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ABSTRACT
Internet routers and switches need to maintain millions of
(e.g., per prefix) counters at up to OC-768 speeds that are
essential for traffic engineering. Unfortunately, the speed
requirements require the use of large amounts of expensive
SRAM memory. Shah et al [1] introduced a cheaper statis-
tics counter architecture that uses a much smaller amount
of SRAM by using the SRAM as a cache together with a
(cheap) backing DRAM that stores the complete counters.
Counters in SRAM are periodically updated to the DRAM
before they overflow under the control of a counter man-
agement algorithm. Shah et al [1] also devised a counter
management algorithm called LCF that they prove uses an
optimal amount of SRAM. Unfortunately, it is difficult to
implement LCF at high speeds because it requires sorting
to evict the largest counter in the SRAM. This paper re-
moves this bottleneck in [1] by proposing a counter manage-
ment algorithm called LR(T ) (Largest Recent with thresh-
old T ) that avoids sorting by only keeping a bitmap that
tracks counters that are larger than threshold T . This al-
lows LR(T ) to be practically realizable using only at most 2
bits extra per counter and a simple pipelined data structure.
Despite this, we show through a formal analysis, that for a
particular value of the threshold T , the LR(T ) requires an
optimal amount of SRAM, matching LCF . Further, we also
describe an implementation, based on a novel data structure
called aggregated bitmap, that allows the LR(T ) algorithm
to be realized at line rates.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories; C.2.3 [Computer Communication Networks]: Net-
work Operations—Network monitoring ; C.2.6 [Computer
Communication Networks]: Inter-networking—Routers
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1. INTRODUCTION
Packet counting provides a powerful measurement tool [11]

for characterizing traffic on service provider networks. Packet
counters can be used to perform capacity planning and iden-
tify bottlenecks in the network core, to determine the types
of packets transiting or destined to the core and the rela-
tive ratio of one packet type to another (for example, mail
versus FTP), and to analyze attacks by counting packets
for commonly used attacks (for example, ICMP request re-
sponse packets used in a smurf attack). Packet counters
can also be used to decide peering relationships. If an ISP
A is currently sending packets to ISP C via ISP B and is
considering directly connecting (peering) with B, a ratio-
nal way to decide is to count the traffic destined to prefixes
corresponding to B. [3] analyzes the importance of traffic
measurement in managing large service provider networks,
and motivates the need for more fine-grained measurement
capability inside the network.

Legacy routers tend to provide only per-interface counters
that can be read by SNMP. Such counters only count the
aggregate of all counters going on an interface and make it
difficult to estimate traffic AS-AS matrices that are needed
for traffic engineering. They can also only be used for crude
forms of accounting as opposed to more sophisticated forms
of accounting [12] that can count by traffic type (e.g., real
time should be more expensive) and destination (some des-
tinations may be routed through a more expensive upstream
provider). Thus Juniper networks has introduced filter based
accounting [12] where customers can count traffic that matches
a rule specifying a predicate on packet header values. Sim-
ilarly, Cisco provides Netflow based accounting where each
5-tuple can be counted, as well as Express Forwarding com-
mands which allow per-prefix counters [10]. However, en-
abling these sophisticated accounting and traffic engineer-
ing applications, that depend on fine-grained measurement
capability, is contingent upon the ability to maintain a large
number of statistics counters in Internet routers.



1.1 Why counting is hard
Per-interface counters can be easily implemented because

there are only a few counters per interface that can be stored
in chip registers. However, doing filter-based or per-prefix
counters is more challenging for the following reasons.

• Large numbers of counters : Given that even cur-
rent routers [13] support 500,000 prefixes, and future
routers may support more than a million prefixes, mil-
lions of real-time counters are potentially required.

• Multiple counter updates per packet : A single
packet may result in more than one counter being up-
dated such as a flow counter as well as a prefix counter.

• High speeds : Line rates have been increasing from
OC-192 (10 Gbps) to OC-768 (40 Gbps). Thus each
counter matched by a packet must be read and written
in the time taken to receive a packet at line speeds. For
example, a 40 byte packet must be processed in 8 nsec
at OC-768 speeds.

• Large counter widths : As line speeds get higher,
even 32 bit counters can overflow quickly. To prevent
the overhead of frequently polling the router, most ven-
dors [12] now provide 64 bit counters.

A simple inspection of the memory size (1 million counters
of 64 bits each is 64 Mb) and bandwidth needs (2 counters of
64 bits each every 8 nsec requires 16 Gbps of memory band-
width) shows that the task of maintaining a large number of
counters at wire speeds is as challenging as other packet pro-
cessing tasks such as lookup, classification and scheduling.
This paper focusses on the task of efficiently maintaining
counters in packet switches at line rates.

A model for counter processing is as follows. When a
packet arrives at a router line card, some forwarding proces-
sor does a lookup on the packet header to determine how to
process the packet. The lookup could involve only longest
prefix matching to determine the next hop, or a more com-
plex classification step [8] for filter based counters. Suppose
that the packet matches prefix i and classification rules j
and k. Then the intent is that counters i, j, and k be up-
dated. The counters may be stored in on-chip or off-chip
memory and may be updated by the forwarding processor
or a separate counter management ASIC. In the latter case,
the forwarding processor passes the indices of the counters
to be updated to the counter management chip.1

The number of counters and the rate at which they can
be updated is determined, to a large extent, by the limita-
tions of memory technology. To maintain a large number of
counters in SRAM is either infeasible or very expensive. A
statistics counter architecture with a million 64 bit counters
requires 64 Mb of SRAM. Since SRAM costs are signifi-
cantly more than DRAM costs (at least a 4:1 ratio), large
SRAM requirements increase the costs of line cards consid-
erably. Large SRAM requirements also preclude an on-chip
implementation as power and layout considerations limit the
amount of SRAM that can be put on-chip. Since SRAM den-
sities are lower than DRAM densities, large SRAM require-
ments hinder a compact layout, even in an off-chip imple-
mentation. Commercial products , that implement counting
1Note that by storing the counters at the same relative lo-
cation as the prefixes or rules, no additional memory is re-
quired in the forwarding or classification databases.

functionality, are limited by the amount of SRAM they can
put on-chip. This limitation is manifested in the form of ei-
ther lower number of counters or counters of smaller width.
For example, the iFlow Accountant product [9] provides ei-
ther 500,000 counters of width 42 bits or a million counters
of width 21 bits. Using on-chip SRAM alone, it is difficult
to scale to over a million counters of width 64 bits.

To maintain these counters in off-chip DRAM however,
makes it difficult to support counter updates at high line
rates. Given the large access times of DRAM, the time
to read, update and write a counter would be too large,
particularly if multiple counters need to be updated for every
packet. A counter update operation involves a memory read
followed by a memory write. If the link rate is R Gbps and
the minimum packet size is P bits, then memory needs to be
accessed every P

2R
nsec. For example, in the case of 40 byte

TCP packets on a 10 Gbps OC-192 link, the access time is
16 nsec. If every packet causes C counters to be updated,
then the effective line rate becomes CR, and memory needs
to be accessed every P

2CR
nsec. In the same example, if

every packet causes two counters to be updated, the access
time reduces to 8 nsec. These times are much lower than
the access times of commercially available DRAMs (tens of
nsec), making it difficult to support counter updates at lines
rates by storing the counters in off-chip DRAM.

In essence, balancing the high costs and low densities of
SRAM against the large access times of DRAM is an impor-
tant and non-trivial consideration in the design of a statistics
counter architecture.

1.2 Previous Work
In a seminal paper, Shah et al [1] propose a hybrid ar-

chitecture in which DRAM is used to store the statistics
counters but a small amount of SRAM is used to enable
counter updates at line rate. If N counters of size M bits
are to be maintained, then N counters of full size M bits
are stored in DRAM. In addition, N counters of a smaller
size m < M bits are cached in SRAM.

The counters in SRAM are used to keep track of recent
updates to the counters, and are periodically updated to
the corresponding DRAM counters under the control of a
counter management algorithm (abbreviated CMA). By main-
taining counters of smaller size in SRAM, the amount of
SRAM required is reduced. By updating the DRAM coun-
ters relatively infrequently, the longer access times of DRAM
can be tolerated. Figure 1 shows a schematic diagram of the
architecture.

While this counter management architecture may super-
ficially resemble conventional caches in processors, the com-
mon thread is really only the fact that they both use a faster
memory to speed up access to a slower memory. On the
other hand, there are the following significant differences,
that define a completely different set of metrics and issues
than conventional caching.

• Worst case versus expected case Processor caches
exploit locality of access to optimize the expected case.
On the other hand, high line rates mandate counter
management to provide small worst case bounds on
the time to process a packet.

• ”All of some” versus ”some of all” Processor
caches store only a small subset of frequently used data
in the cache (all of some). On the other hand, the
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Figure 1: Statistics counter architecture : N counters of size M are maintained in DRAM and N counters
of size m < M are maintained in SRAM. The SRAM counters hold recent updates to the counters and are
periodically transferred to the corresponding DRAM counters under the control of a counter management
algorithm.

counter management architecture stores smaller ver-
sions of all the counters in the cache (some of all).

• Reactive versus proactive replacement Cache re-
placement in processors typically occurs only in re-
sponse to a cache miss. On the other hand, the counter
management architecture updates the DRAM counters
in parallel to the updates to SRAM. In some sense,
counter management is more of a scheduling problem
in which a SRAM counter must be updated to the cor-
responding DRAM counter before it overflows.

Both the amount of SRAM required and the access rate
of the DRAM depend on the CMA. The CMA is responsible
for picking the order in which SRAM counters are updated
to DRAM, and in doing so, must ensure that, no counter
overflows. Thus, irrespective of the pattern of traffic arrival,
every SRAM counter must be eventually updated to DRAM
by the CMA before it overflows. This is not trivial, consid-
ering that the SRAM counters are updated at line rates,
while the rate at which the DRAM counters can be updated
is much smaller. Therefore, for a given CMA and DRAM
access rate, the size of the SRAM counter required depends
on the maximum value a counter can take under that CMA.
If the value a counter can take under a CMA is large, the
size of the SRAM counter to prevent overflow is also large
and therefore the amount of SRAM required is also large.

Hence an important consideration for a CMA is provably
good bounds on the maximum value a counter can take un-
der that CMA. Another equally critical factor is that there
should be minimal complexity involved in implementing the
CMA. Since the control information required by a CMA
needs to be maintained in SRAM, a practical CMA should

have minimal storage requirements and also should not re-
quire unnecessarily complex hardware.

Shah et al [1] propose a CMA called LCF (Largest Counter
First). LCF picks the counter with the largest value to be
updated to DRAM. Intuitively, this strategy is optimal be-
cause it always updates to DRAM the counter that is closest
to overflowing. In fact, LCF is provably optimal in terms
of the amount of SRAM required. However due to the ne-
cessity of finding the largest among N counter values, it is
difficult to implement LCF at high speeds. To quote [1]:

But LCF CMA is a complex algorithm to imple-
ment at a very high speed. It will be interesting
to obtain a similar performance as LCF CMA
with a less complex algorithm.

This paper answers this question 2 by proposing a CMA
called LR(T ) that is optimal, and therefore has the same
performance as LCF . Furthermore, by outlining a relatively
inexpensive and simple implementation, it also demonstrates
that LR(T ) is practical.

1.3 Complexity of Sorting
Why is LCF hard to implement? Clearly, a major bot-

tleneck is finding the highest counter to evict. This is anal-
ogous to the requirement in Fair Queuing algorithms such
as WFQ [4] to find the packet with the earliest deadline
to transmit. Just as round robin and weighted round-robin
schemes [5] are more commonly implemented at high speeds,
it appears that LCF will have similar implementation issues.
2In unpublished research, Shah and Prabhakar [2] have con-
currently proposed a different scheme that addresses the
same question.



More precisely, one obvious scheme that requires no ad-
ditional space or hardware complexity is to examine each of
the N values. A more efficient scheme would presumably
maintain some kind of index data structure that maintains
some ordering on the counter values. For example, Bhagwan
and Lin [7] describe an implementation of a pipelined heap
structure that can determine the largest value at a fairly
high expense in hardware complexity and space.

Their P-heap [7] structure is somewhat difficult to pipeline
because of the need for parent nodes to read children when
processing an update. More importantly, their structure ap-
pears to require pointers of size log2 N for each counter in
the heap just to identify the counter to be evicted. Unfor-
tunately, log2 N additional bits per counter can be large (20
for N = 1 million) and can defeat the purpose of the CMA,
which was to reduce the required SRAM bits from 64 to say
10.

The need for a pointer per heap value seems hard to avoid.
This is because the counters must be in a fixed place to be
updated when packets arrive, but values in a heap must keep
moving to maintain the heap property. On the other hand,
when the largest value arrives at the top of the heap, one
has to correlate it to the counter index in order to reset the
appropriate counter and to banish its contents to DRAM.
Notice also that all values in the heap, including pointers
and values, must be in SRAM for speed.

By contrast, the counter management architecture we pro-
pose in this paper, LR(T ) CMA, can be implemented with
only 2 bits of additional space per counter and very min-
imal hardware complexity. This should be contrasted to
potentially log2 N bits per counter for LCF and increased
hardware complexity for maintaining a heap.

Note that reducing space complexity is paramount. Even
adding a few extra bits of SRAM per counter could neces-
sitate an implementation with off-chip SRAM. Such a chip
would then require pins not only to access the DRAM coun-
ters, but to access the SRAM counters as well, potentially
creating issues of pin count, power, and board area. On
the other hand the 2 extra bits of control overhead plus the
10 or so bits (see numbers later) required per counter, only
amounts to 12 Mbits for a million counters which is easily
feasible on-chip today.

1.4 Paper Contributions
Our paper proposes a new CMA called LR(T ) (Largest

Recent with threshold T ) that is both optimal as well as eas-
ily implementable. For a particular value of the threshold T ,
LR(T ) is analytically shown to require an optimal amount of
SRAM to store the counters. Furthermore, LR(T ) can be
implemented with minimal hardware complexity and only
2 bits of additional space per counter, using a novel data
structure called an aggregated bitmap.

In essence, LR(T ) finesses the need for finding the largest
counter by only keeping track of a list of counters above the
threshold. LR(T ) can be viewed as an approximate bin sort-
ing algorithm that puts counters into two bins (below and
above the threshold T ), as opposed to LCF which is exact
sorting. The interesting property is that, for the purposes
of counter management, rough sorting is as good as exact
sorting.

To reduce memory, we suggest implementing the list using
a bitmap and use a tree data structure to efficiently find bits
set to 1. LR(T ) requires only slightly more than two SRAM

accesses per counter update, thereby making it possible to
support multiple counter updates at even OC-768 line rates.

Thus the main contribution of this paper are:

• A new Counter Management Algorithm together with
a proof of optimality.

• A demonstration that the SRAM-cache architecture
proposed in [1] can be deployed in real routers using
an inexpensive and simple implementation. LR(T ) can
be implemented in an ASIC or integrated into a for-
warding processor.

• Solutions to some other problems that need to be solved
by a practical counter management algorithm (such as
increments greater than 1) that are not addressed in
[1].

• A aggregated bitmap data structure that efficiently im-
plements general set membership operations in pipelined
fashion unlike, say, the structure proposed in [6].

While this paper deals with counter management in the
specific context of high-speed networks, maintaining coun-
ters is a fundamental problem of measurement. Section 4
briefly discusses the broader applicability of a counter man-
agement architecture. The rest of this paper is organized as
follows. Section 2 describes and analyzes the LR(T ) CMA.
Section 3 deals with implementation issues. In particular, it
describes the aggregated bitmap data structure and shows
how it can be used to implement the LR(T ) CMA. Section 4
states our conclusions and proposes directions for future re-
search.

2. LR(T ) ALGORITHM
This section describes and analyzes a counter manage-

ment algorithm called LR(T ) (Largest Recent with thresh-
old T ). All updates to counters are initially made to the
SRAM counters. Every b updates to the SRAM counters,
the CMA picks one counter in SRAM to be updated to the
corresponding counter in DRAM. The SRAM counter that
was updated is then reset to zero. It is assumed that one
update to an SRAM counter is made per unit time. At times
t = bk, an SRAM counter is updated to DRAM and reset.
The choice of parameter b is governed by the relative access
times of DRAM and SRAM, and is described in detail in
section 3.

Algorithm description Let j∗ be the counter with the
largest value among the counters incremented in the last cy-
cle of b updates to SRAM. Ties may be broken arbitrarily.
If the value of this counter cj∗ ≥ T , LR(T ) updates counter
j∗ to DRAM. If cj∗ < T , LR(T ) updates any counter with
value at least T to DRAM. If no such counter exists, LR(T )
updates counter j∗ to DRAM.

LR(T ) is actually a family of similar algorithms parame-
terized by the threshold T . Section 3 shows how to imple-
ment LR(T ) for any arbitrary threshold T . However two
specific values of the threshold T = 0 and T = b are of par-
ticular interest. A threshold of T = 0 allows an extremely
simple implementation, while a threshold of T = b is optimal
and minimizes the size of SRAM required.



2.1 LR(0) algorithm
Since every counter trivially has a value of at least 0,

LR(0) updates to DRAM the counter j∗ with the largest
value among the counters incremented in the last cycle of b
updates to SRAM. LR(0) is a memoryless algorithm in the
sense that it remembers only the last b updates to SRAM in
determining which counter to update to DRAM. This is in
contrast to the LR(T ) algorithm with a non-zero threshold
T that remembers counters that have exceeded the threshold
T .

This memoryless property of LR(0) admits an extremely
simple implementation. To implement LR(0), it is sufficient
to keep track of the counter with the largest value in the
current cycle of updates to SRAM. This can be done eas-
ily using an on-chip register that keeps track of the largest
counter in the current cycle. An interesting observation is
that LR(0) is exactly the same algorithm as LR(∞) as no
counter can reach a value of ∞.

Let C0
max be the maximum value a counter can reach un-

der the LR(0) counter management algorithm. The follow-
ing theorem provides a lower bound for C0

max.

Theorem 1 : C0
max ≥ b

2
(N + 1)

Proof See appendix . �

Theorem 1 implies that a SRAM counter of size at least

�log2 ( b(N+1)
2

� is required. For b = 20 (a typical figure for

the ratio of DRAM and SRAM access rates) and N = 220

(approximately a million), a counter of size at least 24 bits is
required. Note that this is only a lower bound on the actual
size required. Theorem 1 demonstrates that the extreme
simplicity of the LR(0) algorithm comes with the penalty of
requiring a relatively large amount of SRAM. While reduc-
ing SRAM requirements from 64 bits to 24 bits per counter
is still significant, the LR(b) algorithm that we now discuss
will do much better.

2.2 LR(b) algorithm
This section provides a theoretical analysis for the LR(b)

algorithm in which the threshold has increased from 0 to
b, where b is the time between accesses to the DRAM. An
upper bound for the largest value a counter can take under
the LR(b) algorithm is derived. This determines the amount
of SRAM required to implement the algorithm.

Intuition: It the following analysis, it helps to use a po-
tential function argument to bound the value of counters. It
is fairly easy to show a bound on a potential function that
is equal to the sum of all counters values. Unfortunately,
this results in a very poor bound on the value of any one
counter. To get a bound that is logarithmic, it helps to use
a potential function that is the sum over all counters of an
exponential function of the counter value c, such as dc for
some constant d.

It turns out that a reasonable value of d is b
b−1

because of
the fact that every b units of time, the counter management
algorithm is guaranteed to zero out at least 1 counter. Thus
as kb time passes only a fraction ( b−1

b
)k of the total number

of counters can stay “large”.

Define the potential Fj
3 of counter j with value cj to be

Fj =

8<
:

cj if cj < b

b
db dcj if cj ≥ b

9=
; (1)

where d = b
b−1

. Note that Fj is continuous at b. Define an

aggregate potential function F (t) as the sum of potentials
of all counters at time t.

F (t) =

j=NX
j=1

Fj(t)

Lemma 1 : At all times t = bk, F (t) ≤ (b − 1)(N − 1)

Proof (by induction on time t) We can use induction on time
t because we have normalized time such that one SRAM
counter is updated every time unit. For the base case, at
time t = 0, F (t) = 0.

For the inductive step, assume that F (t) ≤ (b− 1)(N − 1)
at time t = bk for some k. It is required to prove that
F (t + b) ≤ (b − 1)(N − 1). Let Ci, t + 1 ≤ i ≤ t + b, be
the value of the counter incremented at time i. After the
counter is incremented, its value is Ci + 1. Note that the
counter values Ct+1, . . . , Ct+b do not necessarily correspond
to distinct counters as it is possible that some counters are
incremented multiple times between times t + 1, . . . , t + b.
When the value of a counter is incremented from Ci to Ci+1,
there is an increase in potential. If Ci ≥ b, the increase in
potential is

b

db
(dCi+1 − dCi) =

b

db
dCi+1(1 − 1

d
) =

dCi+1

db

If Ci < b, the increase in potential is (Ci + 1) − Ci = 1. At

time i, the increase in potential is at most max{1, dCi+1

db }.
The total increase in potential I between times t and t + b
therefore satisfies

I ≤
i=t+bX
i=t+1

max{1,
dCi+1

db
} (2)

At time t+ b, let C∗ be the value of the counter with largest
value among all counters incremented at times t+1 . . . t+ b.
For all i, t + 1 ≤ i ≤ t + b, C∗ ≥ Ci + 1. We now consider
two cases.

Case 1 : C∗ ≥ b
The counter with value C∗ is updated and reset, causing the
potential to decrease by b

db dC∗
. The decrease in potential

D between times t and t + b satisfies

D =
b

db
dC∗

(3)

Now

dC∗

db
≥ db

db
= 1

and for all i(t + 1 ≤ i ≤ t + b),

dC∗

db
≥ dCi+1

db

3Note this potential function is different from the one used
in [1] and results in a tighter bound



For all i, t + 1 ≤ i ≤ t + b,, dC∗

db ≥ max{1, dCi+1

db }. The
change in potential from time t to t+b is given by the differ-
ence between the potential increase I and potential decrease
D given by equations (2) and (3).

F (t + b) − F (t) = I − D

≤
i=t+bX
i=t+1

max{1,
dCi+1

db
} − b

db
dC∗

=

i=t+bX
i=t+1

(max{1,
dCi+1

db
} − dC∗

db
)

≤ 0

Between times t and t+ b, there is no net increase in poten-
tial and therefore F (t + b) ≤ (b − 1)(N − 1).

Case 2 : C∗ < b
At time i, t + 1 ≤ i ≤ t + b, the increase in potential is
(Ci + 1) − Ci = 1. The total increase in potential between
times t and t+b is b. If there is a counter with value at least
b, it is updated and reset, causing a decrease of potential of
at least b

db db = b. Between times t and t+ b, there is no net
increase in potential and therefore F (t+b) ≤ (b−1)(N −1).
If there is no counter with value at least b, the counter with
value C∗ is updated and reset. The potential of this counter
is 0 and the potential of each of the remaining N − 1 coun-
ters is at most (b− 1) and therefore the aggregate potential
F (t + b) ≤ (b − 1)(N − 1).

In both cases, F (t+ b) ≤ (b− 1)(N − 1), which proves the
inductive hypothesis. �

Let Cb
max be the largest value a counter can take under

the LR(b) counter management algorithm. The following
theorem provides an upper bound for Cb

max.

Theorem 2 : Cb
max ≤ (2b− 1) + logd (N − 1) where d = b

b−1

Proof At all times t = bk when a counter is updated to
DRAM, F (t) ≤ (b−1)(N −1). This implies that the poten-
tial of any one counter at t = bk is at most (b − 1)(N − 1).
Therefore the value of any counter at t = bk cannot be larger
than

logd (
db

b
(b − 1)(N − 1)) = logd (db−1(N − 1))

= (b − 1) + logd (N − 1)

The value of a counter can increase by at most b between two
updates to DRAM. Therefore Cb

max ≤ (2b−1)+logd (N − 1).
�

Shah et al [1] show that there exists a traffic arrival pat-
tern such that a counter can reach a value of (b − 1) +
logd (N − 1) under any counter management algorithm. The-
orem 2 shows that the same quantity (b − 1) + logd (N − 1)
is an upper bound for the value a counter can reach at all
times t = bk under the LR(b) algorithm. Therefore an up-
per bound on the maximum value a counter can take un-
der the LR(b) algorithm is a lower bound on the maximum
value a counter can take under any counter management
algorithm, which proves that LR(b) is optimal in terms
of the amount of SRAM required. An additional additive

term of b is required to account for increases in counter
value between two updates to DRAM. However for prac-
tical implementations, b is much smaller than logd(N − 1)
and therefore does not change the amount of SRAM re-
quired. The upper bound provided by theorem 2 is also
tighter than the upper bound in [1] for the LCF counter
management algorithm. Since LCF is provably better than
any counter management algorithm, the bound for LR(b)
applies to LCF as well. Theorem 2 implies that a counter
of size �log2 (2b − 1 + logd (N − 1))� is sufficient. For b = 20
and N = 220 (approximately a million), a counter of size
m = 9 bits is sufficient.

This section showed that the LR(b) CMA is optimal in
terms of the amount of SRAM required. The following sec-
tion demonstrates that the LR(T ) algorithm can be effi-
ciently implemented with minimal hardware complexity.

3. IMPLEMENTATION
To implement the LR(T ) CMA, it is necessary to locate

a counter whose value is at least T . In principle, a list of all
counters whose value is at least T could be used. However
each element of the list would require a pointer of size log2 N
to identify a counter. In order to minimize the amount of
storage required, an aggregated bitmap data structure is
used instead.

3.1 Aggregated bitmap
Consider a fixed universe U of N elements labelled 1, 2, . . . , N .

It is necessary to record which elements of U are contained
in a set S and which are not. A bitmap b1b2 . . . bN is used
for this purpose where bit bi is set to 1 if element i ∈ S and
is set to 0 otherwise. Suppose the following membership
operations on S are to be implemented.

add(i) Adds element i to set S
delete(i) Deletes element i from set S
test(i) Tests whether element i belongs to set S

The above three operation reduce to a rather straightfor-
ward modification or lookup on bit bi. But suppose the
following additional operation is to be implemented.

find Returns any element i that belongs to set S

Finding any element i that belongs to S reduces to searching
the bitmap for a bit bi = 1. In the worst case, it may be nec-
essary to examine all N bits of the bitmap. For large N , this
is clearly not desirable. To improve the complexity of the
find operation the following tree structure is constructed
that aggregates the information contained in the bitmap.
Each group of W bits in the bitmap (W is the word size)
is aggregated to form a single node, resulting in a total of
N
W

nodes. Assuming for simplicity that N
W

= 2h 4, these N
W

nodes form the leaves of a complete binary tree of height
h + 1. Clearly each internal node is the root of a sub-tree
that contains some portion of the entire bitmap. Each in-
ternal node in the tree contains two fields called lcount and
rcount, which are defined as follows. For a node whose two
children are leaf nodes, the lcount field is the number of 1s
present in its left child, and the rcount field is the number
of 1s present in its right child. Note that since both chil-
dren are leaf nodes, they represent an aggregate of W bits

4A reasonable assumption given that in practice, N and W
are both likely to be powers of 2
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Figure 2: Aggregated bitmap for N = 128 elements and W = 16 word size. The dotted rectangles indicate that
nodes at each level of the tree are stored in different memory banks to facilitate a pipelined implementation

from the bitmap. For a node whose two children are not leaf
nodes, the lcount field is the sum of the lcount and rcount
fields of its left child, and the rcount field is the sum of the
lcount and rcount fields of its right child. A simple induc-
tive argument establishes the invariant that for all internal
nodes of the tree, the lcount field is the number of 1s present
in the portion of the bitmap contained in the sub-tree rooted
at its left child, and that the rcount field is the number of 1s
present in the portion of the bitmap contained in the sub-
tree rooted at its right child. Figure 2 shows an aggregated
bitmap for N = 128 elements and word size W = 16.

The set membership operations can now be implemented
as a top-down traversal of the tree starting from the root,
updating nodes as necessary to maintain the above invari-
ant. Given i, it is trivial to determine whether to follow the
left child or the right child at each internal node. During
the add operation, at each internal node, the lcount field
is incremented when following the left child and the rcount
field incremented when following the right child. At the leaf
node, bit bi is set to 1. During the delete operation, at each
internal node, the appropriate field is decremented while at
the leaf node, bit bi is set to 0. During the test operation,
no internal node is updated. During the find operation, at
each internal node, the left child is followed if the lcount
field is non-zero and the right child is followed if the rcount
field is non-zero. The invariant guarantees that if one of the
fields is non-zero, the corresponding sub-tree has at least
one bit bi = 1. If there is no bit bi = 1, both lcount and
rcount fields at the root are zero. The complexity of each
operation is proportional to the height of the tree which is
equal to log2

N
W

+ 1.
Internal nodes in the tree do not explicitly maintain point-

ers to their left and right children. Rather these are im-
plicitly computed by appropriately laying out the nodes in
memory. Therefore each internal node just contains the two
fields lcount and rcount each of which requires log2

N
2

bits.

To ensure that an internal node is contained inside one mem-
ory word, and therefore requires only one memory access per
read or write, the constraint W ≥ 2 log2

N
2

must be satisfied
5. Each node in the tree requires W bits of memory and
there are 2h+1 − 1 nodes. Therefore the total amount of
memory to implement the aggregated bitmap is

(2h+1 − 1)W = (
2N

W
− 1)W < 2N

or at most 2 bits per element.

[6] proposes a different kind of aggregated bitmap data
structure in the context of packet classification. In this
scheme, every group of W bits is aggregated into a single
bit which is set if any of W bits is set. The aggregation
can be repeated to any level, forming a tree. Although this
kind of aggregated bitmap can support set operations, it is
difficult to pipeline this structure. The reason for this is
that the natural flow of delete operation is bottom-up and
not top-down. In the aggregated bitmap presented in this
paper, all operations are top-down, which lends itself to a
pipelined implementation.

Pipelined implementation Each of the operations on aggre-
gated bitmap proceeds top-down from one level to another
starting at the root. At each level of the tree, there is poten-
tially a memory read followed by a memory write. Storing
each of the levels of the tree in a different memory bank
permits simultaneous access to all levels of the tree. The

5Given the large word sizes possible in hardware nowadays,
this is not a serious constraint. For example, for N = 220,
even a modest word size of W = 64 is sufficient. In fact, large
word sizes can be exploited to construct a k-ary tree instead
of a binary tree that serves to reduce the height of the tree,
improving both the latency and space requirements. In this
case, the appropriate constraint is W ≥ k log2

N
k

.



relatively small number of levels in the tree (for N = 220

elements and a word size of W = 64 the height of the tree
is 15) makes this feasible. This allows for a piplelined im-
plementation of the aggregated bitmap operations in which
each pipeline stage consists of two memory accesses. This
results in an effective throughput of one operation every two
memory accesses.

Although this paper proposes the aggregated bitmap data
structure in the context of efficiently implementing the LR(T )
CMA, it is hoped that the data structure may find uses in
other contexts as well. A potential application for the aggre-
gated bitmap is to efficiently maintain the set of active flows
in a fair queuing algorithm such as Deficit Round Robin [5].

3.2 Implementation of LR(T )

After every b updates to SRAM counters, the CMA selects
one SRAM counter to be updated to be updated to the cor-
responding DRAM counter. To implement the LR(T ) CMA,
it is necessary to keep track of two things viz. (1) the largest
value C∗ among all counters updated in the last cycle of b
updates along with the corresponding counter j∗ and, (2)
all counters above the threshold T . The former is accom-
plished by maintaining an on-chip register in the CMA logic
that records the largest value among all counters updated
so far in the current cycle. This register may need to be
updated every update to SRAM. The latter is accomplished
by using an aggregated bitmap with the set S defined as
S = {j : cj ≥ T} The aggregated bitmap is stored in SRAM
distinct from the SRAM used to store the counters. Mem-
ory accesses for counter operations and bitmap operations
proceed in parallel.

Every update to a SRAM counter requires increment-
ing that counter in SRAM. In addition, if the value of the
counter exceeds the threshold T , the aggregated bitmap data
structure must be updated by an add operation. Every up-
date to a DRAM counter involves first determining which
counter to update, according to the LR(T ) algorithm. This
is either the counter with the largest value in the last b up-
dates, or any counter with value greater than T . A counter
with value greater than T is assumed to be available as a
result of a find operation initiated at the end of the last
DRAM update. In either case, if the value of the counter
evicted is greater than T , the bitmap is updated with a
delete operation. Also a find operation is initiated to find
a counter with value greater than T that may be evicted
after the next b updates. The counter that is chosen is reset
and its value updated to the corresponding DRAM counter.

Every cycle of b updates involves b SRAM update oper-
ations followed by a single DRAM update operation. An
SRAM update operation requires two accesses to update
the SRAM counter and potentially two accesses for the add

operation. A DRAM update operation requires two accesses
to read and reset the SRAM counter, and potentially four
accesses for the delete and find operations. By shifting
bitmap operations in time, the delete operation can be
combined with the find operation for an integrated com-
plexity of only two memory accesses. A DRAM update
operation also requires two DRAM accesses to update the
DRAM counter, which can overlap with the next cycle of
b SRAM counter updates. Figure 3 shows the sequence of
SRAM and DRAM accesses for two successive cycles of b
counter updates.

If P is the minimum packet size, R is the link rate and C

is the number of counters that are updated per packet, the
peak rate of counter updates is CR

P
. From figure 3, it is clear

that every cycle of b updates results in 2 DRAM accesses.
Therefore if TD is the DRAM access time,

TD ≤ b
P

2CR
(4)

From figure 3, it clear that every cycle of b updates results in
2b + 2 SRAM accesses. Therefore if TS is the SRAM access
time,

TS ≤
„

b

2b + 2

«
P

CR

=

„
b

b + 1

«
P

2CR
(5)

Constraints 4 and 5 impose lower bounds on the choice of
b. Given SRAM with access time TS and DRAM with access
time TD, it is desirable to choose as small a value of b sub-
ject to constraints 4 and 5 to minimize the amount of SRAM
required. Fixing the value of b results in an SRAM counter
of size m = log2 (2b − 1) + logd (N − 1) as per Theorem 2.
An additional 2 bits of SRAM per counter are required for
maintaining the aggregated bitmap. The total SRAM re-
quirements are therefore (m + 2)N .

3.3 Large counter updates
The analysis in the preceding sections assume that each

update causes a counter to be incremented by 1. While
this works fine for packet counters, it does not work for
byte counters that must be incremented by the number of
bytes in each packet. Each counter can then be increased
by maximum packet size on each packet arrival.

Suppose the size of the maximum increment per update is
u. The analysis is similar with the bound provided by The-
orem 2 having an extra multiplicative factor of log2 u. Thus
to support the same DRAM access rate b, the LR(b) CMA
requires log2 u additional bits per SRAM counter. When u
is large, these additional bits can be significant. A counter
counting the total bytes due to Ethernet packets would need
to support increments of up to 1500 bytes, thereby requiring
11 additional bits.

One way to avoid this overhead is to use a probabilistic
scheme to update the counters. More precisely, suppose that
when counter j gets updated by amount x, we increment the
value of counter j by 1 with a probability of x

u
. Note that

in this scheme, the value of a counter increases by at most
one every update.

A sequence of updates x1, x2, . . . , xn to the same counter
results in a counter value X =

Pi=n
i=1 Xi where each Xi, is

a 0-1 random variable with Pr[Xi = 1] = xi
u

. The expected
value of the counter after n updates is

µ = E[X] = E[

i=nX
i=1

Xi] =

i=nX
i=1

E[Xi] =

i=nX
i=1

xi

u
=

1

u

i=nX
i=1

xi

Therefore the value of the counter X multiplied by u gives
an approximation of the required value

Pi=n
i=1 xi, which is ac-

curate in an expected sense. The following Chernoff bounds
can be used to derive a high confidence bound on the value
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Figure 3: Timing diagram for SRAM and DRAM updates for two successive cycles of b counter updates.
Note that SRAM accesses for counter operations and bitmap operations are overlapped

of X. For all 0 < β ≤ 1,

Pr[X ≤ (1 − β)µ] ≤ e−
β2µ
2

Pr[X ≥ (1 + β)µ] ≤ e−
β2µ
3

The probability that the approximation uX lies outside a
multiplicative factor of β of the required

Pi=n
i=1 xi drops ex-

ponentially with the expected value of the counter. Thus
when updates accumulate over a period of time, the ap-
proximation tends to become more and more accurate.

4. CONCLUSION
Packet switches need to maintain counters for collecting

statistics on various events. Shah et al [1] introduce a statis-
tics counter architecture that can support a large number of
counters at line rates. The basic idea is to use small width
SRAMs as a cache that must be backed up by larger width
DRAMs, thus combing the speed of SRAMs with the cheap-
ness and density of DRAMs. [1] also proposes a counter
management algorithm called LCF that is shown to require
an optimal amount of SRAM by periodically dumping the
largest counter in SRAM to DRAM.

However, it is difficult to implement LCF at high speeds
because of the need to have logic that selects the largest
SRAM counter to evict. Our paper removes this “sorting”
bottleneck in [1] by proposing a counter management algo-
rithm called LR(T ) (Largest Recent with threshold T ) that

6The control memory required for LCF is estimated assum-
ing that any indexing structure that maintains counters in
heap order requires at least log2 N bits per counter. While
it is certainly conceivable that LCF could be implemented
with less control memory, it is unlikely that such an imple-
mentation could come close to the 2 bits per counter required
by the LR(T ) implementation described in this paper.
7Cost is estimated relative to the naive implementation,
based on the amounts of SRAM and DRAM required by
each scheme, assuming a 4:1 cost ratio.

is not only optimal but also practically realizable. Through
a formal analysis, our paper shows that for a particular value
of the threshold T , the LR(T ) requires an optimal amount
of SRAM despite its simpler structure that avoids comput-
ing the largest counter. Further, our paper also describes
an implementation, based on a novel data structure called
aggregated bitmap, that allows the LR(T ) algorithm to be
realized at line rates.

Table 1 compares the naive approach of implementing all
counters in SRAM with the LCF and LR(b) schemes. For a
reference system of a million counters operating at 10 Gbps
with 10 updates per packet, LR(b) can be implemented us-
ing roughly 11 bits of SRAM per counter and simple logic.
When compared to potentially 64 bits of SRAM per counter
for a naive solution, this is nearly a 5-fold reduction in
SRAM size. This will result in nearly a factor of two reduc-
tion in overall system cost after counting the extra DRAM
added. LR(b) is also much easier to implement than LCF
due to the sorting requirement that increases both the im-
plementation complexity as well as the amount of memory
required to maintain state.

We see no reason why simple counter management logic
cannot be deployed (either as a stand-alone chip with inter-
faces to external DRAM or within a forwarding processor)
using our LR(b) algorithm.Given that SRAM contributes a
sizeable fraction of the line card cost and power, practical
counter management algorithms could be widely used in the
future.

In summary, while [1] took the fundamental step of propos-
ing a general framework for maintaining statistics counters
via caching, our paper brings the framework to fruition by
demonstrating an implementation of a CMA that can be re-
alized at line rates. We stress the practicality of our scheme
since statistics counters are a crucial requirement to enable
applications like accounting, security and traffic engineer-
ing, that require fine-grained measurement in the network
core.



Naive LCF LR(b)
Counter memory 64 Mb SRAM 9 Mb SRAM 9 Mb SRAM

64 Mb DRAM 64 Mb DRAM

Control memory None 20Mb SRAM 6 2 Mb SRAM
Control logic Simple Hardware heap Aggregated bitmap

Implementation complexity Low High Low
Cost 7 100 % 70 % 42 %

Table 1: Cost - benefit comparison for different schemes for a reference system with a million 64-bit counters
and a line rate of 10 Gbps with 10 counter updates per packet

Future directions Finally, we comment on the broader
applicability of the work described in this paper and pro-
pose directions for future research. While for the purpose
of solving a very concrete real-world problem, this paper fo-
cusses on counter management in a very specific setting, viz.
statistics gathering in high-speed Internet routers, counters
are per se a universally used mechanism in any kind of
measurement or statistics collection. Counter management
could therefore be an important issue in other application
domains as well.

For example, consider a busy web server that maintains
statistics on how many times a particular user accesses a par-
ticular piece of content. The statistics counters are main-
tained in main memory for quick access, but need to be
archived to permanent disk storage in case of failure. To
minimize overhead, the archiving process runs only peri-
odically and selects only a fraction of the large number of
statistics counters to be transferred to disk. To minimize in-
formation loss in case of failure, counters with large values
are transferred to disk in preference to counters with small
values. Thus we see that counter management is important
in a very different setting with a different memory hierar-
chy (main memory versus disk) and different tradeoffs (over-
head versus information loss). Note that in this particular
scenario, an LR(T ) - like algorithm could be used to keep
track of ”large” counters that are above some threshold T .
In a software setting, since space is no longer a primary con-
sideration, LR(T ) could be implemented in constant time
complexity using a list instead of a bitmap.

The above example is meant to illustrate that special-
ized counter management architectures, such as the one dis-
cussed in this paper , could be valuable in other domains
as well, with design issues specific to each domain. Keeping
this in mind, we conclude by posing questions that could be
addressed by future research.

• Are there other counter management algorithms or
architectures whose integrated (counter and control)
SRAM requirements are lower ? What is the theoret-
ical minimum memory required ?

• What is the effect of multiple levels of memory hier-
archy ? How can counter management be efficiently
implemented in different memory hierarchies with dif-
ferent tradeoffs ?

• How can locality be used to optimize counter manage-
ment ? For example, can a Zipf distribution of updates
be used to reduce the amount of SRAM required while
still providing high confidence worst case bounds on
the time required to process an update ?
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APPENDIX
Theorem 1 : C0

max ≥ b
2
(N + 1)

Proof A traffic arrival pattern πn(i1, i2, . . . , in) is
constructed that updates counters i1, i2, . . . , in such
after time t = |πn|, at least one of the counters has a
value of at least b

2
(n − 1). The required traffic arrival



pattern is constructed inductively. Define

π2(i1, i2) = i1, i1, . . . , i1| {z }
b
2 times

i2, i2, . . . , i2| {z }
b
2 times

After t = |π2|, both i1 and i2 have a value of at least b
2
.

One of them is updated to DRAM and reset by the
LR(0) CMA but the other one still has a value of at
least b

2
.

Consider the traffic arrival pattern

πn−1(i1, i2, . . . , in−1)

By the inductive hypothesis, after t = |πn−1|, at least
one of the counters i1, i2, . . . , in−1 has a value of at least
b
2
(n − 2). Without loss of generality, assume that this

counter is i1. Now consider the traffic arrival pattern

πn−1(i2, i3, . . . , in)

By the inductive hypothesis, after t = 2|πn−1|, at least
one of the counters i2, i3, . . . , in has a value of at least
b
2
(n − 2). Without loss of generality assume that this

counter is i2. Note that since i1 was never updated
during this period, it still has a value of b

2
(n − 2). LR(0)

never updates counters that were not incremented in the
last cycle of b updates. Now consider the traffic arrival
pattern

i1, i1, . . . , i1| {z }
b
2 times

i2, i2, . . . , i2| {z }
b
2 times

After t = 2|πn−1| + b, both i1 and i2 have a value of at
least b

2
(n − 2) + b

2
= b

2
(n − 1). One of them is updated

to DRAM and reset by the LR(0) CMA but other one
still has a value of at least b

2
(n − 1). Now consider the

traffic arrival pattern

πn(i1, i2, . . . , in) = πn−1(i1, i2, . . . , in−1)

πn−1(i2, i3, . . . , in)

i1, i1, . . . , i1| {z }
b
2 times

i2, i2, . . . , i2| {z }
b
2 times

After t = |πn| = 2|πn−1| + b, it has been shown that
there is a counter with value at least b

2
(n − 1), proving

the inductive hypothesis. Therefore the arrival pattern
πN (1, 2, . . . , N) results in one counter that has a value of
at least b

2
(N − 1). In the next cycle of b updates, the

value of this counter can increase by b, giving a counter
value of at least b

2
(N + 1). �


