To Do

- Start doing HW 1
 - Time is short, but needs only little code [Due Jan 23]
 - Ask questions or clear misunderstandings by next lecture

- Specifics of HW 1
 - Last lecture covered basic material on transformations in 2D
 - Likely need this lecture to understand full 3D transformations
 - Last lecture had full derivation of 3D rotations. You only need final formula
 - gluLookAt derivation this lecture helps clarifying some ideas
 - Read and post on Piazza re questions
 - Any remaining issues with edX edge graders, submission of homeworks?

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Homogeneous Coordinates

- Add a fourth homogeneous coordinate (w=1)
- 4x4 matrices very common in graphics, hardware
- Last row always 0 0 0 1 (until next lecture)

\[
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 & 5 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix} =
\begin{pmatrix}
 x + 5 \\
 y \\
 z \\
 1
\end{pmatrix}
\]

Translation

- E.g. move x by +5 units, leave y, z unchanged
- We need appropriate matrix. What is it?

\[
\begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} =
\begin{pmatrix}
 ? \\
 x \\
 y \\
 z
\end{pmatrix} =
\begin{pmatrix}
 x + 5 \\
 y \\
 z
\end{pmatrix}
\]

Representation of Points (4-Vectors)

Homogeneous coordinates

- Divide by 4th coord (w) to get \(P = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \) (inhomogeneous) point
- Multiplication by \(w > 0 \), no effect
- Assume \(w \geq 0 \). For \(w > 0 \), normal finite point. For \(w = 0 \), point at infinity (used for vectors to stop translation)
Advantages of Homogeneous Coords

- Unified framework for translation, viewing, rotation...
- Can concatenate any set of transforms to 4x4 matrix
- No division (as for perspective viewing) till end
- Simpler formulas, no special cases
- Standard in graphics software, hardware

General Translation Matrix

\[T = \begin{pmatrix}
1 & 0 & 0 & T_x \\
0 & 1 & 0 & T_y \\
0 & 0 & 1 & T_z \\
0 & 0 & 0 & 1
\end{pmatrix} \]

\[P' = TP = \begin{pmatrix}
x + T_x \\
y + T_y \\
z + T_z \\
1
\end{pmatrix} = P + T \]

CombiningTranslations, Rotations

- Order matters!! TR is not the same as RT (demo)
- General form for rigid body transforms
- We show rotation first, then translation (commonly used to position objects) on next slide. Slide after that works it out the other way
- Demos with applet, homework 1

Combining Translations, Rotations

\[P' = (TR)P = MP = RP + T \]

\[M = \begin{pmatrix}
R_{11} & R_{12} & R_{13} & 0 \\
R_{21} & R_{22} & R_{23} & 0 \\
R_{31} & R_{32} & R_{33} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \]

\[R_{11} \quad R_{12} \quad R_{13} \quad T_x \\
R_{21} \quad R_{22} \quad R_{23} \quad T_y \\
R_{31} \quad R_{32} \quad R_{33} \quad T_z \\
0 \quad 0 \quad 0 \quad 1
\]

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Slides for this part courtesy Prof. O’ Brien
Hierarchical Scene Graph

Drawing a Scene Graph
- Draw scene with pre-and-post-order traversal
 - Apply node, draw children, undo node if applicable
- Nodes can carry out any function
 - Geometry, transforms, groups, color, …
- Requires stack to “undo” post children
 - Transform stacks in OpenGL
- Caching and instancing possible
- Instances make it a DAG, not strictly a tree

Example Scene-Graphs

Outline
- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Normals
- Important for many tasks in graphics like lighting
- Do not transform like points e.g. shear
- Algebra tricks to derive correct transform

Finding Normal Transformation
\[t \rightarrow Mt \quad n \rightarrow Qn \quad Q = ? \]
\[n^T t = 0 \]
\[n^T Q^T Mt = 0 \quad \Rightarrow \quad Q^T M = I \]
\[Q = (M^{-1})^T \]
Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Coordinate Frames

- All of discussion in terms of operating on points
- But can also change coordinate system
- Example, motion means either point moves backward, or coordinate system moves forward

Coordinate Frames: In general

- Can differ both origin and orientation (e.g. 2 people)
- One good example: World, camera coord frames (H1)

Coordinate Frames: Rotations

- Geometric Interpretation 3D Rotations
 - Rows of matrix are 3 unit vectors of new coord frame
 - Can construct rotation matrix from 3 orthonormal vectors

\[
R_{uvw} = \begin{pmatrix}
 x_u & y_u & z_u \\
 x_v & y_v & z_v \\
 x_w & y_w & z_w
\end{pmatrix}
\]

\[
u = x_u X + y_v Y + z_w Z
\]
Overview

Axis-Angle formula (summary)

\[(b \rightarrow a)_{ROT} = (l_{3 \times 3} \cos \theta - aa^T \cos \theta)b + (A^* \sin \theta)b\]

\[(b \rightarrow a)_{ROT} = (aa^T)b\]

\[R(a, \theta) = l_{3 \times 3} \cos \theta + aa^T (1 - \cos \theta) + A^* \sin \theta\]

\[R(a, \theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + (1 - \cos \theta) \begin{pmatrix} x^2 & xy & xz \\ xy & y^2 & yz \\ xz & yz & z^2 \end{pmatrix} + \sin \theta \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}\]

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- `gluLookAt (quickly)`

Case Study: Derive gluLookAt

Defines camera, fundamental to how we view images

- `gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)`
- Camera is at eye, looking at center, with the up direction being up

- May be important for HW1
- Combines many concepts discussed in lecture
- Core function in OpenGL for later assignments

Steps

- `gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)`
- Camera is at eye, looking at center, with the up direction being up

- *First, create a coordinate frame for the camera*
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Constructing a coordinate frame?

We want to associate \(w \) with \(a \), and \(v \) with \(b \)

- But \(a \) and \(b \) are neither orthogonal nor unit norm
- And we also need to find \(u \)

\[w = a\]

\[u = b \times w\]

\[v = w \times u\]

from lecture 2

Constructing a coordinate frame

\[w = a\]

\[u = \frac{b \times w}{\| b \times w \|}\]

\[v = w \times u\]

- We want to position camera at origin, looking down \(-Z\) dirn
- Hence, vector \(a \) is given by \(\text{eye} - \text{center} \)
- The vector \(b \) is simply the \(\text{up} \) vector
Steps

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up

- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

\[
R_{uvw} = \begin{bmatrix}
 x_u & y_u & z_u \\
x_v & y_v & z_v \\
x_w & y_w & z_w
\end{bmatrix}
\]

\[
u = x_uX + y_uY + z_uZ
\]

Steps

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up

- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Translation

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up

- Cannot apply translation after rotation
- The translation must come first (to bring camera to origin) before the rotation is applied

Combining Translations, Rotations

\[
P' = (RT)P = MP = R(P + T) = RP + RT
\]

\[
M = \begin{bmatrix}
R_{11} & R_{12} & R_{13} & 0 \\
R_{21} & R_{22} & R_{23} & 0 \\
R_{31} & R_{32} & R_{33} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & T_x \\
0 & 1 & 0 & T_y \\
0 & 0 & 1 & T_z \\
0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
R_{11} & R_{12} & R_{13} & T_{x3} \\
R_{21} & R_{22} & R_{23} & T_{y3} \\
R_{31} & R_{32} & R_{33} & T_{z3} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

gluLookAt final form

\[
\begin{bmatrix}
x_u & y_u & z_u & 0 \\
x_v & y_v & z_v & 0 \\
x_w & y_w & z_w & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & -e_x \\
0 & 1 & 0 & -e_y \\
0 & 0 & 1 & -e_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
x_u & y_u & z_u & -xe_u - ye_v - ze_w \\
x_v & y_v & z_v & -xe_u - ye_v - ze_w \\
x_w & y_w & z_w & -xe_u - ye_v - ze_w \\
0 & 0 & 0 & 1
\end{bmatrix}
\]