Quality Improves with More Rays

<table>
<thead>
<tr>
<th>pixelsamples = 1</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 shadow ray</td>
<td>16 shadow rays</td>
</tr>
</tbody>
</table>

Sampling and Reconstruction

- An image is a 2D array of samples
- Discrete samples from real-world continuous signal
(Spatial) Aliasing

- Jaggies probably biggest aliasing problem

Sampling and Aliasing

- Artifacts due to undersampling or poor reconstruction
- Formally, high frequencies masquerading as low
- E.g. high frequency line as low freq jaggies

Image Processing pipeline
Motivation

- Formal analysis of sampling and reconstruction
- Important theory (signal-processing) for graphics
- Also relevant in rendering, modeling, animation
- Note: Fourier Analysis useful for understanding, but image processing often done in spatial domain

Ideas

- Signal (function of time generally, here of space)
- Continuous: defined at all points; discrete: on a grid
- High frequency: rapid variation; Low Freq: slow variation
- Images are converting continuous to discrete. Do this sampling as best as possible.
- Signal processing theory tells us how best to do this
- Based on concept of frequency domain Fourier analysis

Sampling Theory

- Analysis in the frequency (not spatial) domain
- Sum of sine waves, with possibly different offsets (phase)
- Each wave different frequency, amplitude

Fourier Transform

- Tool for converting from spatial to frequency domain

 \[f(x) = \sum_{u=-\infty}^{\infty} F(u)e^{2\pi iux} \]

 \[e^{2\pi iux} = \cos(2\pi ux) + i \sin(2\pi ux) \]

- Or vice versa

 \[i = \sqrt{-1} \]

- One of most important mathematical ideas

- Computational algorithm: Fast Fourier Transform

- One of 10 great algorithms scientific computing

- Makes Fourier processing possible (images etc.)

- Not discussed here, but look up if interested

\[
 f(x) = \sum_{u=-\infty}^{\infty} F(u)e^{2\pi iux} \\
 F(u) = \int_{-\infty}^{\infty} f(x)e^{-2\pi iux}dx
\]

Simple case, function sum of sines, cosines

\[
 f(x) = \sum_{u=-\infty}^{\infty} F(u)e^{2\pi iux} \\
 F(u) = \int_{-\infty}^{\infty} f(x)e^{-2\pi iux}dx
\]

Continuous infinite case

- Forward Transform: \(F(u) = \int_{-\infty}^{\infty} f(x)e^{-2\pi iux}dx \)
- Inverse Transform: \(f(x) = \int_{-\infty}^{\infty} F(u)e^{2\pi iux}du \)

Discrete case

- \(F(u) = \sum_{x=-\frac{N}{2}}^{\frac{N}{2}-1} f(x)\left[\cos\left(\frac{2\pi ux}{N}\right) - i \sin\left(\frac{2\pi ux}{N}\right) \right] \)
 \(0 \leq u \leq N - 1 \)
- \(f(x) = \frac{1}{N} \sum_{u=-\frac{N}{2}}^{\frac{N}{2}-1} F(u)\left[\cos\left(\frac{2\pi ux}{N}\right) + i \sin\left(\frac{2\pi ux}{N}\right) \right] \)
 \(0 \leq x \leq N - 1 \)
Fourier Transform: Examples 1

Single sine curve
(+constant DC term)

\[f(x) = \sum_{n=-\infty}^{\infty} F(u) e^{2\pi i u x} \]

\[F(u) = \int f(x) e^{-2\pi i u x} \, dx \]

Fourier Transform Examples 2

Forward Transform:

\[F(u) = \int f(x) e^{-2\pi i u x} \, dx \]

Inverse Transform:

\[f(x) = \int F(u) e^{2\pi i u x} \, du \]

Common examples

- \(f(x) \)
- \(\delta(x-x_0) e^{-2\pi i u x} \)
- \(1 \)
- \(\delta(u) \)
- \(e^{-\frac{\pi}{a} u^2} \)

Sampling Theorem, Bandlimiting

- A signal can be reconstructed from its samples, if the original signal has no frequencies above half the sampling frequency – Shannon
- The minimum sampling rate for a bandlimited function is called the Nyquist rate

Antialiasing

- Sample at higher rate
 - Not always possible
 - Real world: lines have infinitely high frequencies, can’t sample at high enough resolution
- Prefilter to bandlimit signal
 - Low-pass filtering (blurring)
 - Trade bluriness for aliasing

Fourier Transform Properties

- Forward Transform:
 \[F(u) = \int f(x) e^{-2\pi i u x} \, dx \]
- Inverse Transform:
 \[f(x) = \int F(u) e^{2\pi i u x} \, du \]
- Common properties
 - Linearity: \(F(a f(x) + b g(x)) = a F(f(x)) + b F(g(x)) \)
 - Derivatives: \(F(f'(x)) = \int f'(x) e^{-2\pi i u x} \, dx = 2\pi i u F(f(x)) \)
 - 2D Fourier Transform
 \[F(u,v) = \int f(x,y) e^{-2\pi i (u x + v y)} \, dx \, dy \]
 - Convolution (next)

Sampling Theorem, Bandlimiting

- A signal can be reconstructed from its samples, if the original signal has no frequencies above half the sampling frequency – Shannon

Antialiasing

- Sample at higher rate
 - Not always possible
 - Real world: lines have infinitely high frequencies, can’t sample at high enough resolution
- Prefilter to bandlimit signal
 - Low-pass filtering (blurring)
 - Trade bluriness for aliasing
Ideal bandlimiting filter

- Formal derivation is homework exercise
 - Frequency domain
 - Spatial domain

![Graph of ideal bandlimiting filter](image)

Convolution 1

- Spatial domain: output pixel is weighted sum of pixels in neighborhood of input image
 - Pattern of weights is the “filter”

![Convolution 1 example](image)

Convolution 2

- Example 1:

![Convolution 2 example](image)

Convolution 3

- Example 1:

![Convolution 3 example](image)

Convolution 4

- Example 1:

![Convolution 4 example](image)

Convolution 5

- Example 1:

![Convolution 5 example](image)
Convolution in Frequency Domain

Forward Transform:
\[F(u) = \int_{-\infty}^{\infty} f(x)e^{-2\pi iux}dx \]

Inverse Transform:
\[f(x) = \int_{-\infty}^{\infty} F(u)e^{2\pi iux}du \]

- Convolution (f is signal; g is filter [or vice versa])
 \[h(y) = \int f(x)g(y-x)dx = \int g(x)f(y-x)dx \]
 \(h = f \ast g \) or \(f \otimes g \)
- Fourier analysis (frequency domain multiplication)
 \(H(u) = F(u)G(u) \)

Practical Image Processing

- Discrete convolution (in spatial domain) with filters for various digital signal processing operations
- Easy to analyze, understand effects in frequency domain
 - E.g. blurring or bandlimiting by convolving with low pass filter

Point vs Area Sampling

- Uniform Supersampling
 - Increasing the number of samples moves each copy of the spectra further apart, thus there is less overlap
 - This reduces, but does not eliminate, aliasing
 \[\text{Pixel} = \sum \text{Sample} \]

Non-uniform Sampling

- Uniform sampling
 - The spectrum of uniformly spaced samples is also a set of uniformly spaced spikes
 - Multiplying the signal by the sampling pattern corresponds to placing a copy of the spectrum at each spike (in freq. space)
 - Aliases are coherent, and very noticeable

- Non-uniform sampling
 - Samples at non-uniform locations have a different spectrum; a single spike plus noise
 - Sampling a signal in this way converts aliases into broadband noise
 - Noise is incoherent, and much less objectionable
 - May cause error in the integral

Jittered Sampling

- Add uniform random jitter to each sample
Jittered vs Uniform Supersampling

Distribution of Extrafoveal Cones

Poisson Disk Sampling