Weather Forecast for Dummies

- Let’s predict weather:
 - Given today’s weather only, we want to know tomorrow’s
 - Suppose weather can only be {Sunny, Cloudy, Raining}

- The “Weather Channel” algorithm:
 - Over a long period of time, record:
 - How often S followed by R
 - How often S followed by S
 - Etc.
 - Compute percentages for each state:
 - P(R|S), P(S|S), etc.
 - Predict the state with highest probability!
 - It’s a Markov Chain

Markov Chain

\[
\begin{pmatrix}
0.3 & 0.6 & 0.1 \\
0.4 & 0.3 & 0.3 \\
0.2 & 0.4 & 0.4
\end{pmatrix}
\]

What if we know today and yesterday’s weather?

Text Synthesis

- [Shannon,’48] proposed a way to generate English-looking text using N-grams:
 - Assume a generalized Markov model
 - Use a large text to compute prob. distributions of each letter given N-1 previous letters
 - Starting from a seed repeatedly sample this Markov chain to generate new letters
 - Also works for whole words

WE NEED TO EAT CAKE

Mark V. Shaney (Bell Labs)

- Results (using alt.singles corpus):
 - "As I've commented before, really relating to someone involves standing next to impossible."
 - "One morning I shot an elephant in my arms and kissed him."
 - "I spent an interesting evening recently with a grain of salt"
Texture

- Texture depicts spatially repeating patterns
- Many natural phenomena are textures

| radishes | rocks | yogurt |

Texture Synthesis

- Goal of Texture Synthesis: create new samples of a given texture
- Many applications: virtual environments, hole-filling, texturing surfaces

The Challenge

- Need to model the whole spectrum: from repeated to stochastic texture

| repeated | stochastic | Both? |

Efros & Leung Algorithm

- Assuming Markov property, compute $P(p|N(p))$
 - Building explicit probability tables infeasible
 - Instead, we search the input image for all similar neighborhoods — that’s our pdf for p
 - To sample from this pdf, just pick one match at random

Some Details

- Growing is in “onion skin” order
 - Within each “layer”, pixels with most neighbors are synthesized first
 - If no close match can be found, the pixel is not synthesized until the end
- Using Gaussian-weighted SSD is very important
 - to make sure the new pixel agrees with its closest neighbors
 - Approximates reduction to a smaller neighborhood window if data is too sparse

Neighborhood Window

- Gaussian-weighted SSD
 - To make sure the new pixel agrees with its closest neighbors
 - Approximates reduction to a smaller neighborhood window if data is too sparse
Summary

- The Efros & Leung algorithm
 - Very simple
 - Surprisingly good results
 - Synthesis is easier than analysis!
 - …but very slow

Image Quilting [Efros & Freeman]

- Observation: neighbor pixels are highly correlated

 Idea: unit of synthesis = block
 - Exactly the same but now we want P(B|N(B))
 - Much faster: synthesize all pixels in a block at once
 - Not the same as multi-scale!

Our Philosophy

- The “Corrupt Professor’s Algorithm”:
 - Plagiarize as much of the source image as you can
 - Then try to cover up the evidence
- Rationale:
 - Texture blocks are by definition correct samples of texture so problem only connecting them together
Fill Order

- In what order should we fill the pixels?
 - choose pixels that have more neighbors filled
 - choose pixels that are continuations of lines/curves/edges

Application: Texture Transfer

- Try to explain one object with bits and pieces of another object:

Texture Transfer

- Take the texture from one image and "paint" it onto another object

Same as texture synthesis, except an additional constraint:
1. Consistency of texture
2. Similarity to the image being "explained"

Image Analogies

Aaron Hertzmann
Chuck Jacobs
Nuria Oliver
Brian Curless
David Salesin

1New York University
2Microsoft Research
3University of Washington
Image Analogies

A A'
B B'

Blur Filter

Unfiltered source (A) Filtered source (A')
Unfiltered target (B) Filtered target (B')

Edge Filter

Unfiltered source (A) Filtered source (A')
Unfiltered target (B) Filtered target (B')

Artistic Filters

A A'
B B'

Colorization

Unfiltered source (A) Filtered source (A')
Unfiltered target (B) Filtered target (B')
Texture-by-numbers

Super-resolution

Super-resolution (result!)

Video Textures

Problem statement

Our approach

- How do we find good transitions?
Finding good transitions

- Compute L_2 distance $D_{i,j}$ between all frames

Markov chain representation

Similar frames make good transitions

Transition costs

- Transition from i to j if successor of i is similar to j
 - Cost function: $C_{i,j} = D_{i+1,j}$

Transition probabilities

- Probability for transition $P_{i,j}$ inversely related to cost:
 - $P_{i,j} \sim \exp \left(- \frac{C_{i,j}}{\sigma^2} \right)$

Example

Example