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Abstract

Lambert’s model for body reflection is widely used in com-
puter graphics. It is used extensively by rendering tech-
niques such as radiosity and ray tracing. For several real-
world objects, however, Lambert’s model can prove to be
a very inaccurate approximation to the body reflectance.
While the brightness of a Lambertian surface is indepen-
dent of viewing direction, that of a rough surface increases
as the viewing direction approaches the light source direc-
tion. In this paper, a comprehensive model is developed that
predicts body reflectance from rough surfaces. The surface
is modeled as a collection of Lambertian facets. It is shown
that such a surface is inherently non-Lambertian due to the
foreshortening of the surface facets. Further, the model ac-
counts for complex geometric and radiometric phenomena
such as masking, shadowing, and interreflections between
facets. Several experiments have been conducted on sam-
ples of rough diffuse surfaces, such as, plaster, sand, clay,
and cloth. All these surfaces demonstrate significant devi-
ation from Lambertian behavior. The reflectance measure-
ments obtained are in strong agreement with the reflectance
predicted by the model.

CR Descriptors: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism; 1.3.3 [Computer
Graphics]: Picture/ITmage Generation; J.2 [Physical Sci-
ences and Engineering]: Physics.

Additional Key Words: reflection models, Lambert’s
model, BRDF, rough surfaces, moon reflectance.

1 Introduction

An active area of research in computer graphics involves the
creation of realistic images. Images are rendered using one
of two well-known techniques, namely, ray tracing [34] or
radiosity [6]. The quality of a rendered image depends to a
great extent on the accuracy of the reflectance model used.
In the past decade, computer graphics has witnessed the ap-
plication of several physically-based reflectance models for
image rendering (see [7], [16], [9], [13]). Reflection from a
surface can be broadly classified into two categories: surface
reflectance which takes place at the interface between two
media with different refractive indices and body reflectance

which is due to subsurface scattering. Most of the previous
work on physically-based rendering has focused on accurate
modeling of surface reflectance. They predict ideal specular
reflection from smooth surfaces as well as wide directional
lobes from rougher surfaces [13]. In contrast, the body com-
ponent has most often been assumed to be Lambertian. A
Lambertian surface appears equally bright from all direc-
tions. This model was advanced by Lambert [18] more than
200 years ago and remains one of the most widely used mod-
els in computer graphics.

For several real-world objects, however, the Lambertian
model can prove to be a poor and inadequate approxima-
tion to body reflection. Figure 1(a) shows a real image of
a clay vase obtained using a CCD camera. The vase is il-
luminated by a single distant light source in the same di-
rection as the sensor. Figure 1(b) shows a rendered image
of a vase with the same shape as the one shown in Figure
1(a). This image is rendered using Lambert’s model, and the
same illumination direction as in the case of the real vase.
As expected, Lambert’s model predicts that the brightness

Figure 1: (a) Real image of a cylindrical clay vase. (b) Image
of the vase rendered using the Lambertian reflectance model. In
both cases, illumination is from the viewing direction.

of the cylindrical vase will decrease as we approach the oc-
cluding boundaries on both sides. However, the real vase
is very flat in appearance with image brightness remaining
almost constant over the entire surface. The vase is clearly
not Lambertian . This deviation from Lambertian behav-
ior can be significant for a variety of real-world materials,
such as, concrete, sand, and cloth. An accurate model that
describes body reflection from such commonplace surfaces
is imperative for realistic image rendering.

INote that the real vase does not have any significant specular
component, in which case, a vertical highlight would have appeared
in the middle of the vase.



What makes the vase shown in Figure 1(a) non-
Lambertian? We show that the primary cause for this de-
viation is the roughness of the surface. Figure 2 illustrates
the relationship between magnification and reflectance (also
see [16]). The reflecting surface may be viewed as a collec-
tion of planar facets. At high magnification, each picture
element (rendered pixel) includes a single facet. At lower
magnifications, each pixel can include a large number of
facets. Though the Lambertian assumption is often reason-
able when looking at a single planar facet, the reflectance is
not Lambertian when a collection of facets is imaged onto a
single pixel. This deviation is significant for very rough sur-
faces, and increases with the angle of incidence. In this pa-
per, we develop a comprehensive model that predicts body
reflectance from rough surfaces, and provide experimental
results that support the model. Lambert’s model is an in-
stance, or limit, of the proposed model.

pixel

Figure 2: The roughness of a surface causes its reflectance prop-
erties to vary with image magnification.

The topic of rough surfaces has been extensively studied
in the areas of applied physics, geophysics and engineer-
ing. The development of the first few models were primarily
motivated to describe the non-Lambertian behavior of the
moon. Some of the models are empirical such as Opik’s
model [22] and its modification by Minnaert [19]. These
models do not have any physical foundation and have been
found to be incorrect. In contrast, Smith [29] and Buhl et al.
[3] attempted to develop theoretical models for reflectance
from rough surfaces. Smith modeled the rough surface as
a random process and assumed each point on the surface
to be Lambertian in reflectance. Smith’s analysis, however,
was confined to the plane of incidence and is not easily ex-
tensible to reflections outside this plane. Moreover, Smith’s
model does not account for interreflection effects. Buhl et al.
[3] modeled the surface as a collection of spherical cavities.
They analyzed interreflections using this surface model, but
did not present a complete model that accounts for masking
and shadowing effects for arbitrary angles of reflection and
incidence. Subsequently, Hering and Smith [14] derived a
detailed thermal emission model for surfaces modeled as a
collection of V-cavities. However, all cavities are assumed to
be identical and aligned in the same direction, namely, per-
pendicular to the source-viewer plane. Further, the model
is limited to the plane of incidence.

More recently, body reflection has emerged as a topic of
interest in the graphics community. Poulin and Fournier [26]
derived a reflectance function for anisotropic surfaces mod-
eled as a collection of parallel cylindrical sections. Address-
ing a different cause for non-Lambertian reflectance from
the one discussed here, Hanrahan and Krueger [10] used lin-
ear transport theory to analyze subsurface scattering from
a multi-layered surface. Other researchers in graphics have

numerically pre-computed fairly complex reflectance func-
tions and stored the results in the form of look-up tables or
coeflicients of spherical harmonic expansion (for examples,
see [4] [16] [33]). This approach, though practical in many
instances, does not replace the need for accurate analytical
reflectance models.

The reflectance model developed here can be applied to
isotropic as well as anisotropic rough surfaces, and can han-
dle arbitrary source and viewer directions. Further, it takes
into account complex geometrical effects such as masking,
shadowing, and interreflections between points on the sur-
face. We begin by modeling the surface as a collection of
long symmetric V-cavities. Each V-cavity has two oppos-
ing facets and each facet is assumed to be much larger than
the wavelength of incident light. This surface model was
used by Torrance and Sparrow [30] to describe incoherent
directional component of surface reflection from rough sur-
faces. Here, we assume the facets to be Lambertian 2. First,
we develop a reflectance model for anisotropic surfaces with
one type (facet-slope) of V-cavities, with all cavities aligned
in the same direction on the surface plane. Next, this re-
sult is used to develop a model for the more general case of
isotropic surfaces that have normal facet distributions with
zero mean and arbitrary standard deviation. The standard
deviation parameterizes the macroscopic roughness of the
surface. The fundamental result of our work is that the body
reflectance from rough surfaces is not uniform but increases
as the viewer moves toward the source direction. This devi-
ation from Lambert’s law is not predicted by any previous
reflectance model.

We present several experimental results that demon-
strate the accuracy of our model. The experiments were
conducted on real samples such as sand, plaster, and cloth.
In all cases, reflectance predicted by the model was found
to be in strong agreement with measurements. The derived
model has been implemented as a shading function in Ren-
derMan [32]. We conclude by comparing real and rendered
images of a variety of objects. These results demonstrate
two points that are fundamental to computer graphics. (a)
Several real-world objects have body reflection components
that are significantly non-Lambertian. (b) The model pre-
sented in this paper can be used to create realistic images
of a variety of real-world objects.

2 Surface Roughness Model

The effects of shadowing, masking and interreflection need
to be analyzed in order to obtain an accurate reflectance
model. To accomplish this; we use the roughness model
proposed by Torrance and Sparrow [30] that assumes the
surface to be composed of long symmetric V-cavities (see
Figure 3). Each cavity consists of two planar facets. The
width of each facet is assumed to be small compared to its
length. We assume each facet area da is small compared to
the area dA of the surface patch that is imaged by a single
sensor pixel. Hence, each pixel includes a very large number
of facets. Further, the facet area is large compared to the
wavelength A of incident light, and therefore geometrical
optics can be used to derive the reflectance model. The
above assumptions can be summarized as: N« da < dA

We denote the slope and orientation of each facet in the
V-cavity model as (8q, ¢a), where 8, is the polar angle and

2This assumption does not limit the implications of the reflectance
model presented here. The non-Lambertian behavior reported here is
expected for a wide range of local body reflectance models (see [5], for
example) since surface roughness is shown to play a dominant role.
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Figure 3:  Surface modeled as a collection of V-cavities.

¢q 18 the azimuth angle. Torrance and Sparrow have as-
sumed all facets to have equal area da. They use the distri-
bution N (84, ¢a) to represent the number of facets per unit
surface area that have the normal @ = (64, ¢.). Here, we
use a probability distribution to represent the fraction of the
surface area that is occupied by facets with a given normal.
This is referred to as the slope-area distribution P(84, ¢a).
The facet-number distribution and the slope-area distribu-
tion are related as follows:

P(8a,da) = N(8a, da)da cos b, (1)

The slope-area distribution is easier to use than the facet-
number distribution in the following model derivation. For
isotropic surfaces, N(8a,¢s) = N(8.) and P(8a,¢a) =
P(8.), since the distributions are rotationally symmetric
with respect to the global surface normal 7 (Figure 3).

3 Reflectance Model

In this section, we derive a reflectance model for rough dif-
fuse surfaces. For lack of space, only important results are
discussed. For details we refer the reader to Oren and Na-
yar [23, 24]. During the derivation, we will draw on several
well-known radiometric definitions that are given in [20].

Consider a surface area dA that is imaged by a single
sensor element in the direction % = (6,, ¢,) and illuminated
by a distant point light source in the direction § = (6;, ¢:).
The area dA is composed of a very large number of sym-
metric V-cavities. Each V-cavity is composed of two facets
with the same slope but facing in opposite directions. Con-
sider the flux reflected by a facet with area dea and normal
@ = (fa, ¢a). The projected area on the surface occupied by
the facet is da cos§, (see Figure 3). Thus, while computing
the contribution of the facet to the radiance of the surface
patch, we need to use the projected area da cosé, and not
the actual facet area da. This radiance contribution is what
we call the projected radiance of the facet:

d®y(8a, da)

(dacosb,) cos b, dw,

Lrp(ea, ¢a) = (2)
where, dw, is the solid angle subtended by the sensor optics.
For ease of description, we have dropped the source and
viewing directions from the notations for projected radiance
and flux. Now consider the slope-area distribution of facets
given by P(8a, ¢a). The total radiance of the surface can be
obtained as the aggregate of Lrp(Ha, ¢a) over all facets on
the surface:

Lo(8y, 603 0i, ¢:) = (3)

2 2m
L/) L/) P80, 6a) Lrp(Ba, da) sin b dda dbs
6,=0 ¢,

=0

3.1 Model for Uni-directional Single-Slope
Distribution

The first surface type we consider has all facets with the
same slope 8,. Further, all V-cavities are aligned in the same
direction; azimuth angles of all facets are either ¢, or ¢+ 7.
Consider a Lambertian facet with albedo p, that is fully illu-
minated (no shadowing) and is completely visible (no mask-
ing) from the sensor direction. The radiance of the facet
is proportional to its irradiance and is equal to £E(a, ¢a).
The irradiance of the facet is F (84, ¢o) = Fo< §,a >, where,
Fo 1s the irradiance when the facet is illuminated head-
on (iLe. § = n), and <, > denotes the dot product be-
tween two vectors. Using the definition of radiance [20],
the flux reflected by the facet in the sensor direction is:
d®, = ZEy<3§,4><%,a>. Substituting this expression in
(2), we get:

Lrp(ea, ¢a) = _EO

The above expression clearly illustrates that the projected
radiance of a tilted Lambertian facet is not equal in all view-
ing directions.

Geometric Attenuation Factor: If the surface is illu-
minated and viewed from the normal direction (8 = % =
ft), all facets are fully illuminated and visible. For larger
angles of incidence and reflection, however, facets are shad-
owed and masked by adjacent facets (see Figure 4). Both
these geometrical phenomena reduce the projected radiance
of the facet. This reduction in brightness can be derived
using geometry and incorporated into a single term, called
the geometrical attenuation factor (GAF), that lies between
zero and unity. Several derivations of the GAF have been
presented [30] [2] [23]. The final result can be compactly
represented as:

(5)
2<E,A><E,A> 2<D,A><aE, >
<3,4> ' <B,a>

GAF = Min |:1,Max |:07

The above GAF is valid for any facet normal, a, not neces-
sarily the bisector of the angle between the source and the
sensor direction.

A
X

(a) Shadowing

(b) Masking

(c) Interreflection

Figure 4: Shadowing, masking and interreflection in a V-cavity

Projected Radiance and GAF: The projected radiance
of a Lambertian facet is obtained by multiplying the pro-
jected radiance given by (4) with the GAF given by (5).

<5a><b,a>

1 _ E N
Lip(fas ¢a) = ﬂ_Eo <d’ﬁ><ﬁ’ﬁ>gAT(s,v,a) (6)

Note that the projected radiance is denoted as Lip; the su-
perscript is used to indicate that the radiance is due to direct
illumination by the source. In the following discussion, we
will use Lip to denote radiance due to interreflections.

Interreflection Factor: We have the task of modeling in-
terreflections in the presence of masking and shadowing ef-

fects. In the case of Lambertian surfaces, the energy in an



incident light ray diminishes rapidly with each interreflection
bounce. Therefore, we model only two-bounce interreflec-
tions and ignore subsequent bounces. Since the length [ of
the V-cavity is much larger than its width w, i.e. I > w, it
can be viewed as a one-dimensional shape with translational
symmetry. For such shapes, the two-bounce interreflection
component can be determined as an integral over the one-
dimensional cross-section of the shape [28]:

L) =2 [ K'(z,0) L1 (v)dy (7)

where z and y are the shortest distances of facet points from
the intersection of the two facets (see Figure 4(c)). K'is the
kernel for the translational symmetry case and is derived in

[15] and [8] to be:

7 sin? (264) Ty (8)
2 (z2 + 2zycos (264) + y2)2/2

We know that the orientation of the considered facet is ¢ =
(fa, #a) and the orientation of the adjacent facet is @' =
(a4, ¢a + 7). The limits of the integral in the interreflection
equation are determined by the masking and shadowing of
these two facets. Let m, be the width of the facet which is
visible to the viewer, and m?® be the width of the adjacent
facet that is illuminated. From the definitions of radiance
and projected radiance we get:

K/(x, y) =

I<a,d> Y
L7, = : L(z)d 9
rp da<a,ﬁ><ﬁ,ﬁ>/m=m r(o)de ®)
Using the following change of variables: t = Z ; r = £ the
radiance due to two-bounce interreflections given by (7) and
(9) can be written as:

2 P
Lyp = (;)
Usmg 8) the above integral is evaluated as:

(r,t)dr dt = (11)

my

[

My
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m

) wv ) - d(l’ 1):|

where: d(z,y) = \/x2 +2zycos(20.) + y2. We refer to
right hand side of equation (11) as the interreflection factor
(ZF). The total projected radiance of the facet is the sum
of two the components, the radiance due to direct source
illumination given by equation (6) and the above interreflec-
tion component. Therefore, Lyp(8a, da) ip(ea,qﬁa) +

ip(ea, ¢a). The uni-directional single-slope surface consid-
ered here has only two types of facets with normals (8q, ¢a)
and (8a, ¢4 + 7). Hence, the radiance of the surface for any
given source and sensor directions is simply the average of
the projected radiances of the two facet types.

w

3.2 Model for Isotropic Single-Slope Dis-

tribution
All facets on this isotropic surface have the same slope 6,
but are uniformly distributed in ¢,. As we did in the previ-
ous section, we evaluate the projected radiance as the sum of
two components: projected radiance due to direct illumina-
tion, Lip(ea), and projected radiance due to interreflection,
Lip(ea). In the previous section, we calculated each of the
two components for a single facet with normal & = (84, ¢a).

2, S8, 8><8,0> ”>/ / (t,7)dr dt (10)
<a,n><b,7> =z me

Therefore, the radiance of the isotropic surface is determined
as an integral of the projected radiance over ¢q.:

2m

1

Lip(ea) = .

L:"p(eaa ¢G)d¢a
Pa=0
Given a source direction (91',(;51') and a sensor direction
(8-, ¢r), we first find the ranges of facet orientation ¢, for
which the facets are masked, shadowed, masked and shad-
owed, and neither masked nor shadowed?. This requires
careful geometrical analysis. Then the above integral is de-
composed into parts corresponding to masking/shadowing
ranges. Fach range is evaluated using the corresponding
radiance expressions (6) and (11).We refer the interested
reader to Oren and Nayar [23, 24] for details.

(i=1,2) (12)

3.3 Model for Gaussian Slope-Area Distri-
bution

The surface considered above consists of V-cavities with a
single facet slope. Realistic surfaces can be modeled only
if the slope-area distribution P(fq, ¢4) includes a variety of
different facet slopes. If the surface roughness is isotropic,
the slope-area distribution can be described using a sin-
gle parameter namely 6, since the facets are uniformly dis-
tributed in ¢,. The two components of the radiance of any
isotropic surface can therefore be determined as:

Li(0r,6:, 6, — ¢i) = /5 P(8.)L,(6.) sin 6, db, (13)
0 (1=1,2)

where L},(8.) (: = 1,2) are the projected radiance compo-
nents obtained in the previous section. Here, we assume
the i1sotropic distribution to be Gaussian with mean g and
standard deviation o, i.e. P(8q;0, ). Reasonably rough
surfaces can be described using a zero mean (g = 0) Gaus-
sian distribution: P(8.) = cexp (—93/202) where c is the
normalization constant.

3.4 Functional Approximation

The reflectance model is to be obtained by evaluating inte-
gral (13) using the results of section 3.2 and the Gaussian
distribution, P(f,;0,0). The resulting integral cannot be
easily evaluated. Therefore, we pursued a functional approx-
imation to the integral that is accurate for arbitrary surface
roughness and angles of incidence and reflection. In deriv-
ing this approximation, we carefully studied the functional
forms of L},(#.) (i =1,2) which were evaluated in the pre-
vious step (the details can be found in Oren and Nayar [23,
24]). This enabled us to identify basis functions that can
be used in the approximation. Then, we conducted a large
set of numerical evaluations of the integral in (13) by vary-
ing surface roughness o, the angles of incidence (§;, ¢;) and
reflection (8r, ¢,). These evaluations and the identified ba-
sis functions were used to arrive at an accurate functional
approximation for surface radiance. This procedure was ap-
plied independently to the source illumination component
as well as the interreflection component.

The final approximation results are given below. We de-
fine o« = Mazl6-,6;] and § = Min[6;,6;]. The source illu-
mination component of radiance of a surface with roughness
o is:

3Imagine a V-cavity rotated about the global surface normal for
any given source and sensor direction. Various masking/shadowing
scenarios can be visualized.



LI(6r,6:, ¢r — ¢i50) = LEg cosb; | C1(a) + (14)

cos (¢dr — ¢;)Caler; 85 dr — ¢i30) tan 5 +
(1= Jcos (67 — #)]) Ca (s B5) tan (“%ﬁ)]

where the coefficients are:
2

C = 1-05———
! o2 +0.33
o2 . .

0.45m sin o if cos (¢r — ¢;) > 0
Cy =

0.45% (sinoz - (%)3) otherwise

2
2
4
Oy = oaas| 7| ( 2P
o2 +0.09 72

The approximation to the interreflection component is:

Li(er,ei,(ZSr _¢laa') = (15)

2
a

) 2
P , _ _en( 2P
0.17 - Eo cos §; 21013 [1 cos (¢, (;51)( - ) :|

The two components are combined to obtain the total sur-
face radiance:

Lo(8,,0i,¢r — ¢i;0) = (16)
LN(B,,0i,¢r — di;0) + L2(0,,85, 6 — 6i50)

Finally, the BRDF of the surface is obtained from its radi-
ance and irradiance as f;(9,,6:, ¢r — ¢i;0) = Lo(05,8:, dr —
¢i;0) [ Eq cos ;. It is important to note that the approxima-
tion presented above obeys Helmholtz’s reciprocity principle
(see [1]) Also note that the above model reduces to the Lam-
bertian model when o = 0. Note that by substituting the
albedo as function of the wavelength, p(}), the dependency
of the model on the wavelength comes out explicitly.

In the next section, we present several experimental re-
sults that verify the above diffuse reflectance model. Here,
we give a brief illustration of the main characteristics of
the model. Figure 5 shows the reflectance predicted by the
model for a very rough surface with ¢ = 30° and p = 0.9.
The radiance L, in the plane of incidence (¢, = ¢;, ¢i+7) is
plotted as a function of the reflection angle 6. for incidence
angle §; = 75°. Two curves are shown in the figure, both
obtained by the numerical evaluation of the integral in (13).

The first curve (solid line) includes both direct illumina-
tion and interreflection components of radiance, while the
second (thin line) is only the direct illumination compo-
nent. Notice that these radiance plots deviate substantially
from Lambertian reflectance. Surface radiance increases as
the viewing direction approaches the source direction. The
curves can be divided into three sections. In the backward
(source) direction, the radiance is maximum and gets “cut-
off” due to strong masking effects when 6, exceeds 6;. This
cut-off occurs exactly at 8, = §; and is independent of rough-
ness. In the middle section of the plot, radiance varies ap-
proximately as a scaled tan 6, function with constant offset.
Finally, interreflections dominate in the forward direction
where most facets are self-shadowed and the visible facets
receive light primarily from adjacent facets. This is illus-
trated by the difference between the two curves.

In Figure 6(a), the effect of varying the incidence angle 6;
is shown. Here we have chosen to plot BRDF rather than
radiance to better illustrate the effect of varying 6;. It is

0.125 C+C,tan er

Lambertian
_____________________ D_Q75

strong
interreflection

-90 -75 -60 -45 -30 -15 15 30 45 60 75 9 I

forward backward

Figure 5: Diffuse reflectance in the plane of incidence for a sur-
face with ¢ = 30°, p = 0.90, and incidence angle §; = 75°. The
thin line is radiance due to direct illumination (without inter-
reflections).

Figure 6: (a) BRDF for different angles of incidence. (b)
Radiance outside the plane of incidence. In both plots, ¢ = 40°
and p = 0.9.

interesting to note that the model predicts near-Lambertian
behavior for very small incidence angles (91' ~ 0). This re-
sults from both facets of a V-cavity having nearly equal irra-
diance for small angles of incidence. As the incidence angle
increases, the backscatter phenomenon begins to dominate.
Figure 6(b) shows the effect of placing the sensor outside
the plane of incidence. When the sensor-normal plane is
perpendicular to the source-normal plane, the rough surface
again exhibits near-Lambertian characteristics.

3.5 Qualitative Model

In this section, we propose a further simplification to the re-
flectance model presented in the previous section. In order
to obtain this simplification, a slight sacrifice in accuracy
must be made. In return, some computations can be saved
during image rendering. The following simplified model was
arrived at by studying, through numerous simulations, the
relative significance of various terms in the functional ap-
proximation given by (14). The simulations showed that
coefficient C5 makes a relatively small contribution to the
total radiance. A simpler model is thus obtained by discard-
ing C3 and ignoring interreflections:

Lr(eraeia¢r_¢i§a') = (17)
%Eo cosbi(A+ BMagz [0, cos (¢, — ¢1):| sin a tan )

2
A=10-05—7
o2 +0.33

2
a

B=045————
a? +0.09



The two coefficients A and B are obtained directly from C}
and Oy, respectively. Note that the qualitative model also
reduces to the Lambertian model when o = 0.

4 Experimental Verification

We have conducted several experiments to verify the accu-
racy of the reflectance model. The experimental set-up ([23,
24]) used to measure the radiance of samples is shown in
figure 7.

°
light source

Figure 7: Sketch and photograph of the set-up used to measure
reflectance.

Figures 8 and 9 shows results obtained for samples of
wall plaster (A) and sand (B). The radiance of each sample
is plotted as a function of sensor direction 6, for different
angles of incidence #;. These measurements are made in the
plane of incidence (¢, = ¢; = 0). The measured bright-
ness values, shown as dots, are compared with those pre-
dicted by the model plotted as solid lines. For these two
samples (A and B), o and p were selected empirically to
obtain the best match between measured and predicted re-
flectance. Here, we have used the numerical evaluation of the
model (equation 13). For both samples, radiance increases
as the viewing direction ¢, approaches the source direction
g; (backward reﬂection). This is in contrast to the behavior
of rough specular surfaces that reflect more in the forward
direction, or Lambertian surfaces where radiance does not
vary with viewing direction. For both samples, the model
predictions and experimental measurements match remark-
ably well. In both cases, a small peak is noticed near the
source direction. This phenomenon is known as the opposi-
tion effect or retroreflection. It is a sharp peak close to the
source direction and is caused by a different backscattering
mechanism from the one described by our model. (see [12,
17, 31, 21, 27, 11]).

Figures 10 and 11 show results for a sample C (foam) and
sample D (cloth) that has not only a body reflectance com-
ponent but also a significant surface reflection component.
In this case, the reflectance model used is a linear combi-
nation of new model and the Torrance-Sparrow model [30]
that describes the incoherent directional component of sur-
face reflection and which is based on the same surface model
(long symmetric V-cavities): L, = ks L% + k. L%, where
L% and L¢ are the body and surface reflection components,
respectively. k; and k. are weighting coefficients for the two
components. For this experiment, we used the functional
approximation and the reflectance parameters o, p, ks, and
k. were estimated by fitting (using non-linear optimization)
the model to measured data. Additional experiments are
reported in Oren and Nayar [23].

Figure 8: Reflectance measurement and reflectance model (using
o = 30°, p = 0.90) plots for wall plaster (sample A). Radiance is
plotted as a function of sensor direction (HT) for different angles
of incidence (6; = 30°,45°,60°).
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+ 0.=60
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.= 75

Figure 9: Reflectance measurement and reflectance model (using
o = 35°, p = 0.80) plots for white sand (sample B).

Figure 10: Reflectance measurement and reflectance model (o =
20°, p = 0.8, ks /kp = 0.019) plots for foam (sample C).

r

Figure 11: Reflectance measurement and reflectance model (o =
42°, p = 0.75, ks /ky, = 0.085) plots for a cotton towel (sample
D).



5 Implications for Graphics

In this section, we describe the implications of the proposed
model for realistic rendering. Figure 12(a) shows a real im-
age of the rough cylindrical clay vase discussed in the in-
troduction. Figure 12(b) shows a rendered image of the
vase using the Lambertian model and its known geometry.
Clearly, this rendered image does not match the real im-
age of the vase. On the other hand, the appearance of the
rendered vase using the proposed reflectance model, shown
in Figure 12(c), closely resembles the real vase. The model
parameters p = 0.7 and o = 40° were chosen empirically to
obtain the best fit to the measured brightness values. Figure
13(a) compares brightness values along the cross-section of
the three different vase images in Figure 12. Tt is interesting
to note that the brightness of the real vase remains nearly
constant over most of the cross-section and drops quickly to
zero very close to the limbs. The proposed model does very
well in predicting this behavior, while the Lambertian model
produces large brightness errors. Figure 13(b) shows similar
plots for illumination from 20° to the right of the sensor. In
this case, brightness variation on the real vase is asymmet-
ric. Once again, the proposed model closely matches the real
image. However, the Lambertian model forces the bright-
ness close to the right limb of the vase to drop much faster
than in the real image. As a result, the brightness peak pre-
dicted by the Lambertian model is significantly away from
the actual peak.

- =

(a) Image (b) Lambertian (c) Model
Figure 12: Real image of a cylindrical clay vase compared with
images rendered using the Lambertian and proposed models. II-

lumination is from the camera direction.

Measurements

Brightness Brightness
Lambertian ey net S

Figure 13: Comparison between image brightness along the
cross-section of the real vase, and vases rendered using the Lam-
bertian and proposed models. (a) §; = 0°. (b) 6; = 20°.

The functional approximation, given by equation (14),
and the qualitative model, given by (17), are easily used
for realistic rendering. We have implemented the functional
approximation as a “shader” using the RenderMan shading
language [32]. Figure 14 shows spheres rendered using the
shader. In all four cases, the sphere is illuminated from
the viewer direction. In the first case, ¢ = 0, and hence the

sphere appears Lambertian. As the roughness increases, the
sphere begins to appear flatter. In the extreme roughness
case shown in Figure 14(d), the sphere appears like a flat
disc with near constant brightness. This phenomenon has
been widely observed and reported in the case of the full
moon ([25],[28]).

Finally, Figure 15 shows rendered images of a scene with
three matte objects, a vase, cylindrical block and a cube. In
Figure 15(a), all three objects have zero macroscopic rough-
ness, i.e. they are Lambertian. Illumination in this case is
from the viewer direction. Note that the vase and the cylin-
der have strong brightness variations, and the three visible
faces of the cube have distinctly different brightness val-
ues. In Figure 15(b), the scene is again illuminated from
the viewer direction, but the three objects have roughness
o = 30°. Consequently, the shading over the vase and the
cylinder is diminished considerably. Furthermore, the con-
trast between the flat and curved sections of the cylindri-
cal block and also the contrast between the three faces of
the cube are reduced substantially. It is important to note
that the moderate shading is achieved without any ambient
component in the illumination, but rather from modeling of
roughness effects.

6 Summary

In conclusion, we have developed a comprehensive model for
body reflectance from surfaces with macroscopic roughness.
A model was first derived for anisotropic surfaces that have
facets with only one slope. This result was used to develop a
model for isotropic surfaces with Gaussian slope-area distri-
bution. We have also presented a qualitative model for dif-
fuse reflection that has a simple functional form. Numerous
experiments were conducted to verify the reflectance mech-
anism described in this paper. Real and rendered images
of diffuse objects were compared to demonstrate that the
proposed model has important implications for computer
graphics.
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