Available online at www.sciencedirect.com

SCIENCE@DIREOT@‘ [OmPUfer
Nefworks

www.elsevier.com/locate/comnet

«
ELSEVIER Computer Networks 50 (2006) 1831-1842

Fast packet classification for two-dimensional conflict-free filters

Florin Baboescu ¥, Priyank Warkhede °, Subhash Suri ©*, George Varghese ¢

& Qualcomm Inc., United States

® Cisco Systems, United States
¢ Computer Science, Engineering I, University of California, Santa Barbara, CA 93106, United States
4 Computer Science and Engineering, University of California, San Diego, CA 92040, United States

Received 28 July 2004; received in revised form 11 May 2005; accepted 1 August 2005
Available online 19 September 2005

Responsible Editor: D. Stiliadis

Abstract

Routers can use packet classification to support advanced functions such as QoS routing, virtual private networks and
access control. Unlike traditional routers, which forward packets based on destination address only, routers with packet
classification capability can forward packets based on multiple header fields, such as source address, protocol type, or
application port numbers. The destination-based forwarding can be thought of as one-dimensional packet classification.

While several efficient solutions are known for the one-dimensional IP lookup problem, the multi-dimensional packet
classification has proved to be far more difficult. While an O(logw) time scheme is known for the IP lookup, Srinivisan
et al. [V. Srinivasan, S. Suri, G. Varghese, Packet classification using tuple space search, in: Proceedings of SIGCOMM’99,
1999] show a lower bound of Q(w*™!) for k-dimensional filter lookup, where w is the number of bits in a header field. In
particular, this lower bound precludes the possibility of a binary search like scheme even for two-dimensional filters (say,
IP source and destination pairs).

In this paper, we examine this lower bound more closely, and discover that the lower bound depends crucially on con-
Aicts in the filter database. We then show that for two-dimensional conflict-free filters, a binary search scheme does work!
Our lookup scheme requires O(log®w) hashes in the worst case, and uses O(nlog®w) memory. Alternatively, our algorithm
can be viewed as making O(logw) calls to a prefix lookup scheme.

It has been observed in practice that filter databases have very few conflicts, and these conflicts can be removed by add-
ing additional filters (one per conflict). Thus, our scheme may also be quite practical. Our simulation and experimental
results show that the proposed scheme also performs as good as or better than existing schemes. For example, on real fire-
wall data sets with over 200 rules consisting of source and destination IP prefixes, our algorithm performs worst case 12
hashes. For filter sets containing arbitrarily many filtering rules with IP prefixes, the worst case search time guaranteed is
utmost 25 hashes.
© 2005 Elsevier B.V. All rights reserved.

Keywords: TP lookups; Classifiers; Filter conflicts; Packet classifications; VPN

* Corresponding author. Tel.: +1 805 893 8856; fax: +1 805 893 8553.
E-mail address: suri@cs.ucsb.edu (S. Suri).

1389-1286/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2005.08.004

mailto:suri@cs.ucsb.edu

1832 F. Baboescu et al. | Computer Networks 50 (2006) 1831-1842

1. Introduction

Traditional routing of packets involves determi-
nation of outgoing link based on the destination ad-
dress and then transferring packet data to the
appropriate link interface using switching fabric.
Destination-based packet forwarding treats all
packets going to the same destination address iden-
tically. However important emerging applications,
such as Virtual Private Networks (VPN), demand
better service differentiation. Packet classification
based on selected fields from packet headers pro-
vides a general mechanism to achieve this goal.
Packet classification involves selection of header
fields from packets, such as source and destination
addresses, source and destination port numbers,
protocol or even parts of URL; and then finding
out the best packet classification rule (also called fil-
tering rule or filter) to determine action to be taken
on the packet. Since it is possible to peek header
fields corresponding to Layer 4 or above in the
OSI architecture, and perform a classification look-
up that uses a combination of these fields, this is
commonly referred to as L4+ switching. Each pack-
et classification rule consists of a prefix (or range of
values) for each possible header field, which
matches a subset of packets. As an example, con-
sider an ISP that wants to support bandwidth guar-
antees for VPNs. Packet classification rules for this
application can be of the type (source network pre-
fix, destination network prefix, guaranteed band-
width). The most specific rule for a packet
determines the VPN that the packet belongs to
and associated bandwidth guarantee. This frame-
work can be used in various settings. Some promi-
nent applications include: packet filtering in
firewalls, flow aggregation for MPLS tunneling,
QoS routing, flow-preserving load balanced
switching.

Packet classification using ad hoc mechanisms
like linear search through all filtering rules is too
slow in practice and a significant source of bottle-
neck. Hence the problem has received some atten-
tion in last 2 years. In particular, the tuple space
framework proposed by Srinivasan et al. [1] and
associated simulation results suggest significant
reduction in search space, while keeping memory
requirement almost linear. The tuple space is
formed by distinct combinations of prefix lengths
(w) in the filter set. For filters containing IP prefixes,
maximum prefix length for fields is w=32. The
number of distinct prefix length combinations is

hence significantly smaller than total number of fil-
ters. However, as the number of fields & on which
lookups are performed increases, size of the tuple
space can grow upto O(w"). Moreover, Srinivasan
et al. [1]show that Q(w* ') hashes per lookup might
be necessary in the worst case. In particular, for
classification on 2 fields (2-dimensions), they prove
that 2w — 1 hashes are necessary in the worst case
and sufficient. This result implies that it is not pos-
sible to perform binary search on hash lengths, as
done for IP prefixes by Waldvogel et al. [2], for fil-
ters with more than one field. Cross-producting
scheme proposed by Srinivasan et al. [3] suffers from
a memory blowup which can be as bad as O(n*)
even for very simple and natural filter sets. Gupta
et al. [4] propose an algorithm geared towards hard-
ware implementation which suffers from a similar
memory blowup. Thus existing schemes for packet
classification either have bad worst case lookup
times, or suffer from memory explosion. Moreover
there is evidence to suggest that the time-space
tradeoff for general packet classification problem is
hard to bridge.

In this paper, we consider fast lookup schemes
for two-dimensional filters. Since two-dimensional
filters are the simplest generalization of the one-
dimensional IP lookup problem, they provide a nat-
ural setting in which to examine the limits and
implications of the lower bounds proved by Sriniva-
san et al. [1] for the packet classification problem.
Since these lower bounds imply that we cannot hope
to get really fast packet classification algorithms
(without exponential memory) for arbitrary filter
sets, it is important to identify important practical
cases where provably fast lookup algorithms can
be achieved.

Srinivisan et al. show that if w is the prefix length
for each of the two fields, then in the worst case
2w — 1 hash probes must be made by any algorithm
that finds the best matching filter. When we exam-
ined this lower bound closely, we discovered that
their argument depends critically on having conflicts
in the filter set. (Briefly, we say that two filters con-
flict if they both match a packet header, but neither
filter is contained in the other.) Conflicts in filters
lead to distinct classification regions. While in the
worst case, n filters with & fields can have n* con-
flicts, it has been observed that in practice number
of conflicts are extremely small. For instance, Gupta
et al. [4] report that filter databases of sizes upto
1734 had only 2581 conflicts, whereas the worst case
bound would have been ~10'°.

F. Baboescu et al. | Computer Networks 50 (2006) 1831-1842 1833

When a filter database does have conflicts, there
is an elegant way to remove them by inserting addi-
tional filters covering the region of overlap (see Hari
et al. [5]). Thus, from a practical standpoint, we can
assume that real databases are conflict free.

Our main contribution in this paper is to show
that binary search can be used for packet classifica-
tion in 2D filters if the filters are conflict-free. Thus
we are able to identify and solve an important case
of packet classification where the lower bounds do
not apply. In particular, given a set of n two-dimen-
sional filters, where each field has maximum prefix
length w, our scheme has worst case search cost
O(log’w) and memory O(nlog’w). Alternatively,
one can view our algorithm has performing logw
prefix lookups, each of which can be done in
O(logw) hashes. For example, for source and desti-
nation IP prefix fields, the worst case lookup time is
25 hashes. Practically, however, number of distinct
prefix lengths in filter sets tends to be much smaller.
Hence the algorithm performs much better. We uti-
lize the observation that practical filter sets are
mostly conflict-free, to design an algorithm that
has very good worst case lookup time which also
does not suffer from any memory explosion.

The case of two-dimensional filters, while more
restrictive than general filters, is important for many
practical reasons. For example, application like
VPN and flow aggregation for MPLS, that require
use of source network and destination network pre-
fixes use 2-field filters. Also, practical firewall dat-
abases contain very few distinct protocol ranges.
So it is possible to breakup a firewall filter set on
more than 2 fields into multiple independent 2-field
filter sets without increasing memory requirement
significantly.

This paper is organized as follows. Section 2 de-
fines the packet classification problem formally, and
introduces notation and relevant assumptions. Re-
lated work is reviewed in Section 3. Important ideas
related to tuple space search are reviewed in Section
4. In Section 5, the conflict-free filter search algo-
rithm is presented and analyzed. Experimental re-
sults are discussed in Section 7 and the paper
concludes in Section 8.

2. Problem statement

Packet classification involves looking at & fields
from each packet header. Let P[i] denote the ith field
from packet P. Examples of possible fields include
source address, destination address, source and des-

tination port numbers, protocol etc. A filtering rule
consists of k prefixes, one for each field from packet
header. (An important exception is that ranges are
often used for port values. However any range can
be converted into a small set of prefixes. For exam-
ple, a range 0-80 can be converted into the set of
prefixes that correspond to sub-ranges {0-63, 64—
79, 80-80}. Srinivasan et al. [1] suggest a more effi-
cient method that works for nested ranges.) Let F
denote a filter, and let F[i], 1 < i < k, be the ith pre-
fix in the filter. Each field of a filter rule is applied to
the corresponding field selected from packet header.
A filter matches ith field of a packet if prefix F[i]
matches P[i]. A filter rule is said to be a matching fil-
ter for packet P if it matches all fields of the packet
header. As an example, consider a filter containing
two prefixes (144.16.111.%, 128.252.%). These pre-
fixes could be applied to source and destination ad-
dress fields from packets. Then, the filter matches a
packet with source 144.16.111.2 and destination
128.252.169.100; on the other hand it does not
match a packet from source 144.16.111.2 and desti-
nation 127.0.0.1.

A packet classification database (or filter set)
F={F,,...,F,} is a set of k-field filters. Since it is
possible that more than one filter in F may match
a given packet, we have to define what constitutes
the best matching filter. Let F| and F, be two match-
ing filters for packet P. If prefix Fj[i]is longer than
F5[i] for some i, then Fj is said to be more specific
filter in field i and F5 is said to be less specific in field
i than F|. The best matching filter for a packet P is
defined as a matching filter that is not less specific
than any other matching filter. Geometrically, a fil-
ter can be considered as a set of header values that it
matches. So a 2-field filter can be viewed as a rectan-
gle containing these values. Fig. 1 shows an example
of the geometric view.

There might exist a pair of filters such that one
filter is more specific than the other in one field
and less specific in another field. In such a case, it
is not possible to designate any one filter as the best

F2 F3
Filter Source Prefix | Destination
F1 F1 10* 0101*
F2 1011* 01*
‘ F3 1011* 0101*
=
destination

address
source address

Fig. 1. Two conflicting filters.

1834 F. Baboescu et al. | Computer Networks 50 (2006) 1831-1842

matching filter. Hence such a pair of filter is said to
be conflicting.

As an example consider the filters F; and F, as
shown in Fig. 1. A packet with source field 10110
and destination 01010 is matched by both F; and
F,. Filter F; is more specific in the destination field
while as filter F5 is more specific in source field. In
case of filter conflict, there is ambiguity regarding
action corresponding to which filter should be taken
for the packet. As proposed by Hari et al. [5], a gen-
eral way to resolve conflicts is to introduce conflict
resolution filters. As shown in Fig. 1, introduction
of a new filter F3 = (1011%, 0101%*) allows determi-
nation of a unique best matching filter for any
possible source,destination values.

The 2-field conflict-free packet classification
problem can be defined as follows. Given a con-
flict-free filter set F of 2-field filters, and a packet
with header fields P[], determine the best matching
filter F € F.

3. Related work

Recently several algorithms for packet classifica-
tion have appeared in the literature. Many of these
algorithms which provide fast lookup performance,
require O(x*) memory in the worst case. In compar-
ison, the algorithm presented here requires only
O(nlog?w) memory and still performs lookup in
O(log®w) time for conflict-free filters with 2 fields.

Linear search and caching: The simplest approach
to packet classification is to perform a linear search
through all the filters. This requires O(n) memory,
but also takes O(n) lookup time, which can be un-
acceptably large even for modest size filter sets.

Caching is a technique often employed at either
hardware or software level to improve performance
of linear search. If packets from the same flow have
identical headers, packet headers and corresponding
classification solution can be cached. However, per-
formance of caching is critically dependent on hav-
ing large number of packets in each flow. Also, if
number of simultaneous flows becomes larger than
cache size, performance degrades sharply. Note that
average lookup time is adversely affected by even a
small miss rate due to very high cost of linear
search. Hence caching is much more useful when
combined with a good classification algorithm that
has a low miss penalty.

Hardware-based solutions: Large degree of paral-
lelism can be implemented in hardware to gain
speed advantage. Particularly, ternary Content

Addressable Memories (CAMs) can be used very
effectively for filter lookup. However, it is difficult
to manufacture CAMs with wide enough words to
contain all bits in a filter. CAMs with particular
word width cannot be used when flexibility in filter
specification to accommodate larger filters is de-
sired. Also, large size CAMs that can accommodate,
say, 16K filters are not yet available.

An interesting approach that relies on very wide
memory accesses is presented by Lakshman et al.
[6]. The scheme computes the best matching prefix
for each of the k fields of the filter set. For each filter
a pre-computed n-bit bitmap is maintained. The
algorithm reads nk bits from memory, correspond-
ing to the best matching prefixes in each field and
takes their intersection to find the set of matching
filters. Memory requirement for this scheme is
O(n*) and it requires reading nk bits from memory.

These hardware-oriented schemes rely on heavy
parallelism, and represent significant hardware cost.
Flexibility and scalability of hardware solutions is
very limited.

Grid of tries and cross-producting: Specifically for
the case of 2-field filters, Srinivasan et al. [3] present
a trie-based algorithm. This algorithm has memory
requirement O(nw) and requires 2w — 1 memory
accesses per filter lookup. Also presented in [3] is a
general mechanism called cross-producting which
involves performing best matching prefix lookups
on individual fields, and using a pre-computed table
for combining results of individual prefix lookups.
However, this scheme suffers from a O(»*) memory
blowup for k-field filters, including k& = 2 field filters.

Recursive-flow classification: Gupta et al. [4] have
presented an algorithm for packet classification,
which can be considered a generalization of cross-
producting. After best matching prefix lookup has
been performed, recursive-flow classification algo-
rithm performs cross-producting in a hierarchical
manner. Thus & best matching prefix lookups and
k — 1 additional memory accesses are required per
filter lookup. Though this is expected to provide sig-
nificant improvement on an average, in the worst
case it requires O(n*) memory. Also, for the case
of 2-field filters, this scheme is the same as cross-
producting and hence has memory requirement of
o).

Tuple space search: Srinivasan et al. [1] have pre-
sented an algorithm requiring 2w — 1 hash probes
per lookup on 2-field filters. They also describe a
heuristic called ‘tuple space pruning’ which performs
best matching prefix lookups on individual fields to

F. Baboescu et al. | Computer Networks 50 (2006) 1831-1842 1835

eliminate prefix length combinations that cannot
match the query. This heuristic is expected to reduce
search space on an average, but does not provide
any improvement in the worst case.

Binary search on prefix lengths: For the one-
dimensional IP lookup problem, the binary search
on prefix lengths scheme of Waldvogel et al. [2]
achieves O(logw) worst case bound. It is tempting
to think that one can generalize this scheme to mul-
ti-dimensional filters, but as the lower bound in
Srinivasan et al. [1] proves, binary search in the tu-
ple space cannot work. In this paper, we revisit this
lower bound and show that a binary search scheme
is possible when the filters are two-dimensional
conflict-free filters.

Decision tree based classification: Woo [9], Gupta
et al. [7] and Singh et al. [8] introduced packet clas-
sification algorithms based on decision trees. Their
schemes are based on a pre-computed decision tree
which is traversed for each packet that needs to be
classified. In Singh et al. [8] the computation at each
stage in the tree uses several bits from one or more
fields of the packet header as an index into an array
of child pointers to identify the next child node to be
traversed. Each leaf of the tree stores one or more
possible matching rules. During a lookup operation
this rules are investigated in order to identify the
first matching rule.

Space decomposition: Lakshman and Stiliadis [6]
decompose the k-dimensional packet classification
problem into k one-dimensional problems. The set
of matching filters in each of the dimensions is rep-
resented using a bit vector. The final result is given
by the intersection of all k bit vectors. Although the
one-dimensional lookup problem to be solved is
O(log(n)) the intersection of the results is O(n).

4. Tuple space search

The basic idea behind tuple space is motivated by
the observation that while filter databases contain
many different prefixes or ranges, the number of dis-
tinct prefix lengths tends to be small. Thus, the num-
ber of distinct combinations of prefix lengths is also
small. For instance, backbone routers have about 50
K destination address prefixes, but there are only 32
distinct prefix lengths. Thus, we can divide all the
prefixes into 32 groups, one for each length. Since
all prefixes in a group have the same length, we
can use the prefix bit string as a hash key to lookup
whether a prefix exists in the database or not. This
basic idea leads to a simple IP lookup scheme,

which requires O(w) hash lookups, independent of
the number of prefixes. The algorithm of Waldvogel
performs a binary search over the w length groups,
and achieves O(logw) worst case search time.

The tuple space idea generalizes this to multi-
dimensional filters. We can define a tuple for each
combination of field length, and call the resulting
set tuple space (denoted by T. Since each tuple has
a known set of bits in each field, by concatenating
these bits in order we can create a hash key, which
can then be used to map filters of that tuple into a
hash table. As an example, the two-dimensional fil-
ters F=(101%, 1%*) and G =(110%, 0%) will both
map to tuple (3,1). When searching the tuple
(3,1), we construct a hash key by concatenating 3
bits of the source field with 1 bit of the destination
field. Thus, we can find the best matching filter by
probing each tuple in turn, and keeping track of
the best matching filter. (A simple, but key, observa-
tion is that either there is no match in a tuple, or
there is a unique match.) Since the number of tuples
is generally much smaller than the number of filters,
even a linear search of the tuple space results in a
significant improvement over linear search over
the filters.

4.1. Pre-computation and markers in tuple space

A linear search of the two-dimensional tuple
space, though simple, can require Q(w?) hashes in
the worst case, which is too costly. A natural ques-
tion is whether the optimal filter can be found with-
out the linear search. Srinivasan et al. [1] found an
algorithm, called Rectangle Search, which always
finds the best matching filters in a w X w tuple space
using at most 2w — 1 hashes in the worst case. Rect-
angle Search builds on two keys ideas: pre-computa-
tion and markers. The idea behind pre-computation
is this: consider a tuple (i, j), where 0 < i, j < w. A
filter F in this tuple has i bits of source prefix and
j bits of destination prefix. All filters that are
mapped to any tuple in the top-left quadrant (shown
by lightly shaded area in Fig. 2) of (i, j) are less spe-
cific in both the fields. That is, if (¢, ;') is a tuple in
the top-left quadrant of (i,), then i/ < i and j' <.
Thus, we can pre-compute and store with F the best
matching filter from all the tuples in the top-left
quadrant of (i, j).

For instance, consider a filter (101%, 0110%)
which maps to the tuple (i, j) = (3, 4). For all packet
headers matched by this filter, we can look at filters
from the top-left quadrant and determine the best

1836 F. Baboescu et al. | Computer Networks 50 (2006) 1831-1842

Source ———™

Dest-
ination l—

& N Ti=(22)

T=(3.4)

Fig. 2. Markers and pre-computation.

matching filter among filters that map to tuples in
top-left quadrant. For example, the best matching
filter could be (10%, 01*) which maps to the tuple
(7, 7)=(2,2).

The main advantage of pre-computation is that if
we probe the tuple (i, /) with the packet header P,
and get a match, then we need not search the top-
left quadrant of (i, j)—the pre-computation has al-
ready determined the best filter from that set.

The second idea of markers deals with the case
when there is no match on a hash probe. Each filter
in a tuple (7, j) leaves a marker in all the tuples in the
top-left quadrant of (i, j). The marker of a filter F'is
obtained by taking prefixes of its two fields. For in-
stance, the (2,1) marker of a filter (11001%*, 0011%)
will be (11%, 0%). As shown in Fig. 2, all filters in
the bottom right quadrant (shown by cross-shaded
area) of a tuple 7, can leave markers at tuple 75.
Hence, if a hash probe of tuple 7, fails, it is certain
that there are no matching filters belonging to tuples
in the bottom right quadrant.

Now, the Rectangle Search algorithm works as
follows: given a packet header P, we start by prob-
ing the tuple at the bottom-left of the tuple space. If
we get a match, we move one column to the right;
by pre-computation, any filter from a tuple above
the current tuple has been stored with the marker
or filter found by the match. If there is no match,
we move one row up; by the marker rule, there can-
not be any filter matching to the right of the current
tuple—otherwise that filter’s marker in the current
tuple will also have matched. Thus, each hash probe
either eliminates a row or a column. Altogether
after at most 2w — 1 hashes, we find the best match-
ing filter.

4.2. Lower bound and impossibility of binary search

While Rectangle Search improves upon the linear
tuple space search, it falls far short of the efficiency
of binary search. Recall that for the one-dimen-
sional case, Waldvogel et al. are able to perform a
binary search on the tuple space of size w, and get
O(logw) worst case bound. Can a similar perfor-
mance be achieved for two- or higher-dimensional
tuple space?

A lower bound argument shows that such a
bound in general is not possible. Consider a set of
filters that map to tuples along diagonals, as shown
by shaded cells in Fig. 3. An adversary argument
which shows that it is necessary to probe al/ the
2W — 1 tuples is as follows. Given a packet header
P, a lookup algorithm makes a sequence of probes
into the tuples space to determine the best matching
filter. Depending on this sequence, an adversary can
place filters that map to appropriate tuples.

For every probe that the algorithm makes on
tuples along or below the main diagonal, the adver-
sary can reply no-match by not placing a matching
filter in that tuple. This will not eliminate any tuples
other than the one that was probed. Also, for every
probe along or above the secondary diagonal
(shown by crossed-shading in figure), the adversary
can construct a filter that places a matching marker
in that tuple. So any such probe will not eliminate
any other shaded tuple. If the algorithm does not
probe some tuple from these diagonals, the adver-
sary can create a best matching filter that maps to
the un-probed tuple. Hence the lookup will be
incorrect. Hence it is necessary to probe all the

Source ——————————>

T
Dest-
ination

Fig. 3. Illustrating the lower bound argument for tuple space
search.

F. Baboescu et al. | Computer Networks 50 (2006) 1831-1842 1837

2W — 1 tuples in the worst case. The same lower
bound can also be proved using a “decision tree
model.”

In this paper, we examine this lower bound more
closely, and observe that if the two-dimensional fil-
ters are conflict-free, then indeed binary search per-
formance is possible. Note that the lower bound
construction depends critically on the adversary’s
ability to put a filter in an un-probed tuple—but
we observe that this filter will definitely conflict with
existing filters.

5. Binary search scheme

In this section, we describe a new algorithm for
2D conflict-free filters that takes, for the first time,
O(log?w) time per lookup in the worst case.

We assume that the search space is w X w tuple
space. (In IPv4, the source and destination fields
are 32 bits long, so w = 32.) We assume we have n
two-dimensional conflict-free filters. These filters
have been mapped to tuple space; each filter can
be mapped to its unique tuple in constant time.
Shortly, we will also describe how filters generate
markers to be added to other tuples. In the end,
all filter and markers mapped to a tuple are orga-
nized into a hash table.

Our search algorithm essentially performs a bin-
ary search over the columns of the tuple space, using
markers and pre-computation. As shown in Fig. 4, a
column i/ in the tuple space is set of all tuples with
exactly i bit source prefixes. So column i is the set
of tuples (4, j), j < w.

Each filter can create markers in the same row
into tuples from columns to its left. For example,

in Fig. 4 a filter mapping to tuple (4,3) can create
markers in shaded tuples. Note that at this point,
markers are being created only in the same row. In
order to perform binary search on columns, one half
of the tuple space has to be eliminated at a time. For
every hash probe into a tuple, we can divide the tuple
space into three regions, as shown in Fig. 4(b). If a
matching filter or marker is found by the hash probe,
then as we prove in Lemma 1, the entire left half of
tuple space (i.e., top-left and bottom-left quadrants
can be eliminated. On the other hand, if no matching
filter or marker is found in the tuple, then there can-
not be any matching filters in right half of the row.
Hence, as shown in Lemma 2, if there is no matching
filter in any tuple in the column, then entire right half
of tuple space can be eliminated.

Lemma 1. If there exists a filter or marker M
matching packet P in tuple (i,), all columns k <i
(columns in the left half) can be eliminated from
search space using pre-computation.

Proof. If M is a filter, then it is a better match than
any possible matching filter in the top-left quadrant.
Otherwise, if M is a marker, the smallest filter con-
taining M can be pre-computed. So, if the best
matching filter for packet P maps to any tuple in
the top left quadrant it can be pre-computed and
stored with the matching marker in tuple (i,).
Hence tuples in top-left quadrant need not be
searched, and can be eliminated.

In order to eliminate tuples in the bottom-left
quadrant, we use conflict-free nature of filters.
Consider any filter F that placed marker M. (If M
is a filter then F= M.) Since filters leave markers
only in the same row, the filter must map to some

Dest-

ination

Column 4

L

Top-left quadrant
ZZ= =
/ = | _+—1— Tuple being probed
(1)
ZZ = P
@1 [(i’,j) can create
< marker in (i,j)
N t N
R
Right half of row
ﬁ‘\\ N \k S
NS

Bottom-left quadrant

Fig. 4. Binary search on columns.

1838 F. Baboescu et al. | Computer Networks 50 (2006) 1831-1842

tuple (¢, j), i’ = j. If there is any matching filter that
maps to a tuple in the bottom-left quadrant, it will
be less specific in first field and more specific in
second field than filter F. So existence of any
matching filter F’ in bottom-left quadrant will imply
conflict between filters F and F’ and contradict the
assumption that filter set F is conflict-free. Hence
there cannot exist any matching filter mapping to
tuples in bottom-left quadrant, and the all these
tuples can be eliminated from search space. [

Lemma 2. If there does not exist any marker (or
filter) matching packet P in column i of tuple space,
all columns k = i (columns in the right half) can be
eliminated from search space.

Proof. Suppose there exists a filter F matching
packet P, which maps to some tuple (#/,;) i = j in
right half of the tuple space. Then, due to construc-
tion of markers, F' will leave a marker in the tuple
(i, /) (or may map to tuple (i, ;)). Since F matches
P, the marker (or filter F) must also match P. But
there are no markers or filters matching P in the
entire column, so this is a contradiction. Hence
there cannot exist any matching filter that maps to
a column & > i. So the entire right half of the tuple
space can be eliminated. [J

From Lemmas 1 and 2, the predicate “Does there
exist a marker in column / matching packet P’ can
be used to perform binary search on columns. A
simple algorithm is to probe all w tuples of the mid-
dle column i to eliminate half of tuple space. This
will require O(logw) column searches, and a total
number of O(wlogw) hash probes. However, we
can improve lookup time very significantly with
the following observation.

All filters (including any marker filters) that map
to tuples in column i have the same number of bits
in source field. Hence concatenation of i bits of
source field and the destination prefix can be consid-
ered as a single prefix. e.g.,, consider (filters
F; =(1011%,001%) and F,=(0110%, 11001%). F;
maps to tuple (4,3) and F, maps to tuple (4,5). In
order to find any matching filter from column 4,
we can take the 4 bits from field 1 and concatenate
the prefix for field 2 for filters F; and F5. In order to
determine whether or not there exists a matching
marker in column i, a best matching prefix lookup
can be performed. A number of algorithms that
solve the IP prefix lookup problem can be used
for this purpose. In particular, O(logw) hashes are
sufficient [2] for search within any column.

6. Algorithm and improvements

The discussion so far has only said that a filter
leaves markers in the same row in all columns to
the left. A naive algorithm that creates markers in
this manner will generate O(nw) markers. Also, in
order to perform best matching prefix lookup within
columns, every filter and marker has to create
O(logw) secondary markers in the worst case [2].
Thus a naive algorithm will have O(nwlogw) total
memory complexity.

However, since we perform binary search on col-
umns, it is un-necessary to create markers in all col-
umns. In order to reduce memory requirement, a
balanced binary search tree can be created on col-
umns. Every filter F can create markers only in col-
umns to its left that will be visited by the search
algorithm while searching for an entry whose best
matching filter is F. Since height of the balanced
binary tree is O(logw), number of markers is
bounded by O(nlogw), and hence total memory
requirement (including secondary markers) by
O(nlog’w).

Now we present details regarding construction of
the data structure, and the lookup algorithm. The
pseudo-code in Fig. 5 summarizes construction of
markers for binary search on columns.

In order to perform binary search on prefix
lengths within a column, any filters and markers
mapped to tuples in that column will create another
set of secondary markers [2]. Fig. 6 summarizes
construction of secondary-markers for performing
binary search on prefix lengths within a column.

The complete Binary Search on Columns algo-
rithm for filter lookup is described in Fig. 7.

ALGORITHM MARKERS

1. Construct tuple space T by finding the set of tuples
to which at-least one filters maps.
2. Construct balanced binary search tree on non-empty
columns of T, called column-tree.
. for each F € F do
Let T be the tuple that F' maps to.
for each ancestor 7" of T in the column-tree do
Insert marker into tuple 77 for filter F.
Precompute the best matching filter for newly
created marker.
end for
end for

w

Fig. 5. Construction of markers for Binary Search on Columns.

F. Baboescu et al. | Computer Networks 50 (2006) 1831-1842 1839

ALGORITHM INCOLMARKERS

for each non-empty column of T do
Construct balanced binary search tree on non-empty
tuples in the column. Call this the row-tree.
for every filter or marker F in the column do
Let T be the tuple that F maps to.
for each ancestor T' of T in the row-tree
Insert secondary marker into tuple T” for
filter F.
Pre-compute the best matching filter/marker in
this column for the secondary marker.
end for
end for
end for

Fig. 6. Construction for binary search within column.

ALGORITHM BINARYSEARCHONCOLUMNS

node «— column-tree.root
best-matching-marker « nil
repeat
if best-in-column(node) # nil then
node «— node.right-child (columns k& > ¢)
best-marker « best-in-column(node)
else
node < node.left-child (columns k < 17)
end if
until node is a leaf
return pre-computed best matching filter
for best-marker

ALGORITHM BESTINCOLUMN(?)

node «— row-tree(column 4).root
best-match « nil
repeat
if matching filter/marker corresponding
to tuple at node then
node « node.right-child (columns k& > 7)
best-match < matching filter /marker
else
node < node.left-child (columns k < 7)
end if
until node is a leaf
return pre-computed best matching filter in
this column for best-match

Fig. 7. Binary Search on Columns.

Theorem 3. The Binary Search on Columns algo-
rithm finds the best matching filter in O(log®w) hash
probes.

Proof. Height of the balanced binary search tree on
columns of tuple space is utmost [logw]. Similarly,
for row-tree of any column, the balanced binary tree
has utmost w nodes, and hence it is utmost of height
[logw]. The search algorithm traverses path root
down to some leaf in the row-tree for every search
within a column. Number of hashes per search
within a column is hence O(height) = O(logw).
Since searches within columns is equal to the longest
path from root of the column-tree down to some
leaf, it is equal to O(logw). Hence total time com-
plexity of the search algorithm is O(log®w). O

7. Experimental results

This section describes the experimental setup and
measurements we use to compare the performance
of the presented algorithm with other filter lookup
schemes.

7.1. Implementation

The Binary Search algorithm was implemented in
C++ on a UNIX machine. Main data structures
used in the implementation are as follows.

e Column tree and row trees: As described in previ-
ous section, one balanced binary tree was built
on columns of the tuple space. Only those col-
umns to which atleast one filter was mapped were
considered. This tree is called Column Tree. For
each non-empty column a separate balanced bin-
ary tree was constructed to carry out prefix
lookup within that column.

e Hash table: All filters and markers were orga-
nized in a single hash table. Hash keys were con-
structed using concatenation of full prefix
addresses and prefix lengths.

Suitable counters were used to count total
number of hash probes per classification lookup.

7.1.1. Empirical results for firewall data sets
Experiments were conducted using 4 industrial
firewall data sets accessible to the authors. Filtering
rules in each data set are of the form (/P source pre-
fix, IP destination prefix, source port range, destina-
tion port range, protocol). In order to evaluate the
two-dimensional binary search scheme, we extracted
IP source and destination prefix pairs; new filters
were added to resolve any conflicts. The firewall sets

1840 F. Baboescu et al. | Computer Networks 50 (2006) 1831-1842

contained many filters of the type (S, *) or (*, D), i.e.
with one field containing default. Such filters cre-
ated a large number of conflict-resolution filters.
However, as Gupta et al. [4] observe, most practical
filter sets do not contain large number of conflicts.

Uniformly distributed random header fields were
generated to determine average number of hash
probes per lookup. Also, longest paths in column
and row trees were measured to determine number
of hashes per lookup in the worst case.

Table 1 summarizes average and worst case look-
up time in terms of number hashes.

7.1.2. Empirical results for random filter sets

As number of filters in database grows, benefit of
doing binary search become more visible. Since
there do not seem to be any large filter sets available
publicly, we performed experiments with random
filters to ascertain scalability of the proposed algo-
rithm. Source and destination prefixes were chosen
uniformly from the MaeEast database [10]. When
no filters of the type (S,*) or (*, D) were selected,
only a negligible number of conflict-resolution filters
were required. Filters with only one field specified
can be separated and (IP) prefix lookup algorithms
can be used for performing lookup on them. So it
acceptable to generate only more complex filters
for filter lookup.

In Table 2, for each filter database size, number
of hash probes is averaged over 10 runs. Number
of distinct prefix lengths in the MaeEast prefix set
is 24. As the number of filters grows, it is expected
that every prefix length will get used in the filter
set. So the worst case number of hash probes is ex-
pected to saturate towards the bound of log®w = 25.

Table 1
Lookup time for firewall data sets

Dataset Number of rules Worst case Average
Fwal-1 129 11 9
Fwal-2 43 6
Fwal-3 51 6 6
Fwal-4 143 11 9

Table 2

Lookup time for random filters

No. of filters Worst case Average
1000 16.0 11.3
5000 21.2 14.7
10,000 22.0 15.4
50,000 23.7 19.8

This is clearly seen in Table 2. The average number
of hashes remains somewhat lower than the worst
case. This happens because binary search tree for
column search (also within column) is not full.

7.2. Comparison with other schemes

Several filter lookup schemes have been proposed
in the literature. We compare these schemes for the
case of two-dimensional conflict-free filters with re-
spect to lookup time and memory requirement. Ta-
ble 3 compares worst case lookup time and space
complexities. The Tuple Space Search algorithm of
Srinivasan et al. prunes the firewall data sets consid-
ered quite effectively. Even then the number of tu-
ples remains almost 4 times more than the number
of probes required by Binary Search. Also, in the
worst case, for IP prefixes number of tuples
w? = 1024 gives very large lookup time. Rectangle
Search reduces worst case lookup time upto
2w — 1 =263 for IP prefixes. The Pruned Tuple
Space scheme proposed by Srinivasan et al. [1] per-
forms two prefix lookups and attempts to eliminate
some tuples from search. In the worst case, no tu-
ples may get eliminated. Though in practice pruning
works quite well, the additional overhead of two
prefix lookups makes it perform worse than the bin-
ary search algorithm presented here. The Grid-
of-tries scheme performs 2w — 1 memory accesses
per lookup. This is the same as Rectangle Search.
The Cross-producting scheme of Srinivasan et al.
[3] performs only two prefix lookups per filter look-
up. The penalty for such efficient lookup time is
however severe—O(n?) memory requirement, which
becomes prohibitive even for databases of modest
sizes. The Recursive Flow Classifier scheme of Gup-
ta et al. [4] is identical to cross-producting, for two-
dimensional filters. As can be seen from the above
table, binary search on columns provides signifi-
cantly better time complexity, without consuming
large amount of memory.

Table 3
Comparison of worst case lookup time and space complexities

Scheme Lookup time Memory usage
Tuple space search o(w?) O(n)
Rectangle search O(w) O(nw)

Pruned tuple space o(w?) O(n)

Bit vector scheme O(n) o(n?)

Grid of tries O(w) O(nw)
Cross-producting O(logw) o(n?)

This algorithm O(log?w) O(nlog?w)

F. Baboescu et al. | Computer Networks 50 (2006) 1831-1842 1841

Table 4

Comparison of worst case lookup time on Firewall data sets
Scheme Fwal-1 Fwal-2 Fwal-3
Tuple space search 41 41 12

Pruned tuple space 21 17 15

Grid of tries 36 36 36
Cross-producting 10 10 10

Bit vector 18 14 14
Decision tree 20 20 20

This algorithm 11 6 6

Experimental results indicate that the constants
involved in the proposed algorithm are quite small,
and the algorithm is competitive against other
schemes in average case also. Srinivasan et al. pro-
vide lookup time for the same firewall data sets that
were used in our experiments. For the Tuple Space
Search algorithm, lookup time is simply the number
of distinct tuples to which atleast one filter is
mapped. Their Pruned Tuple Space scheme reduces
search space almost to the same number of tuples
probed by Binary Search on Columns. However,
with the expense of two additional IP lookups
(which take log W =5 hashes per lookup), their
lookup time almost doubles.

In the case of the Bit Vector scheme [6] the
packet classification problem is first decomposed
into two independent IP lookups. Each prefix node
in the IP lookup tree has associated a bit vector that
represents the set of matching rules corresponding
with the node prefix. The two bit vectors are
read and the result of their intersection is the final
result.

We experimented the Decision Tree based packet
classification algorithm proposed by Singh et al. [8].
In all cases the tree was of depth 4 and the leaf node
could accomodate up to 6 filters.

We do not have performance figures for the same
data sets for other schemes. However, for Grid of
Tries scheme, lookup time is simply time for first
prefix lookup, followed by W — 1 memory accesses
for second prefix. Also, for the Cross-producting
scheme, lookup time is always equal to 2 indepen-
dent prefix lookups. Table 4 compares worst case
lookup time on the firewall data sets for these
schemes.

8. Conclusions
Performing packet classification based on multi-

ple fields at high speed while maintaining low mem-
ory requirement is a hard problem. It is possible to

performing classification lookups on 1 field very effi-
ciently by doing binary search on prefix lengths [2].
A theoretical lower bound of Q(w*~!) for arbitrary
filters [1] indicates that it is important to recognize
practical special cases of filter sets. We show that
it is possible to perform classification very efficiently
on conflict-free filters. We have presented an algo-
rithm that performs lookups in O(log?w) time on
2-field conflict-free filters. This is the fastest 2D filter
lookup algorithm with small memory costs known
to the authors. When the fields under consideration
are IP prefixes, this translates into worst case lookup
time of 25 hashes. The average case performance of
this algorithm significantly better than other algo-
rithms in literature for two-dimensional conflict-free
filter. The proposed algorithm also has very good
space complexity of O(nlog®w). The proposed algo-
rithm is scalable to large filter sets and can be imple-
mented very easily in software. Filter lookup is a
difficult problem, and as shown in this work adding
the conflict-free constraint makes it feasible to solve
the problem very efficiently. Conflict-free filters is a
practically feasible constraint. It remains an inter-
esting open question whether this (or similar) con-
straints can be used to improve performance and
provide better worst case bounds for other schemes.

References

[1] V. Srinivasan, S. Suri, G. Varghese, Packet classification
using tuple space search, in: Proceedings of SIGCOMM’99,
1999.

[2] M. Waldvogel, G. Varghese, J. Turner, B. Plattner, Scalable
high speed ip routing lookups, in: Proceedings of SIG-
COMM’97, 1997.

[3] V. Srinivasan, G. Varghese, S. Suri, M. Waldvogel, Fast
and scalable layer four switching, in: Proceedings of
SIGCOMM98, 1998.

[4] P. Gupta, N. McKeown, Packet classification on multiple
fields, in: Proceedings of SIGCOMM™99, 1999.

[5] A. Hari, S. Suri, G. Parulkar, Detecting and resolving packet
filter conflicts, in: Proceedings of IEEE INFOCOMM 2000,
2000.

[6] T.V. Lakshman, D. Stiliadis, High speed policy-based packer
forwarding using efficient multi-dimensional range matching,
in: Proceedings of SIGCOMM™98, 1998.

[7] Pankaj Gupta, Nick McKeown, Packet classification using
hierarchical intelligent cuttings, in: Hot Interconnects VII,
August 1999.

[8] S. Singh, F. Baboescu, G. Varghese, J. Wang, Packet
classification using multidimensional cuts, in: Proceedings
of Sigcomm’03, 2003.

[9] Thomas Woo, A modular approach to packet classification,
in: Proceedings of IEEE INFOCOMM2000, 2000.

[10] Merit Inc., Ipma statistics. Available from: <http://nic.mer-
it.edu/ipma>.

http://nic.merit.edu/ipma
http://nic.merit.edu/ipma

1842 F. Baboescu et al. | Computer Networks 50 (2006) 1831-1842

Florin Baboescu got a MSc in Com-
puter Engineering from University
POLITEHNICA Bucharest and a PhD
in Computer Science from University of
California, San Diego. Before joining
Qualcomm Inc. he worked in both
STMicroelectronics Inc. and Cisco Sys-
tems designing algorithms for multifield
searches. Several of the algorithms he
has helped develop are currently used in
commercial products. His work has been
published in various conferences (ACM Sigcomm, IEEE Info-
com, ICNP) and journals (ACM ToN, Computer Networks,
etc.). He is currently interested in various aspects of packet
forwarding in both wire-based and wireless systems.

Subhash Suri is a professor in the
Department of Computer Science at the
University of California, Santa Barbara.
His current research interests include
algorithms, computational geometry,
sensor and mobile networks, algorithmic
game theory, and internet computing. He
is a member of the ACM and a senior
member of the IEEE. He is on the edito-
rial board of the journal Computational
Geometry: Theory and Applications, and
has acted as guest editor for special issues of journals. Dr. Suriis a

reviewer for NSF, NSERC, and numerous journals. He is also a
member of many conference program committees, and has served
as a consultant for several industrial ventures. Visit http://
www.cs.ucsb.edu/~suri for further details.

George Varghese worked at DEC for
several years designing DECNET pro-
tocols and products (bridge architecture,
Gigaswitch) before obtaining his PhD in
1992 from MIT. He worked from 1993—
1999 at Washington University. He
joined UCSD in 1999, where he currently
is a professor of computer science. He
won the ONR Young Investigator
Award in 1996, and was elected to be a
Fellow of the Association for Computing
Machinery (ACM) in 2002. Together with colleagues, he has 14
patents awarded in the general field of Internet Algorithmics.
Several of the algorithms he has helped develop have found their
way into commercial systems including Linux (timing wheels), the
Cisco GSR (DRR), and Microsoft Windows (IP lookups). With
Tony Li, he helped design the lookup engine for Procket’s 40
Gbps forwarding engine. He recently completed a book on
building fast router and endnode implementations called Internet
Algorithmics, due to be published in November 2004 by Morgan-
Kaufman. He is currently working on equipping future routers to
detect patterns in network traffic to facilitate traffic measurement
and real-time intrusion detection.

http://www.cs.ucsb.edu/~suri
http://www.cs.ucsb.edu/~suri

	Fast packet classification for two-dimensional conflict-free filters
	Introduction
	Problem statement
	Related work
	Tuple space search
	Pre-computation and markers in tuple space
	Lower bound and impossibility of binary search

	Binary search scheme
	Algorithm and improvements
	Experimental results
	Implementation
	Empirical results for firewall data sets
	Empirical results for random filter sets

	Comparison with other schemes

	Conclusions
	References

