partitions that can be processed concurrently. For instance, in case
of Memcached, we replace a single centralized hash table with the
entire keyspace and associated slab class lists with N hash tables
and slab class lists with smaller regions of the keyspace. Each of
these N hash tables represents a partition and can now be assigned
to a hardware thread for concurrent processing. A single thread can
handle multiple data partitions.

With partitioned data, we now need to send each request to the
thread handling that partition. Chronos uses a classifying function
(described in Section 4.2.1) to examine the application header for
the partition ID and steering the request to the receive ring buffer of
the thread which handles the data partition for the request. While it
is possible to add a new field (partition ID) to the application header
to steer requests to the appropriate application threads, we choose
instead to overload an existing field. In case of Memcached, we rely
on the virtual bucket, or vBucket field, which denotes a partition of
keyspace. For the search application we use the search term itself,
and for the OpenFlow controller we use the switch ID.

The partitionable data assumption fits well for classes of appli-
cations like key-value stores, search, and OpenFlow. Handling
requests for data from multiple partitions is an active area of re-
search [22], and one we hope to study in future work.

4.2.3 Extensible Load Balancing
The endhost should be able to handle large spikes of load, with

multiple concurrent requests, while running the underlying system
at high levels of utilization. While static request partitioning helps
in reducing lock contention, it could still lead to hot-spots where
a single thread has to serve a large number of requests. To this
end, we present a novel load balancing algorithm that dynamically
updates the mapping between threads and partitions such that the
incoming requests are equally distributed across the threads.

We now describe the load balancing mechanism. Chronos uses
a classifier based on the partition ID field in the application header,
and a soft-state table to map the partition ID field to an application
thread. To reduce lock contention, the partition-to-thread mapping
should ensure that each partition is exclusively mapped to a single
thread. The load balancing module periodically updates the table
based on the offered load and popular keys. For simplicity, assume
that the Chronos load balancer measures the load on a data partition
as a function of the number of incoming requests for that partition.
This is true for key-value stores when each request is identical in
terms of time required for processing the request (table lookup) but
not for applications like in-memory databases. In general, the load
on a partition is representative of the expected time taken to process
the assigned requests. The number of requests served for each
partition is maintained in user space for each ring buffer. A counter
is updated by the classifying function while handling requests, and
the load balancer could optionally be extended to measure the load
in other ways as well. The load on a thread is the total load on all
partitions assigned to a thread.

The Chronos load-balancing algorithm divides time into epochs,

Algorithm 1 Chronos Load Balancer updates partitionID to
thread mapping based on load offered in last epoch.
1: IdealLoad = totalEpochLoad/totalThreads
2: for all k ∈ {totalThreads} do
3: threadLoadMap[k] = 0
4: end for
5: for all v ∈ partitionID do
6: t = epochMap.getThread(v)
7: if threadLoadMap[t] ≤ IdealLoad then
8: currentEpochMap.assign(v, t)
9: threadLoadMap[t].add(v.load)

10: else
11: for all k ∈ {totalThreads− {t}} do
12: if threadLoadMap[k] ≤ IdealLoad then
13: currentEpochMap.assign(v, k)
14: threadLoadMap[k].add(v.load)
15: break
16: end if
17: end for
18: end if
19: end for
20: epochMap = currentEpochMap

where each epoch is of maximum configurable duration T . The
load balancer maintains a mapping of each partition to an applica-
tion thread in the epoch, epochMap, along with per-partition load
information. The load balancer also maintains a separate map for
measuring thread load, threadLoadMap which indicates the num-
ber of requests served by an application thread in the current epoch.

The load balancing algorithm greedily tries to assign partitions
to the least loaded thread only if the thread to which partition is
already assigned is overloaded with requests. This is to avoid un-
necessary movement of partitions across threads. When the appli-
cation starts, the Chronos load balancer initializes the table with a
random mapping of partition IDs to threads. Algorithm 1 shows
psuedocode for the Chronos load-balancer module. A new epoch
is triggered when the duration T elapses. At the start of a new
epoch, the load balancer computes the new mapping as described
in Algorithm 1. The load balancer computes the total load in the
last epoch and divides that by the number of threads to obtain the
ideal load each thread should serve in the next epoch, under the
assumption that load distribution will remain the same. In each
epoch, it initializes the load for each thread to be zero. It then
iterates through all partitions, checking if the thread it is currently
assigned to can accommodate the partition load or not. If not, the
algorithm assigns the partition to the first lightly loaded thread.

For the proposed algorithm to work effectively, the number of
partitions should be at least the number of cores available across
all of the application instances. Note that Chronos load balancing
does not add to cache pollution that might happen due to sharing
of partitions among threads. In fact, the baseline application will
have lower cache locality given that all of its threads access a cen-
tralized hash table. While the proposed load balancing algorithm
tries to distribute the load uniformly on all threads, Chronos can
also be used with other load balancing algorithms which optimize
for different objectives.

Note that concurrent access to the partitioned data is still pro-
tected by a mutex to ensure program correctness, however the par-
titioning function ensures that there is a serialized set of operations
for a given partition. The only time that two application threads
might try to access the same partition is during the small win-
dows where the load balancing algorithm updates its mapping. This

remapping can cause some requests to follow the new mapping,
while other requests are still being processed under the previous
mapping. We will show in the evaluation that this is a relatively
rare event, and for reasonable update rates of the load balancer,
would not affect the 99th percentile of latency.

4.3 Application Case Studies
Chronos does not require rewriting the application to take full

advantage of its framework. Chronos requires only minor modifi-
cations to the application code for using the user-level networking
API. To demonstrate the ease of deploying Chronos, we port the
following three data center applications to use Chronos and evalu-
ate the improvement in their performance.

Memcached: Rather than building a new key-value store, we
base Chronos-Memcached (Chronos-MC) on the original Mem-
cached codebase. Chronos-MC is a drop-in implementation of Mem-
cached that modifies only 48 lines of the original Memcached code
base, and adds 350 lines. These modifications include support
for user-level network APIs, for the in-NIC load balancer, and for
adding support for multiple partitions.

Web Search: Another application we consider is Web search, a
well-studied problem with numerous scalable implementations [15,
20]. We choose Web search since it is a good example of a horizontally-
scalable data center application. Web search query evaluation is
composed of two components. The first looks up the query term in
an inverted-index server to retrieve the list of documents matching
that term. The second retrieves the documents from the docu-
ment server. The inverted index is partitioned across thousands of
servers based on either document identifier or term. For Chronos-
WebSearch (Chronos-WS), we implement term-based partitioning.
We wrote our own implementation of Web search based on Mem-
cached.

It is important that Web search index tables are kept updated, and
so modifications to them are periodically necessary. One approach
is to create a completely new copy of the in-memory index and to
then atomically flip to the new version. This would impose a factor
of two memory overhead. Another option is to update portions of
the index in place, which requires sufficient locking to protect the
data structures. We implemented an index server using read/write
locks and UNet APIs. The index server maintains the index-table
as search term and associated documents IDs, as well as word
frequency and other related information. We also implemented a
version of the index server with an RCU mechanism from an open-
source code base provided by the RCU authors [37]. We modified it
to work with the UNet APIs. Chronos-WS further divides the index
server table into several partitions based on terms for efficient load
balancing.

OpenFlow Controller: We also implemented an OpenFlow con-
troller application on Chronos (Chronos-OF) using code provided
by [29]. This application is different from the Memcached and
Web search applications since it is typically not horizontally scaled
in the same way as these other applications. However, given that
the OpenFlow controller can be on the critical path for new flows
to be admitted into the network, its performance is critical, even
if the entire application is only deployed on a single server. This
application receives requests from multiple switches and responds
with forwarding rules to be inserted in the switch table.

5. EVALUATION
In this section we evaluate the Chronos-based Memcached, Web

server and OpenFlow controller using micro and macro-benchmarks.
Overall, our results show that:

• Even with Memcached running on the MOSBENCH [13]
kernel with an efficient network stack, the tail latency is still
high. This justifies the use of kernel bypass networking APIs
to deliver predictable low latency.

• Chronos-MC exhibits up to 20x lower mean latency com-
pared to stock Memcached for a uniform request arrival rate
of 200,000 requests/sec. For bursty workloads, it reduces the
tail latency by 50x for a request rate of 120,000 requests/sec.
Reduced tail latency improves the latency predictability and
application performance.

• Chronos-MC can effectively scale up to 1 million request-
s/sec taking advantage of load balancing across concurrent
threads.

• Chronos-WS achieves an improvement of 2.5x in mean la-
tency as compared to baseline Web Server application that
uses Read/Write locks.

• Chronos-OF achieves an improvement of 12x in mean la-
tency as compared to baseline OpenFlow application.

We now describe our experiment setup, the workloads we use,
and performance metrics we measure.

Testbed: We deployed Chronos on 50 HP DL380G6 servers,
each with two Intel E5520 four-core CPUs (2.26GHz) running De-
bian Linux with kernel version 2.6.28. Each machine has 24 GB of
DRAM (1066 MHz) divided into two banks of 12 GB each. All of
our servers are plugged into a single Cisco Nexus 5596UP 96-port
10 Gbps switch running NX-OS 5.0(3)N1(1a). This switch con-
figuration approximates the ideal condition of nonblocking band-
width on a single switch. We do not focus on network sources
of latency variability in this evaluation. Each server is equipped
with a Myricom 10 Gbps 10G-PCIE2-8B2-2S+E dual-port NIC
connected to a PCI-Express Gen 2 bus. Each NIC is connected
to the switch with a 10 Gbps copper direct-attach cable. When
testing against kernel sockets, we use the myri10ge network driver
version 1.4.3-1.378 with interrupt coalescing turned off. For user-
level, kernel-bypass experiments we use the Sniffer10G driver and
firmware version 2.0 beta. We run Memcached version 1.6 beta,
configured to use UDP as the transport layer protocol, along with
support for binary protocol for efficient request parsing and virtual
buckets for enabling load balancing.

Metrics and Workloads: Like any complex system, the perfor-
mance observed from Memcached and Chronos is heavily depen-
dent on the workload, which we define using the following metrics:
1) request rate, 2) request concurrency, 3) key distribution, and 4)
number of clients. The metrics of performance we study for both
systems are the 1) number of requests per second served, 2) mean
latency distribution, and 3) 99th percentile latency distributions.
To evaluate baseline Memcached and Chronos under realistic con-
ditions, we use two load generators. The first, Memslap [1], is a
closed-loop benchmark tool distributed with Memcached that uses
the standard Linux network stack. It generates a series of get and
put operations using randomly generated data. We configure it to
issue 90% get and 10% put operations for 64-byte keys and 1024-
byte values since these values are representative of read-heavy data
center workloads [19]. For the results that follow, we found that
varying the key size had a minimal effect on the relative perfor-
mance between Chronos and baseline Memcached. The second
load generator is an open-loop load program (i.e client generates
requests at a fixed rate irrespective of pending previous requests)
we built in-house using low-latency, user-level network APIs to

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160

L
at

en
cy

 (
in

 u
s)

Number of clients

99% 1T-4P MC MOSBENCH
99% 1T-4P MC Stock linux kernel
99% 1T-1P MC MOSBENCH
99% 4T-1P MC MOSBENCH

Figure 6: Legend: nT-mP stands for n thread m processes of
Memcached(MC). Shown is the tail latency for one and four
threads (1T and 4T) running in either one process or four
processes (1P or 4P).

reduce measurement variability. Each instance of this second load
generator issues requests at a configurable rate, up to 10Gbps per
instance, with either uniform or exponential inter-arrival times. The
KV-pair distribution used by the tool is patterned on YCSB [19].
Note that the latency numbers reported in figures generated by the
closed-loop clients are higher by 50–70 µs compared to open loop
clients since closed loop clients also report the kernel and network
stack latency. For Chronos, we run the load-balancer every 50µs,
unless specified otherwise.

5.1 Memcached on an Optimized Kernel
We examine the latency of different configurations of Memcached

instances – i) one single threaded, ii) one multi threaded (with four
threads) and iii) multiple single threaded processes (four processes
each running on its own core) – using the MOSBENCH kernel
(pk branch) with an efficient network stack. The multi threaded
Memcached incurs intra-thread lock contention, while the single
threaded and multi-process configurations are free of intra thread
lock contention. However, multiple single threaded Memcached
processes can support more clients as compared to single threaded
instances.

To measure the performance of these different configurations we
use a configurable number of Memslap clients, each deployed on its
own core to lower the measurement variability. A Memslap client
opens a socket connection to one of the four Memcached process.
While running in single threaded mode, and thus free of intra-
thread resource contention, we expect the single threaded, multiple
process Memcached latency and variance to be lower than multi-
threaded instance on MOSBENCH. Figure 6 shows our results. For
comparison, we also plot the performance of Memcached with the
stock linux kernel. Our results show that even with the optimized
MOSBENCH kernel, the 99th percentile latency for four single
threaded multi-process configuration is as high as 810 µs with 140
clients (35 clients/process), indicating that the kernel’s contribution
to the tail latency is significant despite kernel optimizations and a
lack of application lock contention.

5.2 Uniform Request Workload
In this subsection we show that Chronos-MC reduces the mean

application latency by a factor of 20x as compared to baseline Mem-

 0

 500

 1000

 1500

 2000

 0 50 100 150 200

L
at

en
cy

 (
in

 u
s)

 200 400 600 800 1000

Requests/sec (x 1000)

Mean MC
99% MC

Mean UNet + Locks
99% UNet + Locks

Mean CH
99% CH

Figure 7: Latency of baseline Memcached (MC), Memcached
with user-level network APIs (UNet locks), and Chronos (CH)
with 10 open loop clients.

cached for a workload with uniform inter-arrival time and access
pattern for requests. Chronos-MC also outperformed a Memcached
implementation that only leveraged user-level networking but no
other Chronos feature (request partition or load balancing). We
started instances of the three different Memcached implementa-
tions with four threads each. We also instantiated 10 client ma-
chines running our custom open-loop load generator utilizing user-
level network APIs. Each client issues requests at a configurable
rate, measuring the response time as perceived by the client as
well as any lost responses. The server is pre-installed with 4GB of
random data, and clients issue requests from this set of keys using
a uniform distribution with uniform inter-request times. We use
1KB values and 64 byte keys in a 9:1 ratio of gets to sets. To avoid
overloading the server beyond its capacity, each client terminates
when the observed request drop rate exceeds 1%.

Figure 7 shows the results for this experiment. While baseline
Memcached supports up to approximately 120,000 requests per
second before dropping a significant number of requests, Chronos
supports a mean latency of about 25 µs up through 500,000 re-
quests per second and rises just above 50µs at 1M requests per
second. The Memcached instance with just the socket API replaced
with the user-level kernel API not only has higher mean latency, but
the variation of latency is significantly higher, as shown by the 99th

percentile, indicating that reducing variability in the network stack,
operating system, and application are all important to reduce tail
latency.

We also evaluate the performance of Chronos-MC with a larger
number of closed loop clients. We instantiated eight client Mem-
slap processes on each physical client machine, and scaled up to 50
client machines. As shown in Figure 8, we see that Chronos-MC
supports over 1 million transactions per second (TPS), limited only
by the NIC’s throughput limit of 10Gbps. With 120 clients, the
number of requests served levels out, causing a small amount of
additional latency as requests wait to be transmitted at the client. In
contrast, baseline Memcached serves fewer request/sec with high
latency.

5.3 Skew In Request Inter-Arrival Times
In this subsection, we show that the techniques used in Chronos

deliver predictable low latency even with skewed request inter ar-
rival times. With the skewed workload Chronos achieves 50x im-

 0

 800

 1600

 2400

 3200

 0 50 100 150 200 250 300 350 400

L
at

en
cy

 (
in

 u
s)

Mean MC
99% MC
Mean CH
99% CH

 0

 400

 800

 1200

 0 50 100 150 200 250 300 350 400

T
P

S
 (

x
 1

0
0

0
)

Number of clients

MC
CH

Figure 8: Latency as a function of the number of clients with
the Memslap benchmark (closed loop).

 0

 200

 400

 600

 800

 1000

 10 100 1000

9
9

th
 P

er
ce

n
ti

le
 L

at
en

cy
 (

in
 u

s)

Request/sec (x 1000)

Baseline MC 1T
Baseline CH 1T

1ms burst MC 1T
1ms burst CH 1T

50ms burst MC 1T
50ms burst CH 1T

Figure 9: The effect of skewed request inter-arrival times on
tail latency. X-axis in logscale.

provement relative to baseline Memcached while serving 10,000
requests per second.

The presence of skewed request inter-arrival times means that,
although the average request load might be manageable, there are
short periods of request overload. Depending on how skewed the
request pattern is, there might be several back-to-back requests
followed by a gap in requests. From the server point of view,
skewed workload induces a momentary state of overload, which re-
sults in application-layer queueing. To study this behavior, we use
the methodology described by Banga and Druschel [9], originally
presented in the context of Web server evaluation. Here, multiple
clients generate traffic at a fixed rate, punctuated with synchronized
short bursty periods. These bursty periods are characterized by two
parameters: 1) the ratio of the maximum request rate in the burst
and the overall average request rate, and 2) the duration of bursts.
We fix the maximum-to-average request ratio to be 10, and limit
the burst duration such that each burst has 10% of the total requests
sent. Lastly, we ensure that the number of requests in a burst are
fixed across the experiments.

Figure 9 shows the 99th percentile of latency for baseline Mem-
cached (MC) as well as Chronos-MC (CH) across a range of burst
periods. We see that in the baseline even short burst durations of

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

9
9

th
 P

er
ce

n
ti

le
 L

at
en

cy
 (

in
 u

s)

Request/sec (x 1000)

1ms burst 2T
1ms burst 4T
5ms burst 2T
5ms burst 4T
50ms burst 2T
50ms burst 4T

Figure 10: The latency with two threaded (2T) and four
threaded (4T) instances of Chronos-MC under skewed request
arrivals.

 0

 500

 1000
Epoch duration 10us

 0

 500

 1000

L
at

en
cy

 (
in

 u
s)

Epoch duration 100us

 0

 500

 1000

5 10 15 20 25

Time (in ms)

Static Mapping

Figure 11: An evaluation of the responsiveness of the Chronos
load balancer module across two time epochs (10µs on top and
100µs in the middle) and the static mapping strategy (on the
bottom).

1ms impose significant levels of application queueing at 10,000
requests per second, driving latency up to over a millisecond. Note
that without request inter-arrival time skew, baseline Memcached
supported up to 120,000 requests per second with sub 500µs la-
tency. (Figure 7). For Chronos-MC under a uniform request inter-
arrival rate, latency stays largely flat up through 500,000 requests
per second (Figure 7). However, just as in the baseline Memcached
case, inducing request bursts drives up latency significantly while
reducing the throughput of the system. For 1ms bursts, the request
rate is reduced to 40,000 requests per second for keeping the la-
tency under 30µs, with an observed latency of up to 1ms at over
150,000 requests per second. For longer burst durations, this effect
is more pronounced.

Figure 10 shows how load balancing with more threads improves
the performance of Chronos-MC. We consider request loads up
to 1M requests per second forwarded to Chronos instances with
either two or four application threads, each running on its own
CPU core. As in the single-thread case, bursts in request rates
arriving faster than the effective service time of the application

induce application queueing, and thus increases in delay. This
effect is more pronounced at higher loads, given that there is less
time between arriving requests. Adding additional cores mitigates
the effect of bursts, but for sufficient burst lengths queueing will
still build up with any fixed number of CPU cores.

5.4 Skew in Request Access Pattern
In this section, we show how loadbalancing with Chronos at fine

grained time scales significantly reduces the latency variation with
skewed request access patterns. Results are shown in Figure 11.
The Chronos load balancing module periodically reapportions re-
quests across application threads to evenly balance the load. As
described in Section 4.2.3, the load balancer works in concert with
the NIC-level hash function to ensure that requests are sent to ap-
plication threads in such a way as to minimize or eliminate lock
contention. Thus, with Chronos-MC, it is expected that the load
balancer assigns requests across application threads such that each
thread sees a strict partition of vBuckets.

We run the following experiment, to evaluate the responsiveness
of Chronos-MC to request access skew. We set up a Chronos-MC
instance with four threads and configure the load balancing module
with an epoch time of 10µs and 100µs. A single open-loop client
sends requests at a rate of 1 million requests/sec. Keys are chosen at
random at the start of each client epoch such that three keys receive
99% of the requests. This pattern is motivated by the desire to have
three of the four cores handling the hot/popular keys, and have the
remaining core receive all of the cold/unpopular keys. We know
by construction that without an adaptive load balancing module,
each time the client epoch changes overload would occur since two
or more popular keys would be handled by a single application
thread, and the rate of requests is sufficiently high as to induce
overload in that case. Note the client and the server epochs are
not synchronized. We repeat the same experiment for a Chronos
instance with static mapping of keys to threads. Figure 11 shows
the latency distribution for Chronos at 10µs (top), 100µs (middle),
and for the static mapping (bottom). At the start of each epoch,
we see occasional long spikes in the 100 µs case before it is able
to adapt to shifts in workload. The static mapping approach fails
when two or more popular keys are served from the same appli-
cation since these types of co-located request hotspots cannot be
migrated to other cores. Unlike previous figures which show only
99th percentile latency number, Figure 11 shows all data-points
including few outliers.

Discussion: Due to our reliance on partitioning to spread load
across cores, there are certain cases that will cause the load balanc-
ing element in Chronos to perform poorly. When a single key in a
partition, or the partition itself, becomes hugely popular, the rate of
requests to that partition can overload a single thread. This happens
when the request load approaches 500,000 requests/sec (which is
greater than 5 Gbps of traffic). When a single key becomes that
popular, we are limited in our response, and would suggest that
the application itself be re-architected, since such a high get/set
load on a single key would not be practical at scale. However, it is
more likely that several keys in the same partition might together
induce such a high load. We can alleviate this condition by moving
those common keys to separate vBuckets, or by modifying the re-
quest handling logic in Chronos to allow the server to split and join
buckets based on load demands. We have not yet evaluated these
possible features.

5.5 Chronos Web Search
As described in Section 4.3, the Web search application main-

tains a hash table to store the term and associated document, pro-

Component # Switches
Mean
latency (µs)

99 %ile
latency (µs)

OpenFlow 1 65 140
OpenFlow 16 120 250

Chronos-OF 1 8 50
Chronos-OF 16 10 51

Table 2: Latency of the OpenFlow Controller.

tected by read/write locks. In Chronos-WS, we further divide this
index into twelve partitions based on the term, and store them in
separate tables protected by a mutex. We evaluate Chronos in com-
parison to an RCU lock-based implementation of the hash table that
was provided by Triplett et al [37]. Additionally, we modified this
implementation to work with the same user-level networking API
used in Chronos to provide a direct comparison. For search we used
10-byte keys and 1400-byte values in the inverted index list, with
a get/set requests ratio equal to 9:1. Figure 4 shows the results of
our evaluation. Even with an implementation based on read/write
locks and RCU, we see higher latency compared to Chronos-WS
with large number of clients. The performance improvement of
Chronos-WS would be higher if the workload shifted towards a
more write-heavy mixture. The reason for this is that these prim-
itives are optimized for read-heavy workloads and Chronos makes
no such assumption about workload type. The RCU implementa-
tion based on user-level APIs scales up to 550K requests/sec, while
the Chronos implementation scales up to 1M requests/sec. At low
request rates and low levels of concurrency, the RCU implementa-
tion has similar performance as Chronos-WS. But as we increase
the number of clients, and thus load on the server, the application
latency increases from 2-3 microseconds to 6-11 microseconds for
RCU-WS. This small variation in application latency results in a
large end-to-end latency at high loads due to increased queuing
delay.

5.6 Chronos OpenFlow Controller
Finally, we show that the Chronos based implementation of the

OpenFlow controller (Chronos-OF), which uses TCP for handling
requests, reduces the mean latency for request processing by a fac-
tor of 12x as compared to baseline.

For this experiment, we replaced the default kernel TCP network
implementation in the controller with the user-level TCP imple-
mentation provided by our NIC vendor in our evaluation testbed.
The controller software itself is single-threaded. For generating
load, we used the Cbench benchmark [18]. Cbench emulates switches
that send packet-in messages to the controller, and waits for flow
modification rules to be inserted in the switch forwarding tables in
response. The controller implements a learning switch application,
which generates appropriate forwarding rules in response to packet-
in events. We simulated 16 switches supporting 1M MAC entries
as suggested in [18]. To measure the controller latency, we installed
a packet mirroring rule described in Section 3.

Table 2 shows the results of this experiment. We see that re-
moving the kernel has the predictable effect of reducing average
latency. However, the effect on the 99th percentile of latency is that
the difference between one emulated switch and sixteen emulated
switches is only a single microsecond, as compared to 110 mi-
croseconds in the baseline case. We expect Chronos-OF controller
performance to improve further by enabling load balancing for a
multi-threaded implementation.

 0

 100

 200

 300

330 500 650 1000 1111

M
ed

ia
n

 L
at

en
cy

 (
in

 u
s)

Request/sec (x 1000)

Local domain memory access
Remote domain memory access

Figure 12: The effect of NUMA-awareness on the Chronos-
Memcached load balancer. There is little difference at lower
levels of utilization, and an approximate doubling of latency
(and latency variation) at the highest levels of utilization.

6. DISCUSSION
To achieve high efficiency, data center networks often rely on

multi-tenancy and server virtualization to maximize resource us-
age. The feasibility of Chronos depends on being able to support
these techniques in in a variety of different data center environ-
ments.

In a large, multi-tenancy data center, latency sensitive applica-
tions share the same endhost with other jobs. A key question for
Chronos is what impact this sharing has on latency, and in particular
tail latency. To gain some insight into this question, we setup an
experiment to test this condition. We first set up a Memcached
server, and started a background job that receives traffic from six
clients in parallel. Each client sends traffic at rate of 440Mb/s to this
background job. We instantiated 21 Memslap clients, and measured
the latency of both a stock Memcached server, and Chronos, with
and without the presence of the background traffic. These particular
rates and numbers of clients were chosen to induce sufficient load
on the system to evaluate this question. In the case of baseline
Memcached, the presence of background traffic resulted in more
than a 60% increase in tail latency, while Chronos-MC’s perfor-
mance was not affected by the presence of the background traffic.
This initial result indicates that Chronos can provide low latency in
the presence of multi-tenancy, and we seek to further evaluate this
in more depth in future work.

Supporting virtualization in the data center and consolidating
multiple VMs on a single endhost have become common place to-
day. NIC hardware has been augmented to support SR-IOV, or Sin-
gle Root I/O Virtualization. SR-IOV allows a guest OS to directly
configure access to virtualized instances of the NIC without going
through the hypervisor. Although not implemented in this work,
we expect Chronos to leverage these features to provide predictable
latency in a virtualized setting.

6.1 Effect of NUMA-awareness on latency
Modern processor architectures employ non-uniform memory

access (NUMA) architectures, in which memory is partitioned across
two or more banks, or domains. The access time to a core-local
domain is lower than that of a remote domain, and so it is advan-
tageous to organize memory to be as domain-local as possible. To
evaluate the effect of NUMA on Chronos, we setup an experiment

as follows. We choose a Chronos-based Memcached instance with
four threads, of which two are in one NUMA domain, and two
are in the other. We then adjust the memory allocator to allocate
domain-local memory for each thread. We compared the observed
latency of this with a second Chronos-based Memcached instance
in which the allocator selects entirely domain-remote memory for
each thread.

Figure 12 show the latency in these two cases. At low to medium
rates of requests, there is little difference between the two policies.
As the request rate exceed 1 million requests per second, there is
a divergence in which the NUMA-remote instance imposes almost
double the latency of the NUMA-local instance, with significantly
high latency variation.

In our testbed, each NUMA domain contained four cores, which
alone were enough to saturate the 10 Gbps NIC. Thus, it is not
necessary to load balance requests across NUMA domains to meet
throughput requirements. So ensuring that the load balancer re-
stricts requests to NUMA-local cores is adequate for current link
speeds. Furthermore, when running the server in low or moderate
request loads, the effect is minimal in either case. Thus NUMA
effects are not significant to the efficiency of Chronos, however
their effect might become more pronounced in environments uti-
lizing virtual machines. The specific issue arises when cores from
different NUMA domains are assigned to the same virtual machine,
causing high memory latencies and increasing tail latency.

7. RELATED WORK
Optimized Network/OS interfaces: A key bottleneck that our

work addresses is the kernel and network stack overhead. We share
this goal with several academic and industrial efforts. User-level
networking was developed to support applications which emit pack-
ets at a high rate, and to reduce latency in the kernel [16, 11,
39]. Arsenic [30] proposed installing custom filters in NIC for
packet classification. While user-level networking APIs are inte-
gral to the early partitioning aspect of our design, Chronos also
facilitates per-CPU core load balancing and removing application
lock contention through deep-packet inspection using these APIs
to reduce application tail latency. Myrinet [12] and Infiniband [21]
are examples of low-latency, high bandwidth interconnect fabrics
that are often used in high-performance computing clusters. While
Myrinet and Infiniband address a key bottleneck, Chronos focuses
on commodity Ethernet switching and eliminates latency across
the entire end-to-end application path, including application lock
contention and hotspots.

Operating System Improvements: There have been various
proposals on improving the scalability and performance of the Linux
kernel. Corey [13] identified numerous instances of in-kernel data
structure sharing which reduced potential parallelism across threads,
and proposed address ranges, kernel cores, and sharing to improve
kernel performance. In [31], the authors conclude that locking and
blocking system calls were significant causes of application perfor-
mance degradation. Boyd-Wickizer et al. [14] study the scalability
of seven applications, including Memcached, across a 48-core ma-
chine and conclude that by modifying the kernel and applications,
it is possible to remove many performance bottlenecks. However,
their study focused on throughput, and not latency. With Chronos,
we find that even for single-threaded processing the kernel intro-
duces significant additional latency, even after accounting for these
recent improvements. An analysis of latency in the endhost net-
work stack was carried out by Larsen et al. [24].

Lock Contention: Lock contention has long been recognized
as a key impediment to performance of shared memory and multi-

threaded applications [36]. Replacing mutex locks with read/write
locks may have little advantage [17]. Triplett et al. [37] propose
a dynamic concurrent hash table with resizing using a read-copy
update (RCU) mechanism. This mechanism works well in situa-
tions where the number of reads is significantly greater than writes.
VoltDB [38] and H-Store [22] partition application state in mem-
ory across the CPU cores to achieve scalability. Here, incoming
requests are partitioned at the application layer after arriving to the
process. Our approach is different in that we rely on deep-packet
capabilities of the NIC hardware to partition requests before they
arrive to the OS or application.

Data center Networks & Applications: New transport proto-
cols like DCTCP [5] and QCN [4] reduce in-network queueing
and congestion, further reducing network latency. Recent propos-
als such as DeTail [40] and HULL [6] also focus on reducing la-
tency by performing in-network traffic management. There have
been numerous efforts to improve Memcached’s throughput [10,
33], though none specifically look at improving predictable tail la-
tency. Previous efforts to improve performance of Memcached over
RDMA protocol [8, 23] required redesigning Memcached from the
ground up and works only for a single threaded implementation.

8. CONCLUSIONS
The scale of modern data centers enables developers to deploy

applications across thousands of servers. However, that same scale
imposes high monetary, energy, and management costs, placing
increased importance on efficiency. To meet strict SLA demands,
developers typically run services at low utilization to rein in la-
tency outliers, which decreases efficiency. In this work, we present
Chronos, an architecture to reduce data center application latency
especially at the tail. Chronos removes significant sources of ap-
plication latency by removing the kernel and network stack from
the critical path of communication by partitioning requests based
on application-level packet header fields in the NIC itself, and by
load balancing requests across application instances via an in-NIC
load balancing module. Through an evaluation of Memcached,
OpenFlow, and a Web search application implemented on Chronos,
we show that we can reduce latency by up to a factor of twenty,
while significantly reining in latency outliers. Reducing the tail-
latency of data center applications results in improving efficiency
of data center applications since more clients can be served from
a limited set of resources. The result is a system that can enable
more throughput by increasing predictability, a key contribution to
improving data center efficiency.

9. ACKNOWLEDGMENTS
We would like to thank Abhijeet Bhorkar and Mohammad Naghsh-

var for input on our analytical analysis, as well as the anonymous
reviewers of this work for their valuable insight and advice. We
would also like to thank authors of [37] for sharing RCU imple-
mentation. This work was supported in part by NSF Grants CSR-
1116079 and MRI CNS-0923523, and a NetApp Faculty Fellow-
ship.

10. REFERENCES
[1] Memslap Benchmark. http:

//docs.libmemcached.org/memslap.html.
[2] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.

Schreiber. HyperX: Topology, Routing, and Packaging of
Efficient Large-Scale Networks. In SC, 2009.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In
SIGCOMM, 2008.

[4] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha,
R. Pan, B. Prabhakar, and M. Seaman. Data Center Transport
Mechanisms: Congestion Control Theory and IEEE
Standardization. In CCC, 2008.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center
TCP (DCTCP). In SIGCOMM, 2010.

[6] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,
and M. Yasuda. Less is More: Trading a little Bandwidth for
Ultra-low Latency in the Data Center. In NSDI, 2012.

[7] A. Allen. Probability, Statistics, and Queueing Theory with
Computer Science Applications. Academic Press, 1978.

[8] J. Appavoo, A. Waterland, D. Da Silva, V. Uhlig,
B. Rosenburg, E. Van Hensbergen, J. Stoess, R. Wisniewski,
and U. Steinberg. Providing a Cloud Network Infrastructure
on a Supercomputer. In HPDC, 2010.

[9] G. Banga and P. Druschel. Measuring the Capacity of a Web
Server. In USENIX USITS, 1997.

[10] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele.
Many-Core Key-Value Store. In IGCC, 2011.

[11] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten,
and J. Sandberg. Virtual Memory Mapped Network Interface
for the SHRIMP Multicomputer. In ISCA, 1994.

[12] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
Gigabit-per-Second Local Area Network. IEEE Micro, 1995.

[13] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F.
Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai,
Y. Zhang, and Z. Zhang. Corey: An Operating System for
Many Cores. In OSDI, 2008.

[14] S. Boyd-Wickizer, A. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An Analysis of
Linux Scalability to Many Cores. In OSDI, 2010.

[15] S. Brin and L. Page. The Anatomy of a Large-scale
Hypertextual Web Search Engine. In WWW Conference,
1998.

[16] P. Buonadonna, A. Geweke, and D. Culler. An
Implementation and Analysis of the Virtual Interface
Architecture. In SC, 1998.

[17] B. Cantrill and J. Bonwick. Real-world concurrency. Queue,
6(5):16–25, Sept. 2008.

[18] OpenFlow Cbench Controller Benchmark.
http://www.openflow.org/wk/index.php/
Oflops#Benchmarks.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with YCSB.
In SoCC, 2010.

[20] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier. Cluster-Based Scalable Network Services. In
SOSP, 1997.

[21] Infiniband. http://www.infinibandta.org/.
[22] E. P. Jones, D. J. Abadi, and S. Madden. Low Overhead

Concurrency Control for Partitioned Main Memory
Databases. In SIGMOD, 2010.

[23] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang,
M. Wasi-ur Rahman, N. S. Islam, X. Ouyang, H. Wang,
S. Sur, and D. K. Panda. Memcached Design on High
Performance RDMA Capable Interconnects. In ICPP, 2011.

[24] S. Larsen, P. Sarangam, and R. Huggahalli. Architectural
breakdown of end-to-end latency in a TCP/IP network. In
Computer Architecture and High Performance Computing,
2007. SBAC-PAD 2007. 19th International Symposium on,
pages 195 –202, Oct. 2007.

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2):69–74, Mar. 2008.

[26] Memcached. http://memcached.org/.
[27] Mutrace.

http://git.0pointer.de/?p=mutrace.git.
[28] Myricom Sniffer.

http://www.myricom.com/sniffer.html.
[29] OpenFlow Controller Source Code.

http://www.openflow.org/wp/downloads/.
[30] I. Pratt and K. Fraser. Arsenic: A User-Accessible Gigabit

Ethernet Interface. In INFOCOM, 2001.
[31] Y. Ruan and V. S. Pai. The Origins of Network Server

Latency & the Myth of Connection Scheduling. In
SIGMETRICS, 2004.

[32] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and
J. K. Ousterhout. It’s Time for Low Latency. In HotOS, 2011.

[33] P. Saab. Scaling Memcached at Facebook.
http://facebook.com/note.php?note_id=
39391378919, 2008.

[34] SMC SMC10GPCIe-10BT Network Adapter.
http://www.smc.com/files/AY/DS_
SMC10GPCIe-10BT.pdf.

[35] SolarFlare Solarstorm Network Adapters. http://www.
solarflare.com/Enterprise-10GbE-Adapters.

[36] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield.
Analyzing Lock Contention in Multithreaded Applications.
In PPoPP, 2010.

[37] J. Triplett, P. E. McKenney, and J. Walpole. Resizable,
Scalable, Concurrent Hash Tables via Relativistic
Programming. In USENIX ATC, 2011.

[38] VoltDB. http://voltdb.com/.
[39] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A

User-Level Network Interface for Parallel and Distributed
Computing. In SOSP, 1995.

[40] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. H. Katz.
Detail: Reducing the flow completion time tail in datacenter
networks. In SIGCOMM, 2012.

