CS123: Lecture 6, Error Detection

George Varghese

October 12, 2006
Error Detection using Parity

- Random versus Burst Errors. For same error rate, burst is better.
- Parity: ExOR of bits. Can detect all odd bit errors in a frame. Can’t detect 2 bit errors. 1011 sent as 10111.
- Would like to do better than parity using so-called checksums for detecting larger number of errors (happens often). A simple concept called Hamming Distance explains why some codes detect and correct more bits.
- Hamming Distance between two strings S and R is the number of bit positions they differ. Thus Hamming Distance of 11011 and 10111 is 2.
Hamming Distance, Error Detection, and Error Correction

- Can detect d random bit errors if Hamming distance is $d + 1$ because flipping d bits cannot move from valid codeword (black) to another.

- Can correct d errors if Hamming distance is $2d + 1$. Can draw a “ball” of radius d around each valid codeword C and assign invalid codewords within ball to C. Can also detect $2d$ errors with same code but cannot do both correction and detection at same time!
ORDINARY DIVISION CHECKSUM

- Consider message M and generator G to be binary integers.
- Let r be number of bits in G. We find the remainder t of $2^r M$ when divided by G. Why not just M? So that we can separate checksum from message at receiver by looking at last r bits.
- Thus $2^r M = kG + t$. Thus $2^r M + G - t = (k + 1)G$. Thus we add a checksum $c = G - t$ to the shifted message and the result should divide G.
- Has some reasonable properties. However integer division hard to implement. Prefer to do without carries.
The Big Idea

• In ordinary division checksums we transmitted a message plus checksum that was divisible by the generator G. Thus any errors that cause the resulting number to be not divisible by G (invalid codewords) will be detected.

• In CRCs, we do the same thing except that we use Mod 2 arithmetic instead of ordinary arithmetic.
MODULO 2 ARITHMETIC

- No carries. Repeated addition does not result in multiplication. e.g. $1100 + 1100 = 0000$; $1100 + 1100 + 1100 = 1100$

- Multiplication is normal except for no carries: e.g. $1001 \times 11 = 10010 + 1001 = 11011$. Shift and Ex-or instead of Shift and Add as in normal arithmetic.

- Similar algorithm to ordinary division. Again let r be number of bits in G. We find the remainder c of $2^{r-1}M$ when divided by G. Why only shift message $r - 1$ bits this time?

 - Thus $2^{r-1}M = k.G + c$. Thus $2^{r-1}M - c = k.G$. Thus $2^{r-1}M + c = k.G$ because addition is same as subtraction. Send c as checksum
Recall how ordinary division works

\[
\begin{array}{cccc}
118 \\
\hline \\
62 & 7344 \\
62 \\
\hline \\
114 \\
62 \\
\hline \\
524 \\
496 \\
\hline \\
28
\end{array}
\]

- Can be viewed as repeated subtractions of multiples of 62 (i.e., 6200, 620, 496) until we get a number less than 62, which is the remainder.
How Mod 2 Division Works

Generator **Shifted Message**

\[
\begin{array}{ccc|ccccc}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
\end{array}
\]

- For CRC, we need to repeatedly add (mod 2) multiples of the generator until we get a number that is \(r - 1 \) bits long that is the remainder.

- The only way to reduce number of bits in Mod 2 arithmetic is to remove MSB by adding (mod 2) a number with a 1 in the same position.
CRC: Polynomial View

• 101 and 011 can be represented as $X^2 + 1$ and $X + 1$. X^i term iff the i-th bit is 1.

• Normal addition: $X^2 + X + 2$. No carries between powers. $2X$ is bad. Fix by using Mod 2 addition (EX-OR) to get: $X^2 + X$

• Can think of CRC computation as dividing a shifted message polynomial (multiplied by x^{r-1}) by CRC divisor polynomial and adding remainder.

• Equivalent to arithmetic view, but poly view is easier to analyze.
The current remainder is held in a register initialized with first r bits of the message.

If MSB of current remainder is 1, then EXOR current remainder with divisor; if the MSB is 0, do nothing.

Shift the current remainder 1 bit to the left and shift in next message bit.
CRC in Hardware: LFSR

- Registers \(R_0 \) through \(R_5 \) are several single bit registers corresponding to the single multibit register in previous slide.

- Ex-OR placed to right of register \(i \) if bit \(i \) set in generator.

- When a message bit shifts in, all registers send (in parallel) their bit values to left, some through Ex-OR gates. Combines left shift of an iteration with MSB check and Ex-OR of next iteration. Ex-OR during left shift.

- Avoids check for MSB using output of \(R_4 \) as input to all Ex-ORs.
CRC PROPERTIES

CRC-16: $X^{16} + X^{15} + X^2 + 1$.

Error results in adding in a polynomial. Use normal polynomial division intuition.

Single bit errors: result in addition of x^i. If $G(x)$ has at least two terms, any multiple of $G(x)$ will have two terms.

Two bit errors correspond to adding $x^i + x^j$, which will not divide if $G(x)$ does not divide $x^k + 1$ for sufficiently large k.

Odd bit error polynomials are never divisible by $x + 1$. So make G have $x + 1$ as a factor.

Burst errors of length k adds $x^i(x^{k-1} + ..1)$. Can catch if $k \leq$ polynomial degree. Any multiple of generator will have a term of x^k or higher.
Lessons from Framing and CRCs

- End-to-end argument.
- Sublayering is a powerful tool: bit stuffing implementation, error recovery on top of framing. Sublayers extract their penalty.
- Common problems at layers and exploiting solutions at other layers: coding, bit and frame synchronization, getting extra symbols from physical layer.
- Arguing by Analogy: ordinary division and CRC. Helps when trying to do CRC multiple bits at a time.
- Having Multiple Views: Bit string view for CRC computation and polynomial view for analysis.
- General and abstract approaches help: error detection in terms of coding.