Outline of Unit

- Bezier curves (last time)
- deCasteljau algorithm, explicit, matrix (last time)
- Polar form labeling (blossoms)
- B-spline curves

- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Survey Feedback

- Idea of Blossoms/Polar Forms
 - (Optional) Labeling trick for control points and intermediate deCasteljau points that makes thing intuitive
 - E.g. quadratic Bezier curve $F(u)$
 - Define auxiliary function $f(u_1,u_2)$ [number of args = degree]
 - Points on curve simply have $u_1=u_2$ so that $F(u) = f(u,u)$
 - And we can label control points and deCasteljau points not on curve with appropriate values of (u_1,u_2)

- Geometric interpretation: Quadratic
 - Points on curve simply have $u_1=u_2$ so that $F(u) = f(u,u)$
 - f is symmetric $f(0,1) = f(1,0)$
 - Only interpolate linearly between points with one arg different
 - $f(0,u) = (1-u) f(0,0) + u f(0,1)$ Here, interpolate $f(0,0)$ and $f(0,1)=f(1,0)$
Polar Forms: Cubic Bezier Curve

Geometric Interpretation: Cubic

Why Polar Forms?

- Simple mnemonic: which points to interpolate and how in deCasteljau algorithm
- Easy to see how to subdivide Bezier curve (next) which is useful for drawing recursively
- Generalizes to arbitrary spline curves (just label control points correctly instead of 00 01 11 for Bezier)
- Easy for many analyses (beyond scope of course)

Subdividing Bezier Curves

Drawing: Subdivide into halves (\(u = \frac{1}{2}\)) Demo: hw3
- Recursively draw each piece
- At some tolerance, draw control polygon
- Trivial for Bezier curves (from deCasteljau algorithm): hence widely used for drawing

Geometrically
Subdivision in deCasteljau diagram

Summary for HW 3 (with demo)

- Bezier2 (Bezier discussed last time)
- Given arbitrary degree Bezier curve, recursively subdivide for some levels, then draw control polygon
- Generate deCasteljau diagram; recursively call a routine with left edge and right edge of this diagram
- You are given some code structure; you essentially just need to compute appropriate control points for left, right

DeCasteljau: Recursive Subdivision

Input: Control points \(C_i \) with \(0 \leq i \leq n \) where \(n \) is the degree.
Output: \(L_0, R_1 \) for left and right control points in recursion.

1. for (level = n; level > 0; level --) {
2. if (level == n) \{ // Initial control points
3. \forall i : 0 \leq i \leq n : pl[0][i] = C_i ; continue ; \}
4. for (i = 0; i < level; i + +)
5. \[pl[i+1][i] = \frac{1}{2} \{ pl[0][i] + pl[0][i+1] \} ; \]
6. \}
7. \forall i : 0 \leq i \leq n : L_i = pl[0][i] ; R_n = pl[1][i] ;

- DeCasteljau (from last lecture) for midpoint
- Followed by recursive calls using left, right parts

Outline of Unit

- Bezier curves (last time)
- deCasteljau algorithm, explicit, matrix (last time)
- Polar form labeling (blossoms)
- B-spline curves

- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Bezier: Disadvantages

- Single piece, no local control (move a control point, whole curve changes) [Demo of HW 3]
- Complex shapes: can be very high degree, difficult
- In practice, combine many Bezier curve segments
 - But only position continuous at join since Bezier curves interpolate end-points (which match at segment boundaries)
 - Unpleasant derivative (slope) discontinuities at end-points
 - Can you see why this is an issue?

B-Splines

- Cubic B-splines have \(C^2 \) continuity, local control
- 4 segments / control point, 4 control points/segment
- Knots where two segments join: Knotvector
- Knotvector uniform/non-uniform (we only consider uniform cubic B-splines, not general NURBS) Demo of HW 3
Polar Forms: Cubic Bspline Curve
- Labeling little different from in Bezier curve
- No interpolation of end-points like in Bezier
- Advantage of polar forms: easy to generalize

Uniform knot vector:
-2, -1, 0, 1, 2, 3
Labels correspond to this

deCasteljau: Cubic B-Splines
- Easy to generalize using polar-form labels
- Impossible remember without

Explicit Formula (derive as exercise)
\[F(u) = [u^3 \ u^2 \ u \ 1] M \]
\[M = \frac{1}{6} \begin{bmatrix} 1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \]

Summary of HW 3
- BSpline Demo hw3
- Arbitrary number of control points / segments
 - Do nothing till 4 control points (see demo)
 - Number of segments = # cpts – 3
- Segment A will have control pts A,A+1,A+2,A+3
- Evaluate Bspline for each segment using 4 control points (at some number of locations, connect lines)
- Use either deCasteljau algorithm (like Bezier) or explicit form [matrix formula on previous slide]
- Questions?