
DOI: 10.1007/s00224-006-1249-3

Theory Comput. Systems 39, 829–849 (2006) Theory of
Computing

Systems
© 2006 Springer Science+Business Media, Inc.

Parallelism versus Memory Allocation in Pipelined Router
Forwarding Engines∗

Fan Chung,1 Ronald Graham,2 Jia Mao,2 and George Varghese2

1Department of Mathematics, University of California, San Diego,
La Jolla, CA 92093, USA
fan@ucsd.edu

2Department of Computer Science and Engineering, University of California, San Diego,
La Jolla, CA 92093, USA
graham@ucsd.edu; {jiamao,varghese}@cs.ucsd.edu

Abstract. A crucial problem that needs to be solved is the allocation of memory to
processors in a pipeline. Ideally, the processor memories should be totally separate
(i.e., one-port memories) in order to minimize contention; however, this minimizes
memory sharing. Idealized sharing occurs by using a single shared memory for all
processors but this maximizes contention. Instead, in this paper we show that perfect
memory sharing of shared memory can be achieved with a collection of two-port
memories, as long as the number of processors is less than the number of memories.
We show that the problem of allocation is NP-complete in general, but has a fast
approximation algorithm that comes within a factor of 3

2 asymptotically. The proof
utilizes a new bin packing model, which is interesting in its own right. Further, for
important special cases that arise in practice a more sophisticated modification of
this approximation algorithm is in fact optimal. We also discuss the online memory
allocation problem and present fast online algorithms that provide good memory
utilization while allowing fast updates.

1. Introduction

Parallel processors are often used to solve time-consuming problems. Typically, each
processor has some memory where it stores computation data. To minimize contention

∗ The research of Fan Chung was supported in part by NSF Grants DMS 0100472 and ITR 0205061.
The research of Ronald Graham was supported in part by NSF Grant CCR 0310991.

830 F. Chung, R. Graham, J. Mao, and G. Varghese

and maximize speed, each memory should be read by exactly one process. Unfortunately,
if the tasks assigned to processors vary widely in memory usage, this is not an efficient
use of memory, since for some tasks memory of one processor may be unused while
memory of another processor is exhausted.

The interaction between parallelism (the desire to minimize contention) and memory
allocation (the desire to maximize memory sharing) is a general phenomenon that has
been largely unexplored in the literature. We encountered this problem in the context of
networking while trying to design fast IP lookup schemes [6], [11]. In IP lookup, the
time-consuming task at hand is prefix lookup, and the processors are arranged (often
within a custom chip) as a pipeline.

Almost all known IP lookup schemes [13] traverse some form of tree (e.g., trie,
binary tree) using the destination 32-bit IP address in a received packet as a key. The
leaves provide information required to forward the packet. Lookup time is proportional
to tree height, and storage required is the sum of the storage required for each node.

Observe that any tree can easily be pipelined by height: all nodes at height i are
placed in memory i which is accessible only to processor i . Such a design is simple
because there is no memory contention. However, it is extremely wasteful of memory.
Since the shape of the tree can vary from database to database, and they are in general
unbalanced, trees can change their memory needs from database to database. More
precisely, the number of nodes at height i can vary for different databases by large
factors.

Thus, statically deciding the size of each memory is a bad idea because there will
be at least some databases where the total amount of memory required is less than the
sum of the sizes of all memories, but the database still cannot fit because memory i
is underutilized while say memory j is full. How then should memory be allocated to
processors? To our best knowledge, this problem was first raised and left as an open
problem in [14].

An approximate solution to the problem of trie memory allocation across pipeline
stages is described in [1]. Basu and Narlikov try to choose the tree to minimize memory
imbalance. Their results show a reduction in the maximum allocation by approximately
one-half. Unfortunately these results do not help worst-case designs. Their worst-case
bound is close to the naive bound of requiring each stage memory equal to the total
required memory.

Given that minimizing memory is required to minimize cost and that pipelining is
required for speed, one way out of the dilemma is to change the underlying model. In
some sense, the rest of this paper can be considered to be the proposal of a new memory
model for pipelined engines and its implications. To motivate our final model (multiple
two-port memories connected by a partial crossbar), we first consider a series of simpler
models, which however have drawbacks.

Our second model (the first is partitioned memory) is shared memory which is ideal
for memory sharing. Unfortunately, large, fast shared memories are currently infeasible
to build. In practice, most large n-port memories are (underneath the covers) time-
multiplexed. Every processor is given one memory access for every n memory accesses
done to the memory (in the worst case). Unfortunately, multiplexing n-ways causes the
effective memory access time to grow by a factor of n. The tradeoff between these two
extremes is shown in Figure 1.

Parallelism versus Memory Allocation 831

p
1

p
1

M
1

M M
2 n

p
2

p
n

Memory
Shared

Zero contention

Poor Memory sharing

VS

Perfect memory sharing

Maximal contention

p
2

p
n

Fig. 1. Models 1 and 2 have problems: strictly partitioned memories have poor memory sharing while a
single shared memory has poor contention.

When faced with two unacceptable extremes, it is natural to consider intermediate
forms. Thus, strictly partitioned one-port memories have good access speeds and memory
densities but have poor memory utilization. On the other hand, n-port memories have
the opposite problem. Hence, it is natural to consider a collection of Y -port memories,
where Y < n. A natural starting point is to consider Y = 1 memories. Thus, imagine
for our second model that we have a collection of b one-port memories that are shared
among the n processors (see Figure 2).

This can be modeled by a set of n processors (shown on the bottom of Figure 2)
and a set of b memories (shown on the top of Figure 2) that are connected by an inter-
connection network. The interconnection network allows parallel connections to be made
between processors and memories, and allows each processor to be connected to multiple
memories, but allows at most one processor to be connected to a single memory (because
the memories have only one port). Such interconnection networks are commonly used
in parallel computers [5] and are called crossbar switches.

Figure 2 shows processor p1 connected to two memories M1 and M2. Suppose that
is all that has been allocated to p1, and p1 wants more memory. The idea is that the
memory allocation system keeps track of the free memories, realizes that, say M3, is
free and (see the dashed line in Figure 2) reconfigures the crossbar to allocate M3 to p1.

p
1

M
1

M
2

p
2

p
n

M
3

Add connection if
p needs more memory
1

M
b

PARTIAL
CROSSBAR

Fig. 2. Model 3: allowing memory sharing by connecting a large number of one-ported memory banks to
the set of n processors via a partial crossbar.

832 F. Chung, R. Graham, J. Mao, and G. Varghese

p
1 2

p
n

PARTIAL
CROSSBAR

M1 M2 M3 Mb

p

p p
1

1 n
2

p

p

Fig. 3. Our final model: allowing memory sharing by connecting a small number of two-ported memory
banks to the set of n processors via a partial crossbar.

Notice that the crossbar need only be reconfigured at allocation time, which is generally
orders of magnitude less stringent than lookup times.

At first glance, this looks very attractive, because if b is large, then each processor
can waste at most one memory, which is negligible for large b. Thus the percentage of
wasted memory is at most (n − 1)/b. For example, for n = 16, if b = 32 this can incur a
worst-case memory wastage of around 50%. While this is quite large, it can be reduced
to essentially zero by increasing b.

While this looks superficially attractive, in practice one does not want to waste even
10% of an expensive SRAM memory system, especially if it is on chip. This implies the
use of even higher values of b. Unfortunately, practical constraints limit the values of b
that can be used. The larger the number of memory banks, the larger the load that must
be driven on the data busses that make up the interconnection network, and hence the
larger the delay. It is difficult today to imagine a very high speed design with more than
say b = 100 banks of memory connected via the crossbar. It would be far simpler and
faster (important for higher speeds) to use a smaller number of banks, such as b = 32,
and still get good memory utilization.

Because of the bus capacitance issues of dealing with a large number of memories
caused by using a large number of shared one-port memories, we consider the next
natural progression in our model (Figure 3). Thus we consider increasing the number of
ports on the memories to Y = 2 from Y = 1. A collection of two-port memories will
only slow down access speeds (using say time multiplexing) by a factor of at most 2.
However, what kind of memory utilization would such two-port memories provide?

To understand the model, imagine a collection of n processors that have access to
a network (e.g., a crossbar switch) that allows them access to a collection of b two-port
memories. Each memory has two ports that can be allocated to any two processors. Thus
each memory can be read by at most two processors at a time. Of course, a processor that
needs a large amount of memory could be assigned a port on X > 1 memories. Each of
the b memories has a fixed amount of memory, say Max memory words.

Notice in Figure 3 that memory M1 is not completely full and is allocated partially
to processor p1 and partially to processor p2. Notice also that of the two memory ports
allocated to each processor in Figure 3, M1 has both ports allocated, M2 and Mb have
one port allocated and one port free, and M3 has two ports free. Thus, if say processor
p3 wants even one word of memory, p3 cannot use M1 (both of M1’s ports are already

Parallelism versus Memory Allocation 833

allocated to other processors even though it has free memory). However, if p2 wants
more memory it can get more allocation in M1.

Thus, it should be clear that besides allocating memory, the allocator has to be frugal
in allocating ports in order not to waste memory. Consider, for example, a scenario where
processors p1 and p2 are allocated one word of memory each in all of the b memories. If
Max � 1, then no other processor can get any memory because all ports are allocated,
and the resulting utilization (measured when some processor cannot satisfy a memory
allocation request) is nearly zero. Of course, the memory allocator could finesse this
particular issue by compacting all of p1 and p2’s requests to fit in as few memory banks
as possible. However, this example should indicate that it is unclear whether perfect
memory allocation is possible while respecting the two-port constraint at every memory.

Now consider the offline problem of memory allocation. Imagine that the input is
a collection of memory requests per processor (e.g., five words for processor 1, ten for
processor 2, etc.). We say that an allocation is feasible if every processor’s request is
satisfied and no more than two processors are allocated to any one memory. Ideally, we
want a fast algorithm that will guarantee a feasible allocation as long as the input is
feasible (i.e., the sum of processor requests is less than the total memory size).

We will show that a very fast O(n) algorithm exists for optimal memory allocation
for feasible inputs as long as b > n. This algorithm is sufficient for practical imple-
mentations because one can constrain the design to use more smaller memories (often
called memory banks) than the number of processors. (As n grows, there is an increased
interconnect cost as b grows, but this is not a problem for n < 64.) While the speed
of allocation is usually not as important as reads and writes to memory, fast allocation
algorithms allow faster reconfiguration of data structures in this memory structure and
are important in their own right.

As often happens, practical problems give rise to theoretical problems that have a
life of their own. The practical problem can be abstracted as a theoretical problem of bin
packing with an additional constraint. We show that for the general case of arbitrary b
and n, the problem of finding a feasible allocation is NP-complete (it should not surprise
the reader that an NP-complete problem is efficiently solvable in a special case; consider
the case of computing a Hamiltonian cycle, which is trivial if the graph has only a small
number of cycles).

We deal with the NP-completeness by presenting an approximate algorithm that
produces memory utilization that is within a factor of 3

2 of optimal asymptotically.
Practically, this means that if the designer wishes to use a smaller number of memory
banks than the number of processors, he or she should overdesign the total memory
capacity by a factor of 3

2 . Fortunately, the approximation algorithm is exactly optimal in
the case of b > n, so we describe only one algorithm for both cases.

In the rest of this paper we abstract the problem as a bin packing problem with the
two-port constraint abstracted as a “two type” constraint. We also normalize the memory
sizes to 1 (instead of Max) without loss of generality by allowing fractional inputs (called
weights) for each processor.

While the former part of this paper mostly focuses on the offline problem, in practice
the set of processors will keep getting new memory requests. When a new memory
request occurs that causes the assignment of processors to memories to change, one has
to reconfigure the crossbar and possibly move data around between memories. Thus

834 F. Chung, R. Graham, J. Mao, and G. Varghese

the online problem becomes one of minimizing data movement to deal with allocation
(e.g., weight) changes while maintaining good memory utilization. There appears to be
a tradeoff here as well. In the latter part of this paper we formalize this tradeoff and
describe online algorithms for the dynamic case that work well in practice.

We are unaware of any related work in architecture that relates buffer allocation
and pipelining. A result that can be made applicable is the use of randomization [10] in
storing memory words so that with high probability memory words are evenly distributed
across b memory banks. Similar notions of randomizing accesses to memory date back to
Valiant [15] and Ranade [9], as well as some recent work [3]. The use of randomization
has several problems: first, randomization prevents the use of synchronous pipelines
that rely on tight timing guarantees; second, randomization leads to poor contention
bounds. For example, using MAPLE, we calculated that for 16 processors making random
requests to 16 memories, the probability that at least three memory accesses go to the
same memory is > 0.805. In other words, there is an 80% chance that at least three
memory accesses go to at least one memory.

Thus while randomization is an interesting option, in this paper we examine deter-
ministic layouts that limit contention to at most two processors per memory.

2. Abstracting the Problem

Here is the formulation of the bin packing problem that is motivated by the above memory
allocation problem.

Suppose we have an unlimited number of bins each of capacity 1. We are given a
list of weights, say, W = (w1, w2, w3, . . . , wn), where wi is positive and can be greater
than 1 in general. We say W can be packed into b bins if there is a way to partition
“items” Ij of type j with weight wj , for 1 ≤ j ≤ n, such that all parts fit into b bins. In
other words, for each k, the parts that are grouped into the kth bin have total weight at
most 1.

In this paper we focus on the following constrained bin packing problem:

Problem. For a given list W , find a way to pack W into a minimum number of bins
such that each bin can have parts of at most two types.

An immediate question is to decide if this problem is easy or hard to solve. In the
next section we show that the above problem is indeed NP-complete and thus is probably
computationally intractable [4], [12].

Then we proceed to discuss approximation algorithms. We consider a fast and
robust algorithm that gives approximate solutions in linear time (in n). The solution this
algorithm gives is optimal if the total sum of the weights is no smaller than the number
of types. In general, the solutions are always within a factor of 3

2 of the optimum. Several
examples are given to indicate the sharpness of this worst-case performance ratio.

3. Our Bin Packing Problem Is NP-Complete

We will prove the NP-completeness of the bin packing problem with the constraint that
each bin can have at most two types. The transformation is from the 3-partition problem

Parallelism versus Memory Allocation 835

which can be stated as follows (see [8]):

3-PARTITION

Instance: A set A of 3m elements, a bound B ∈ Z+, and a size s(a) ∈ Z+ for each
a ∈ A such that B/4 < s(a) < B/2 and

∑
a∈A s(a) = m B.

Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that for
1 ≤ i ≤ m,

∑
a∈Ai

s(a) = B (note that each Ai must therefore contain exactly
three elements from A)?

Garey and Johnson [7] showed the 3-PARTITION problem is NP-complete by using
transformation from the problem of three-dimensional matching. In fact, they showed
that the 3-PARTITION problem is NP-complete in the strong sense (see [8]).

For a given instance of the 3-PARTITION problem as described above, we consider
the following bin packing problem:

(*) We are given a list W of 3m weights

wa = 1

2
+ s(a)

2B
.

Determine if W can be packed into 2m bins such that no bin contains more than
two types.

It suffices to show that the 3-PARTITION problem has an affirmative solution if and
only if the above problem (*) has a solution.

First we consider the easy direction. Suppose the 3-PARTITION problem has a
solution A1, A2, . . . , Am . For each i , we can pack the weightsw(a), for a ∈ Ai into two
bins since∑

a∈Ai

wa = 3

2
+
∑
a∈Ai

s(a)

2B
= 2

and wi satisfies

3

8
< wi = 1

2
+ s(a)

2B
<

3

4
.

So, W can be packed into 2m bins when each bin has two types and thus problem (*) is
solved.

Now suppose problem (*) has a solution with a packing into 2m bins. Clearly, each
bin contains parts summing up to 1 since

∑
a wa = 2m.

First, we observe that a weight type cannot be partitioned into more than two parts.
Suppose the contrary. There is a weight type, sayw1, that is partitioned into k parts which
are contained in k bins where k ≥ 3. One of the parts is less than 1

4 since w1 <
3
4 . The

bin that contains this small part can contain another part with weight at most 3
4 . Thus,

this bin cannot have parts summing up to 1, which is impossible.
Second, we claim that the number t of types of weights that are packed in two bins

is exactly m. Suppose t is more than m. Then the total number of parts is more than 4m.
Since at most two parts can be packed into one bin, we need more than 2m bins, which
is a contradiction. Now, suppose that t is less than m. Since there are at most 2t bins that
can contain parts of two types, there are at least two bins that can contain at most one
type. Those two bins cannot have parts summing up to 1, which is again a contradiction.

836 F. Chung, R. Graham, J. Mao, and G. Varghese

Hence, there are exactly m weights S that are each partitioned into two parts. We
write

S = {aj1 , aj2 , . . . , ajm }.
We consider Ai consisting of aji and the types wa that are contained in bins containing
parts of waji

. Clearly Ai , i = 1, . . . ,m, is a partition of A. Furthermore, we have∑
a∈Ai

wa = 3

2
+
∑
a∈Ai

s(a)

2B
= 2.

This implies that∑
a∈Ai

s(a) = B.

Thus, this gives a solution to the 3-PARTITION problem. Hence, we have shown the
following:

Theorem 1. The bin packing problem with the constraint that each bin contains at
most two types is NP-complete.

4. A Graph Representation

Before we discuss approximation algorithms for our bin packing problem and their
worst-case analysis, we consider a graph representation of a packing.

Suppose a list of weights W = (w1, w2, . . . , wn) is packed into unit bins so that no
bin holds more than two types of weights. Let P denote such a packing. We associate a
graph G P with P defined as follows:

(1) G P has n vertices, each of which represents a type.
(2) The arcs of G p correspond to the bins in one-to-one fashion, where an arc can

either be an edge or a loop. If the bin contains only one type, it corresponds
to a loop on that type. If the bin contains two types, it corresponds to an edge
between the two types.

(3) If the bin is partially filled with only one type, we say the corresponding loop
is weak. If the bin is partially filled with two types, we say the corresponding
edge is weak.

(4) If the bin is completely filled with only one type, we say the corresponding loop
is strong. If the bin is completely filled with two types, we say the corresponding
edge is strong.

For example, suppose that W = (1
2 ,

2
3 ,

1
4) has three types as shown in Figure 4. One

packing configuration P is given in Figure 5 and the associated graph G P appears in
Figure 6. There are, of course, different ways to pack W into two bins so that each bin
contains at most two types. Another packing configuration Q is given in Figure 7 and
its associated graph G Q is shown in Figure 8.

In this paper we use the convention that a cycle must have at least two vertices. So,
by definition, a loop is not a cycle. An edge is either a loop or an edge with two distinct
endpoints. A graph that contains no cycle is a forest plus some possible loops.

Parallelism versus Memory Allocation 837

� � �
�

� � � �
�

�
� � �

�

�

Fig. 4. Weights of three types.

� � � �

Fig. 5. A packing P .

� �

� �

� �

Fig. 6. The graph G P .

� � � �

Fig. 7. Another packing Q.

� �

� �

� �

Fig. 8. The graph G Q .

838 F. Chung, R. Graham, J. Mao, and G. Varghese

5. Approximation Algorithms

We now describe a simple algorithm for bin packing subject to the constraint that no
bin contains weights of more than two types. We call an empty bin a new bin. We call
a partially filled bin with only one type a live bin (i.e., a weak loop in the associated
graph).

Algorithm A

For a given list of weights W = (w1, w2, . . . , wn), we pack greedily as follows:
For each i = 1, 2, . . . , n, we place the maximum possible part of wi into a

live bin if possible; otherwise, put it into one or more new bins.

After we have processed all n weights, the resulting bin packing is valid and satisfies
the following properties:

(1) Each connected component is a path with possibly some loops.
(2) There is altogether at most one weak loop (i.e., one live bin) which possibly

appears at the end of the last connected component formed during the algorithm.
(3) Each connected component except for the last one has at most one weak edge

which can only appear at the end of the component.

These properties are intuitive and easy to verify. We omit the proofs. Let OPT denote
the number of bins used in an optimal packing. We will show that the packing generated
by the above algorithm has an asymptotic worst-case approximation ratio of 3/2.

Theorem 2. We are given a list of weights W and a packing P of list W in which no bin
contains more than two types of weights. Suppose that the associated graph G P satisfies
the three properties above. Then

|P| ≤ 3
2 (1+ o(1))OPT

as w→∞.

Proof. Suppose the list W = (w1, w2, . . . , wn) has a total sum of weights w =∑n
i=1wi . Let OPT denote the number of bins needed in the optimum packing. Clearly,

we have

OPT ≥ max{w, n/2}. (1)

Our proof needs the following strengthening of the above inequality:

Claim 1.

OPT ≥ max{w,w∗/2}, (2)

where w∗ =∑i�wi�. Clearly, w∗ ≥ n.

Parallelism versus Memory Allocation 839

In the other direction, we want to show that the number of bins in P , denoted by
|P| satisfies the following:

Claim 2.

|P| ≤ w + w
∗ + 1

2
.

Furthermore, we claim

Claim 3.

w + w∗ + 1

2
≤ 3

2
(1+ o(1))max

{
w,
w∗

2

}
.

If all three claims hold, we have

|P| ≤ 3
2 (1+ o(1))OPT,

as desired. It remains to prove these three claims.

Proof of Claim 1. It is enough to show that OPT ≥ w∗/2 (since it is straightforward to
see that OPT ≥ w). For each i , any packing contains at least �wi� parts of type i weight.
Since each bin can have at most two parts of different types, the number of parts is at
most 2 · OPT . Thus we have 2 · OPT ≥∑i �wi� and Claim 1 is proved.

Proof of Claim 2. Suppose P has a bin which is filled with just one type, sayw1. (That
is, G P has a strong loop.) Let P ′ denote the packing of the list of weights W ′ which is
the same as W except that w′1 = w1− 1. We proceed by induction and suppose it is true
for P ′ (which has a smaller number of bins), i.e.:

|P ′| ≤ w
′ + (w′)∗ + 1

2
.

Since |P| = 1+ |P ′|, w′ = w − 1, (w′)∗ = w∗ − 1, we also have

|P| ≤ w + w
∗ + 1

2
.

We may now assume that each filled bin involves weights of two types.
Consider any connected component X of G P . We let wX =

∑
i∈X wi and w∗X =∑

i∈X�wi�. Let ν(X) denote the number of vertices in X and |X | the number of bins
used in X .

Case a: There is no weak loop in X . We have |X | = ν(X) − 1. On the other hand,
wX > ν(X) − 2 since the sum of weights is more than the capacity of ν(X) − 2 filled

840 F. Chung, R. Graham, J. Mao, and G. Varghese

bins. We also have w∗X ≥ ν(X). Therefore

wX + w∗X ≥ wX + ν(X) > 2ν(X)− 2 = 2|X |.

Case b: There is one weak loop in X . We have |X | = ν(X). On the other hand,
wX > ν(X) − 1 since the sum of weights is more than the capacity of ν(X) − 1 filled
bins. We also have w∗X ≥ ν(X). Therefore

wX + w∗X ≥ wX + ν(X) > 2ν(X)− 1 = 2|X | − 1.

Now sum up the inequalities for all connected components. Because there is at most
one component with one weak loop, we have

|P| ≤ w + w
∗ + 1

2
.

So, Claim 2 is proved.1

Proof of Claim 3. We want to show that

w + w∗ + 1

2
≤ 3

2
(1+ o(1))max

{
w,
w∗

2

}
.

We consider two cases:

Case a: w∗/2 ≤ w. We then have

w + w∗ + 1

2
≤ 3w + 1

2
≤ 3

2
(1+ o(1))w

as w→∞.

Case b: w∗/2 > w. It follows that

w + w∗ + 1

2
<

3w∗ + 2

4
≤ 3

2
(1+ o(1))

w∗

2
.

This completes the proof of Theorem 2.

As an immediate consequence, we have

Theorem 3. Algorithm A always generates a bin packing which has size within a factor
of 3

2 of the optimum asymptotically.

1 Strict inequality holds here but we do not need it for this theorem.

Parallelism versus Memory Allocation 841

It is worth noting that if the associated graph of the resulted packing does not have
any weak loop, Algorithm A is exactly at most 3

2 from optimal. It is also clear that
Algorithm A runs in time O(n), where n is the number of types.

6. Some Properties of the Associated Graphs

Here we examine several basic properties of the associated graphs of bin packings for a
given list of weights W . These properties provide the foundation for the reduction steps
in the approximation algorithm to be discussed in the next section.

An associated graph G is is stable if and only if all of the following conditions hold:

• G has no cycle.
• Each connected component has at most one weak arc.
• G has at most one weak loop in total.

Given that G has no cycle, each connected component is a tree with some possible
loops. A crucial observation is that if there is a weak edge in this connected component,
we can move it freely within this component. During the moving process, we might split
the original component into two, but the total number of bins will never increase.

We describe a few atomic repacking operations here as follows. None of them
requires more bins than originally given in the packing. None of them creates cycles or
strong loops in the associated graph.

Operation 1. If a strong edge e1 = (i, j) and a weak edge e2 = (j, k) are adjacent
(sharing one type j) in a component, we can repack weights so that e1 becomes weak
and e2 becomes strong, or split the component into two with one having a weak loop e1

and the other having an edge e2 which can be strong or weak.

Operation 2. If two weak edges e1 = (i, j) and e2 = (j, k) are adjacent in one
component, we can repack weights so that e2 becomes strong and e1 stays weak, or split
the component into two with one having a weak loop e1 and the other having an edge e2

which can be strong or weak.

Operation 3. If a weak loop e1 = (i, i) and a weak edge e2 = (i, j) are adjacent in
a component, we can repack weights so that we only have a single edge e2 (i.e., we
eliminate one bin e1), or a strong edge e2 and a weak loop e1.

Operation 4. If two weak loops e1 = (i, i) and e2 = (j, j) are in two separate
components C1 and C2, we can repack weights to merge them into one component C
such that we only have a single edge e2 (i.e., we eliminate one bin e1), or a strong edge
e2 and a weak loop e1.

Lemma 1. Suppose that P is a packing of a list of weights W = (w1, w2, . . . , wn) into
b bins, where no bin contains weights of more than two types. If the associated graph
G P has a connected component C which contains two weak edges and the rest of the

842 F. Chung, R. Graham, J. Mao, and G. Varghese

graph is stable, we can find another packing P ′ which uses no more than b bins with its
entire associated graph stable.

Proof. Suppose a connected component of G P contains two weak edges e1 and e2.
The two weak arcs cannot have the same vertices, since this would form a 2-cycle,
contradicting our initial hypothesis. There must be a unique path with no loops (that is,
a sequence of edges so that two consecutive edges share a common vertex), say, with
edges e1 = f1, f2, . . . , ft = e2. Here e1 and e2 are weak edges while all other fi ’s are
strong edges.

Select either weak edge to repack, say e1, and proceed with Operation 1 one step at
a time in order to bring the two weak edges closer together. Now we have two cases:

If we successfully carry this on until the two weak edges become adjacent, we then
use Operation 2 to eliminate one weak edge or split the component into two. In the latter
case, we need to check whether there are two weak loops in the entire graph. Operation 4
is needed if this is true. Now the graph is stable.

If during the moving process the component splits into two, one component only
has at most one weak edge while the other component actually has one weak edge and
one newly formed weak loop. For the latter component C ′, we need to check if there are
two weak loops in the entire graph:

Case a. If this is true, Operation 4 is needed first to eliminate the extra weak loop. This
will possibly result in another weak edge in this smaller component and now it contains
two weak edges. Notice, however, now these two weak edges are closer compared
with the original two weak edges in C . We carry out Operation 1 recursively in this
case.

Case b. Otherwise, we select the weak edge in C ′ and move it towards the weak loop the
same way as Operation 1 recursively. Use Operation 2 or 3 when the two partially filled
bins become adjacent in the graph.

This process will stop in a finite number of steps and the graph will become
stable.

Lemma 2. Suppose that P is a packing of a list of weights W = (w1, w2, . . . , wn) into
b bins, where no bin contains weights of more than two types. If the associated graph
G P contains a strong loop in one connected component X and a weak edge in another
connected component Y and is stable, we can find another packing P ′ which uses no
more than b bins with its associated graph with one fewer strong loops than packing P
and also stable.

Proof. Suppose in X there is a loop that is strong (associated with a filled bin, say e1, in
one type j) and suppose that there is weak edge {k, l} (associated with a partially filled
bin, say e2) in another component Y . We reconfigure the two bins as follows:

Suppose e2 contains parts of weights w′k and w′′l . We partition the weight of type j
in e1 into two parts w′j (of size the same as w′k) and w′′j of size 1 − w′k and switch the
parts w′k and w′j .

Check if there is more than one weak edge in the newly formed connected component
that contains j , k and l. If it does, use the steps as described in Lemma 1 until the graph

Parallelism versus Memory Allocation 843

is stable. The resulting packing has its associated graph containing one fewer strong
loop.

7. An Improved Algorithm

In this section we consider a modified version of the simple approximation algorithm
given in Section 5. We will show that the modified algorithm gives an optimal solution
when the total weight is greater than or equal to the number of types. In general, the
modified algorithm gives an approximation solution within a factor of 3

2 of the optimum
asymptotically.

Before we introduce the improved Algorithm B, we first consider an intermediate
form of it, say Algorithm A′, which takes the output packing of Algorithm A in Section 5
as input and processes it using the following steps:

Algorithm A′

For a given list of weights W = (w1, w2, . . . , wn), we use Algorithm A to
generate a valid packing P .

While there exists a component X containing a strong loop and another
component Y containing a weak edge, we use the steps as described in the
proof of Lemma 2 to merge these two components into one.

The resulting bin packing using Algorithm A′ has an associated graph G with no
cycle and each connected component having at most one weak edge. In addition, if there
is a strong loop, then all other components have no weak edges.

Suppose the total weight w = ∑
i wi is greater than or equal to n, the number of

types. From the reduction steps in the algorithm, G can have at most n − 1 edges and
there is at most one weak loop. Since the total weight is at least n, there is at least one
loop that is strong. Thus there is no weak edge outside of the connected component C
that contains the loop. In C , there is at most one weak edge. So altogether there is at most
one weak edge. This implies that the number of bins is exactly �w� which is optimum.
Whenw < n, we can still use Theorem 2 to show the resulting packing is within a factor
of 3

2 of the optimum.
We have proved the following:

Theorem 4. Algorithm A′ generates a bin packing that is optimal if the total weight is
at least as large as the number of types. In general, the bin packing using Algorithm A′

has size within a factor of 3
2 of the optimum asymptotically.

Now we consider the complexity of Algorithm A′. We note the following:

• Algorithm A produces a stable packing P in O(n) time.
• During the execution of the while loop, the number of strong loops is strictly

decreasing. Every time we eliminate one strong loop, at most a linear number of
atomic operations are involved, each taking constant time.

844 F. Chung, R. Graham, J. Mao, and G. Varghese

Therefore, Algorithm A′ runs in time O(n2) at most, where n is the number of types.
In fact, if we are a little more careful about the order of the atomic operations applied,
we can achieve a linear time algorithm. To describe it, we need the following lemma:

Lemma 3. Suppose that P is a packing of a list of weights W = (w1, w2, . . . , wn)

into b bins, where no bin contains weights of more than two types. If the associated
graph G P is a forest where some or all of the components have k ≥ 2 weak edges but
otherwise stable, we can find another packing P ′ which uses no more than b bins with
its associated graph stable in linear time of n.

Proof. Let X be a component which has k ≥ 2 weak edges. Pick an arbitrary vertex v in
X to be the root. If we traverse X using DFS, there is a natural order O = {v1, v2, . . . , vn}
of the vertices defined by the last visiting time. In other words, the time when v1 is last
visited is earlier than the time when v2 is last visited and so on.

For i = 1, . . . , n, we consider all the edges that are adjacent to vi , say {e1, . . . , es}
in which e1 is the only edge that is closer to the root. If two or more of the other (s − 1)
edges are weak, we can use Operation 2 to merge them in a pairwise manner. This process
could result in just one weak edge, say ej , in which case we use Operation 2 or 1 to push
the weak edge towards the root, or it may split this component X into smaller trees but
the total number of weak edges will never increase. Whenever there are two or more
weak loops in the entire graph, we use Operation 4 to eliminate the extra weak loops
immediately.

Any component X that has k ≥ 2 weak edges needs to be processed in this way.
If it splits during the process, any newly formed component that has k ≥ 2 weak edges
will also be processed. The total number of atomic operations needed until no more such
component exists is linear in n.

This proves our lemma.

Such repacking also does not create cycles or more strong loops. Now we have our
linear time Algorithm B:

Algorithm B

For a given list of weights W = (w1, w2, . . . , wn), we use Algorithm A to
generate a valid packing P .

While there exists a component X containing a strong loop and another
component Y containing a weak edge, we use only the first step as described in
the proof of Lemma 2 to merge these two components into one, without taking
care of the possible multiple edges in any one connected component.

After the while loop, we use the steps as described in the proof of Lemma 3
to eliminate the extra weak edges in each component.

Algorithm B produces packings as good as Algorithm A′ with the improvement
that its running time is linear instead of quadratic. Therefore we have the following
theorem:

Parallelism versus Memory Allocation 845

Theorem 5. In O(n) time, Algorithm B generates a bin packing that is optimal if the
total weight is at least as large as the number of types. In general, the bin packing using
Algorithm B has size within a factor of 3

2 of the optimum asymptotically.

Here we give an example which shows that Algorithms A and B can generate bin
packings with the number of bins off by a factor (3

2 + o(1)) of the optimum.
Suppose that k is an integer. We are given a list W of weights where the first 2(k+1)

weights are of size k/(k + 1) and then the next 2(k + 1) weights are of size 1/(k + 1).
Using Algorithm A or B, we will end up with a packing which uses the first 2k

bins to pack the first 2(k + 1) weights fully without any waste. Then the next group
of bins each contain two weights of size 1/(k + 1). Altogether, 3k + 1 bins are used.
Nevertheless, the optimum packing consists of 2(k+ 1) bins each contain one weight of
size k/(k + 1) and one weight of size 1/(k + 1). Thus we have the ratio

#bins by Alg A

OPT
= 3k + 1

2(k + 1)
= 3

2
− 1

k + 1
,

which is arbitrarily close to 3
2 when k is large.

8. Dynamic Memory Allocation

So far we have only dealt with approximation and exact algorithms for static memory
allocation. On the more practical side, how can we get good dynamic memory allocation
algorithms that maintain overall efficiency? Upon each new memory request, allocate, or
deallocate, are we allowed to repack previously assigned memory units besides handling
the new request? In this situation we have a tradeoff between memory utilization and
cost of repacking or compaction [14]. To capture and analyze this tradeoff, we define
the following parameter for compaction cost efficiency.

Definition 1. The compaction ratio of any online memory allocation Algorithm A is
defined to be

γA = max
t

M

W

= max
t

(
total moved memory units up to time t

total memory units allocated up to time t

)
.

Case a: γ can be arbitrarily large. If repacking or compaction is assumed to be of
negligible cost and we have unlimited computing power, we can just solve the offline al-
location problem every time a new memory request comes in using the best approximation
algorithm and perform repacking whenever needed. In practice, however, compaction
almost certainly has a cost that is not negligible, especially because it has to perform
memory operations. Computation cost should also be taken into consideration since we
have already seen that the offline allocation problem is NP-hard.

Case b: γ is bounded from above. In particular, γ ≤ c where c > 0 is a constant.

846 F. Chung, R. Graham, J. Mao, and G. Varghese

We now give an online allocation algorithm subject to the two-port constraint with
compaction ratio γ ≤ 1.

Algorithm C

For any memory allocation request wi , we say it is large if wi >
1
2 , otherwise

we say it is small. During the process:

• A large allocation request is always put into a new bin.
• A small request is put into a bin with only one small request if possible,

otherwise it is put into a new bin.
• Upon a deallocation request, if it results in two bins each with only one

small request, move the smaller piece to double up the two requests.

Theorem 6. Algorithm C always generates bin packing of size |C | which satisfies

|C | ≤ 3
2 OPT + 1.

Proof. At any point of time, we can describe the packing produced by Algorithm C as
t bins each with one large request, r bins each with two small requests, with possibly
one more bin with only one small request. Given these requests, how much better can
the optimal packing strategy be?

First, let us suppose there is no bin with only one small request. Algorithm C uses
(t + r) bins.

Claim 4.

OPT ≥
{

r + t/2 when r ≥ t/2,
2
3 (r + t) when r < t/2.

Proof of Claim 4. The first inequality OPT ≥ r + t/2 always holds because of the
two-port constraint, since we have a total of (2r + t) different types of weights. Exact
bound could be achieved when each large weight can be paired up with a small weight
into one bin and t = 2r .

When r < t/2, not all large weights can be paired up. The paired up ones would
use 2r bins and the remaining (t − 2r) large weights have to occupy at least 2

3 (t − 2r)
bins (proved in Claim 5). This adds up to a total of 2

3 (r + t) bins and proves Claim 4.

Case a: r ≥ t/2.

|C |
OPT

≤ r + t

r + t/2

= 1+ t/2

r + t/2

≤ 1+ 1
2

= 3
2 .

Parallelism versus Memory Allocation 847

Case b: r < t/2.

|C |
OPT

≤ r + t
2
3 (r + t)

= 3
2 .

In the case where there is one bin having a single small request, the previous argument
applies replacing |C | by |C | − 1. It remains to prove Claim 5.

Claim 5. Given m large weights, it is impossible to pack them into fewer than � 2
3 m�

bins.

Proof of Claim 5. m bins would be necessary if we do not split any weights. Suppose
we break α of the m large weights each into two small pieces. Then we have a total of

2α + (m − α) = m + α

pieces in which (m− α) pieces are still large and need (m− α) bins. Therefore we have

OPT ≥ max {(m + α)/2,m − α}.

The minimum of the right-hand side occurs when (m+α)/2 = m−α and is 2/3m. This
proves our claim.

This completes the proof of Theorem 6.

Theorem 7. Algorithm C has compaction ratio γC ≤ 1.

Proof. Call any memory piece that has not been swapped clean and otherwise dirty.
Recall the compaction ratio is defined as γ = M/W . We claim that

W − M ≥
∑

size of all clean pieces.

This is because

• Before any deallocation request, our bin packing consists of only clean pieces
which contribute to W .
• If any clean piece is moved due to a deallocation request, it becomes dirty and

contributes to the numerator M .
• If a dirty piece is deallocated, there is no effect on W − M .
• In a shared bin of one clean piece and one dirty piece, the clean piece always has

size no smaller than the dirty piece according to our algorithm. When the clean
piece is deallocated, the weight it contributes to W is still there, so instead of
throwing it away, we use its weight to recharge the dirty piece into a clean piece.
This would also guarantee that no dirty piece will ever be moved again.

848 F. Chung, R. Graham, J. Mao, and G. Varghese

Note that
∑

size of all clean pieces ≥ 0 at all times so W − M ≥ 0, i.e., γ =
M/W ≤ 1.

We also observe that 1 is a tight bound for γC using the following memory request
sequence. We begin with two allocation requests, each with weight α < 1

2 . We then
allocate one more weight of size α, and follow this with a deallocation of one of the
paired weights. This will cause the algorithm to move a weight. We repeat this process
until it has been performed s times altogether. Thus, we will have allocated s+2 weights
and moved s weights, all of size α. This clearly gives compaction ratio arbitrarily close
to 1 as s goes to infinity.

Case c: γ = 0, i.e., no compaction is allowed. When the compaction cost is relatively
high and we cannot afford to swap any memory bits, we first claim that any online
Algorithm D in this case cannot have an approximation ratio better than 2. This can be
shown using the following memory request sequence.

For a large integer k, we are first given a list of k memory allocation requests each
with size 1

3 . Observing the allocation assignment made by the online Algorithm D, we
are then given a list of �k/2� deallocation requests which remove exactly one weight
from every shared bin. At the end, the online algorithm will have each bin holding one
weight while the optimum packing uses only half as many bins. This would give us the
lower bound of 2 on the approximation ratio.

A simple online algorithm that achieves approximation ratio 2 in this case is just
never to share any bin. Given the two-port constraint, the bin packing generated by this
algorithm is always within a factor of 2 from the optimum.

9. Conclusions

When all the theory is said and done, what are the practical lessons? The most important
is that it is possible to share memory across parallel stages in an almost perfect manner
(regardless of individual demands) if we use two-port instead of one-port memories,
each of which can be assigned to a stage using some form of partial crossbar switch. In
practice, one would simply choose the parameters such that the number of memories is
larger than the number of processor stages. In that case, the approximation algorithm we
presented will provide 100% efficiency.

In essence, we are finessing a difficult problem (allocating across one-port mem-
ories) by changing the model. The new models are practical. We know at least one
implementation of one of our models that scales to multiple OC-768 speeds. On the
theoretical front, our paper also poses an interesting open problem for the general case
of packing bins so that each bin contains at most r types for some fixed integer r . In
this case we can formulate the associated hypergraphs [2] of a packing instead of just
associated graphs and our techniques used in this paper can possibly be extended to
derive efficient algorithms in those contexts.

Acknowledgments

The authors thank John Holst of Procket Corporation who built the hardware to implement the model described
in this paper and whose initial ideas about memory allocation were the genesis of this paper, Nan Zang for
useful comments on one of our examples, and the anonymous reviewers for their helpful comments.

Parallelism versus Memory Allocation 849

References

[1] A. Basu and G. Narlikar, Fast incremental updates for pipeline forwarding engines, Proc. InfoCom
2003, vol. 13, issue 3, pp. 690–703.

[2] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1976.
[3] G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha, Accounting for memory bank contention

and delay in high-bandwidth multiprocessors, IEEE Transactions on Parallel and Distributed Systems,
8:943–958, 1997.

[4] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation algorithms for bin packing: a survey,
in Approximation Algorithms for NP-Hard Problems, D. Hochbaum (ed.), PWS, Boston, MA, 1996,
pp. 46–93.

[5] D. Culler, J. Singh, and A. Gupta. Parallel Computer Architecture, A Hardware/Software Approach,
Morgan Kaufman, San Mateo, CA, 1999.

[6] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, Small forwarding tables for fast routing lookups,
Proc. SIGCOMM, 1997, pp. 3–14.

[7] M. R. Garey and D. S. Johnson, Complexity results for multiprocessor scheduling under resource
constraints, SIAM Journal on Computing, 4:397–411, 1975.

[8] M. R. Garey and D. S. Johnson, Computer and Intractability, A Guide to the Theory of NP-Completeness,
Freeman, San Francisco, CA, 1979.

[9] A. Ranade, How to emulate shared memory, Journal of Computer and System Sciences, 42:307–326,
1991.

[10] B. Rau, Pseudo-randomly interleaved memory, Proc. Int. Symp. on Computer Architecture, 1991,
pp. 74–83.

[11] T. V. Lakshman and D. Staliadis, High speed policy-based packet forwarding using efficient multi-
dimensional range matching, Proc. ACM SIGCOMM ’98, 1998, pp. 203–214.

[12] J. M. Robson, Storage allocation is NP-hard, Information Processing Letters, 11(3):119–125, 1980.
[13] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, Survey and taxonomy of IP address lookup algorithms,

IEEE Network Magazine,15(2):8–23, March/April 2001.
[14] S. Sikka and G. Varghese, Memory Efficient State Lookups with Fast Updates, Proc. SIGCOMM 2000,

pp. 335–347, August 2000.
[15] L. Valiant, A bridging model for parallel computation, Communications of the ACM, 33(8):103–111,

1990.

Received September 27, 2004, and in final form April 19, 2006. Online publication September 27, 2006.

