Computer Graphics

CSE 167 [Win 19], Lecture 1: Overview and History
Ravi Ramamoorthi
http://viscomp.ucsd.edu/classes/cse167/wi19

Goals

- **Systems**: Write complex 3D graphics programs (real-time scene in OpenGL, offline raytracer)
- **Theory**: Mathematical aspects and algorithms underlying modern 3D graphics systems
- This course is *not* about the specifics of 3D graphics programs and APIs like Maya, Alias, DirectX but about the concepts underlying them.

Instructor

Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir

- PhD Stanford, 2002. PhD thesis developed “Spherical Harmonic Lighting” widely used in games (e.g. Halo series), movies (e.g. Avatar), etc. (Adobe, ...)
- At Columbia 2002-2008, UC Berkeley 2009-2014
- “Monte Carlo denoising” inspired raytracing offline, real-time
- At UCSD since Jul 2014: Director, Center for Visual Computing
- https://www.youtube.com/watch?v=qpyCgXqXOe7
- Have taught Computer Graphics 10+ times
- Computer Graphics online MOOC (CSE 167x) has had 100,000+ registrations, 500,000 video views. Finalist for two inaugural edX Prizes. Will use edX edge, auto-feedback

Course Staff

- Ravi Ramamoorthi
- Teaching Assistants:
 - Lifan Wu (will also maintain feedback servers)
 - Tiancheng Sun
 - Alex Kuznetsov

Why Study 3D Computer Graphics?

- Applications (discussed next)
- Fundamental Intellectual Challenges

Some content inspired by Pat Hanrahan from Stanford’s CS148
Entertainment

Movies: Brave, Pixar 2012

Entertainment

Games: Halo 3, Bungie 2007

Lighting Simulation

Interior Design

Automobile Visualization

Computer Aided Design

Mechanical CAD
Architectural CAD
Electronics CAD
Casual Users

Interiors Professional

Google Sketchup

Visualization: Science and Medicine

Visible Human Project: University of Hamburg

Virtual Reality

- VR for design and entertainment
- Simulators: Surgical, Flight, Driving, Spacecraft
Digital Visual Media
- From text to images to video (to 3D?)
- Image and video processing and photography
- Multimedia computers, tablets, phones
- Flickr, YouTube, WebGL
- Real, Virtual Worlds (Google Earth, Second Life)
- Electronic publishing
- Online gaming
- 3D printers and fabrication

Why Study 3D Computer Graphics?
- Applications
- Fundamental Intellectual Challenges
 - Create and interact with realistic virtual world
 - Requires understanding of all aspects of physical world
 - New computing methods, displays, technologies
- Technical Challenges
 - Math of (perspective) projections, curves, surfaces
 - Physics of lighting and shading
 - 3D graphics software programming and hardware

3D Graphics Pipeline
- Modeling
- Animation
- Rendering

Curves for Modeling
- Rachel Shiner, Final Project Spring 2010

3D Graphics Pipeline
- HW 1: Transformations (Jan 23)
 Place objects in world, view them
 Simple viewer for a teapot

- HW 3: Curves (Feb 27)
 Bezier and B-Spline curves
 To model and draw objects

- HW 2: Scene Viewer (Feb 15)
 View scene, Lighting and Shading
 (with GLSL programmable shaders)

- HW 3: Curves (Feb 27)
 Bezier and B-Spline curves
 To model and draw objects

- HW 4: RayTracer (Mar 18)
 Realistic images with ray tracing
 two basic approaches: rasterize
 And raytrace images [HW 2,4]
Logistics
- **Website**: http://viscomp.ucsd.edu/classes/pge167wi19 has most of the information (look at it carefully)
- **We will be leveraging MOOC infrastructure in a SPOC**
 - Please sign up for account at edX edge, join course, DEMO
 - edX edge is compulsory for most assignments, feedback systems
 - Optional for video lectures (class may differ a bit, more), problems
 - Must still submit “official” CSE 167 assignment (see website)
 - Please do ask us if you are confused; we are here to help
 - No required texts: OpenGL programming guide, GLSL optional
- **Office hours:** Tu/Thu 1-2pm
 - See website for sections, TA office hours. **Sign up for sections!**
- **Course newsgroup** on Piazza
- **Website** for late, collaboration policy, etc
- **Questions?**

Innovation: Feedback Servers
- Feedback/Grading servers for all homeworks
- Submit images and/or code, compare to original
 - Program generates difference images, report url
 - Can get feedback multiple times, submit final url
 - All (except curves homework 3) run on edX edge
- "Feedback" not necessarily grading
 - Can run extra test cases, look at code, grade fairly
 - But use of feedback servers/edX edge is mandatory
- Will test out immediately with HW 0 images
 - HW 1 - 2 will have both code and image feedbacks
 - Can use any (laptop/desktop) computer. We also try to have the basement labs fully set up.

Online Lectures
- Online lectures and screencasts for most course:
 - http://viscomp.ucsd.edu/classes/pge167wi19/lecture.html
 (with English and Chinese subtitles (courtesy XuetangX))
 - Review for CSE 167 (but still have regular classes)
 - For general interest (share with non-CS 167 students)
- Originally recorded in 2012 for MOOC offering
 - CAVEAT: Does not include all material (curves)
 - Was updated in 2017 for more recent OpenGL
 - Same as video lectures on edX edge (some errata)
- Currently view lectures as complementary
 - Hence, viewing them optional (e.g. miss a class)
 - Please note caveats; "official" CSE 167 is in class
- May separately have UCSD screencasts

This is a Modernized Course
- Modern 3D Graphics Programming with GPUs
 - Modern OpenGL (3+), GLSL 330 core
 - Real-time feedback servers for all homeworks
- GLSL + Programmable Shaders from HW 1
- Should be very portable, but need to set up your environment, compilation framework (HW 0)

Demo of edX edge, Feedbacks

Image Synthesis Examples

Collage from 2007

Innovation: Feedback Servers

Feedback/Grading servers for all homeworks

Submit images and/or code, compare to original

Program generates difference images, report url
Can get feedback multiple times, submit final url
All (except curves homework 3) run on edX edge

"Feedback" not necessarily grading
Can run extra test cases, look at code, grade fairly
But use of feedback servers/edX edge is mandatory

Will test out immediately with HW 0 images
HW 1 - 2 will have both code and image feedbacks
Can use any (laptop/desktop) computer. We also try to have the basement labs fully set up.

Online Lectures

Online lectures and screencasts for most course:

- http://viscomp.ucsd.edu/classes/pge167wi19/lecture.html
 (with English and Chinese subtitles (courtesy XuetangX))
- Review for CSE 167 (but still have regular classes)
- For general interest (share with non-CS 167 students)

Originally recorded in 2012 for MOOC offering
CAVEAT: Does not include all material (curves)
Was updated in 2017 for more recent OpenGL
Same as video lectures on edX edge (some errata)
Currently view lectures as complementary
Hence, viewing them optional (e.g. miss a class)
Please note caveats; "official" CSE 167 is in class

May separately have UCSD screencasts
Workload

- Lots of fun, rewarding but may involve significant work
- 4 programming projects (+HW 0); almost all are time-consuming (individual except HW 4). START EARLY!!
- Course will involve understanding of mathematical, geometrical concepts taught (tested on midterm)
 - No final; will do a take-home small assignment instead
- Grade mostly programming, weights on website
 - Ignore weighting on edX site, we weight as on CSE 167 site
- Prerequisites: Solid C/C++/Java/Python programming background. Linear algebra (review on Thu) and general math skills. No knowledge of graphics/OpenGL needed.
 - Should be able to pick up C/C++, and look up some OpenGL
- Should be a difficult, but fun and rewarding course

CSE 167 is only a first step

- *If you enjoy CSE 167 and do well:*
 - In Spring: CSE 190 (VR course; Schulze)
 - Next winter: CSE 165 (3DUI), 169 (Animation)
 - Graduate: CSE 274 (Topics), many 291s

To Do

- Look at website
- Various policies for course. E-mail if confused.
- Sign up for edX edge, Piazza, etc.
- Skim assignments if you want. All are ready
- Assignment 0, Due Jan 16 next week (see website). [both parts needed, total 10 points]
- Set up compilation framework in HW 0, feedback
- Any questions?

History

- Brief history of significant developments in field
- End with a video showcasing graphics

![Display](Manchester Mark I)

The term Computer Graphics was coined by William Fetter of Boeing in 1960
First graphic system in mid 1950s USAF SAGE radar data (developed MIT)

![Display](Xerox Star)

How far we’ve come: TEXT

From Text to GUs

- Invented at PARC circa 1975. Used in the Apple Macintosh, and now prevalent everywhere.

![Display](Windows 1.0)
Drawing: Sketchpad (1963)
- Sketchpad (Sutherland, MIT 1963)
- First interactive graphics system (VIDEO)
- Many concepts for drawing in current systems
 - Pop up menus
 - Constraint-based drawing
 - Hierarchical Modeling

Paint Systems
- Nowadays, image processing programs like Photoshop can draw, paint, edit, etc.

Image Processing
- Digitally alter images, crop, scale, composite
- Add or remove objects
- Sports broadcasts for TV (combine 2D and 3D processing)

Paint Systems
- Nowadays, image processing programs like Photoshop can draw, paint, edit, etc.

Modeling
- Spline curves, surfaces: 70s – 80s
- Utah teapot: Famous 3D model
- More recently: Triangle meshes often acquired from real objects

Rendering: 1960s (visibility)
- Roberts (1963), Appel (1967) - hidden-line algorithms
- Sutherland (1974) - visibility = sorting

Rendering: 1960s (visibility)
- Roberts (1963), Appel (1967) - hidden-line algorithms
- Sutherland (1974) - visibility = sorting

Rendering: 1970s (lighting)
- 1970s - raster graphics
 - Blinn (1974) - curved surfaces, texture
 - Catmull (1974) - 2-buffer hidden-surface algorithm

Images from F+DH, Pixar’s Shutterbug
Slide ideas for history of Rendering courtesy Marc Levoy.
Rendering (1980s, 90s: Global Illumination)

<table>
<thead>
<tr>
<th>Early 1980s - Global Illumination</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Whitted (1980) - Ray tracing</td>
</tr>
<tr>
<td>- Goral, Torrance et al. (1984) - Radiosity</td>
</tr>
<tr>
<td>- Kajiya (1986) - The rendering equation</td>
</tr>
</tbody>
</table>

History of Computer Animation

- 10 min clip from video on history of animation
 - http://www.youtube.com/watch?v=LzZwiLUsx1g

- Covers sketchpad, animation, basic modeling, rendering
- A synopsis of what this course is about
- (watch offline if short on time)