Outline of Unit

- Bezier curves (last time)
- deCasteljau algorithm, explicit, matrix (last time)
- Polar form labeling (blossoms)
- B-spline curves

Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Idea of Blossoms/Polar Forms

- (Optional) Labeling trick for control points and intermediate deCasteljau points that makes thing intuitive
 - E.g. quadratic Bezier curve $F(u)$
 - Define auxiliary function $f(u_1,u_2)$ [number of args = degree]
 - Points on curve simply have $u_1 = u_2$, so that $F(u) = f(u,u)$
 - And we can label control points and deCasteljau points not on curve with appropriate values of (u_1,u_2)

 $f(0,1) = f(1,0)$
 $f(0,0) = F(0)$
 $f(1,1) = F(1)$
 $f(u,u) = F(u)$

Geometric interpretation: Quadratic

Polar Forms: Cubic Bezier Curve
Geometric Interpretation: Cubic

- Why Polar Forms?
 - Simple mnemonic: which points to interpolate and how in deCasteljau algorithm.
 - Easy to see how to subdivide Bezier curve (next) which is useful for drawing recursively.
 - Generalizes to arbitrary spline curves (just label control points correctly instead of 00 01 11 for Bezier).
 - Easy for many analyses (beyond scope of course).

Subdividing Bezier Curves

- Drawing: Subdivide into halves (u = ½) Demo: hw3
 - Recursively draw each piece.
 - At some tolerance, draw control polygon.
 - Trivial for Bezier curves (from deCasteljau algorithm): hence widely used for drawing.

Why specific labels/control points on left/right?
- How do they follow from deCasteljau?

Geometrically

- Geometrically
 - Subdivision in deCasteljau diagram
 - These (interior) points don’t appear in subdivided curves at all.
 - Left part of Bezier curve (000, 00u, 0uu, uuu) Always left edge of deCasteljau pyramid.
 - Right part of Bezier curve (uuu, 1uu, 11u, 111) Always right edge of deCasteljau pyramid.
Summary for HW 3 (with demo)

- Bezier2 (Bezier discussed last time)
- Given arbitrary degree Bezier curve, recursively subdivide for some levels, then draw control polygon
- Generate deCasteljau diagram; recursively call a routine with left edge and right edge of this diagram
- You are given some code structure; you essentially just need to compute appropriate control points for left, right

DeCasteljau: Recursive Subdivision

Input: Control points \(C_i \) with \(0 \leq i \leq n \) where \(n \) is the degree.
Output: \(L_i, R_i \) for left and right control points in recursion.

1. \(\text{for (level = n ; level > 0 ; level --) } \{
2. \quad \text{if (level == n) \{ // Initial control points
3. \quad \quad \forall i : 0 \leq i \leq n : p_i^{(0)} = C_i ; \text{continue ;} \}
4. \quad \text{for (i = 0 ; i < level ; i + +)
5. \quad \quad p_i^{(level)} = \frac{1}{2} \cdot (p_i^{(level-1)} + p_{i+1}^{(level-1)}) ;
6. \}}
7. \forall i : 0 \leq i \leq n : L_i = p_i^0 ; \quad R_i = p_i^n ;

- DeCasteljau (from last lecture) for midpoint
- Followed by recursive calls using left, right parts

Outline of Unit

- Bezier curves (last time)
- deCasteljau algorithm, explicit, matrix (last time)
- Polar form labeling (blossoms)
- B-spline curves

- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Bezier: Disadvantages

- Single piece, no local control (move a control point, whole curve changes) [Demo of HW 3]
- Complex shapes: can be very high degree, difficult
- In practice, combine many Bezier curve segments
 - But only position continuous at join since Bezier curves interpolate end-points (which match at segment boundaries)
 - Unpleasant derivative (slope) discontinuities at end-points
 - Can you see why this is an issue?

B-Splines

- Cubic B-splines have \(C^2 \) continuity, local control
- 4 segments / control point, 4 control points/ segment
- Knots where two segments join: Knotvector
- Knotvector uniform/non-uniform (we only consider uniform cubic B-splines, not general NURBS)

Polar Forms: Cubic Bspline Curve

- Labeling little different from in Bezier curve
- No interpolation of end-points like in Bezier
- Advantage of polar forms: easy to generalize

Uniform knot vector:
\(-2, -1, 0, 1, 2, 3\)
Labels correspond to this
Summary of HW 3

- B-Spline Demo hw3
- Arbitrary number of control points / segments
 - Do nothing till 4 control points (see demo)
 - Number of segments = # cpts - 3
- Segment A will have control pts A,A+1,A+2,A+3
- Evaluate Bspline for each segment using 4 control points (at some number of locations, connect lines)
- Use either deCasteljau algorithm (like Bezier) or explicit form [matrix formula on previous slide]
- Questions?