
Computer Networks 47 (2005) 429–441

www.elsevier.com/locate/comnet
A lower bound for multicast key distribution

Jack Snoeyink a, Subhash Suri b, George Varghese c,*

a Department of Computer Science, UNC-Chapel Hill, Chapel Hill, NC 27599-3175, USA
b Department of Computer Science, University of California, Santa Barbara, CA 93106, USA

c Computer Science and Engineering Department, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0114, USA

Received 2 September 2002; received in revised form 3 March 2004; accepted 7 September 2004

Available online 19 October 2004

Reponsible Editor: S. Lam
Abstract

With the rapidly growing importance of multicast in the Internet, several schemes for scalable key distribution have

been proposed. These schemes require the broadcast of H(logn) encrypted messages to update the group key when the

nth user joins or leaves the group. In this paper, we establish a matching lower bound (Independently, and concurrently,

Richard Yang and Simon Lam discovered a similar bound with slightly different properties and proofs. An earlier ver-

sion of our paper appeared in Infocom 2001 while their result appears in [R. Yang, S. Lam, A secure group key man-

agement communication lower bound, Technical Report TR-00-24, Department of Computer Sciences, UT Austin,

July 2000, revised September 2000].), thus showing that H(logn) encrypted messages are necessary for a general class

of key distribution schemes and under different assumptions on user capabilities. While key distribution schemes can

exercise some tradeoff between the costs of adding or deleting a user, our main result shows that for any scheme there

is a sequence of 2n insertion and deletions whose total cost is X(n logn). Thus, any key distribution scheme has a worst-

case cost of X(logn) either for adding or for deleting a user.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Multicast; Security; Protocol analysis
1. Introduction

Many distributed applications—such as interac-

tive games, teleconferencing, and chat rooms—use
1389-1286/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.comnet.2004.09.001

* Corresponding author. Tel.: +1 858 822 0424.

E-mail addresses: snoeyink@cs.unc.edu (J. Snoeyink), suri@

cs.ucsb.edu (S. Suri), varghese@cs.ucsd.edu (G. Varghese).
a group paradigm. While such applications using

groups can be implemented over point-to-point

communication links, there are advantages to

using multicast or broadcast as the underlying

communications primitive.

A broadcast channel such as a satellite allows a

sender to communicate with every user that can

listen to the channel using a single broadcast
ed.

mailto:snoeyink@cs.unc.edu
mailto:suri@
mailto:varghese@cs.ucsd.edu

430 J. Snoeyink et al. / Computer Networks 47 (2005) 429–441
message. With n users, broadcast can be n times

cheaper than sending n separate unicast messages.

The notion of broadcasting extends to a network

of point-to-point links, such as the Internet where

the routers can make extra copies of a message for
all downstream links to which the message is in-

tended. Further, broadcast generalizes to multicast

where a message can be sent to a subset of all the

Internet nodes.

Multicast is easily accomplished by assigning

separate multicast addresses for each subset that

wishes to communicate, and creating a separate

Steiner tree [7] for each such subset. Despite the
slowness of initial deployment, Internet multicast

[7] is likely to become an important and well-used

Internet paradigm.

The original Internet protocols paid little atten-

tion to secure communication, but commercial

success has lead to many proposals for Internet

security (e.g., IPsec [18]) that allow unicast mes-

sages to travel encrypted. Security concerns for
IP multicast are even greater, due to the nature

and distribution of the traffic. When a multicast

message is sent to one station on say a satellite

link, other stations in the range of the satellite

can listen to the packets. If the listening stations

have not paid for the service, then cryptographic

techniques must be used to prevent unauthorized

listeners from using the service.
This paper is about the problem of maintaining

secrecy for multicast communication using any

multicast or broadcast communication primitive,

including the Internet multicast protocols as an

important special case. Although there are propos-

als for group security that use sophisticated cryp-

tographic techniques [16], we concentrate on

secrecy by encrypted communication using simple
and efficient private key techniques (e.g., DES) for

group data encryption. Since secret key techniques

are well studied and widely deployed, the main

problem is key distribution: sending keys to all

the group recipients in a scalable fashion.

The scalable key distribution problem is inter-

esting because a number of applications can use

large multicast groups that are also highly dynamic

(i.e., users can be added or deleted frequently). For

example, distributed war gaming and teleconfer-

encing [19], applications can have thousands of
users at any time with ten percent of the users

changing over a period of one minute, and a con-

straint that users be added or dropped within a

second.

Simple extensions of unicast key distribution
protocols (e.g., [10]) take linear time to add or re-

move a user, which would be problematic for the

dynamic scenarios described above. Recent pro-

posals [20,6,19] introduced a Key Graph scheme

for scalable key distribution that takes O(logn)

messages to add to or delete from a group of n

users. We describe the Key Graph scheme in the

next section. The main question that we investigate
in this paper is whether the Key Graph scheme is

optimal for scalable, multicast key distribution.

For this, we must define the security requirements

for key distribution.

1.1. Security requirements

Intuitively, the main requirement is confidential-
ity: only valid users should be able to decrypt the

multicast data even if the data is broadcast to

the entire network. We assume in what follows

that data is encrypted to ensure confidentiality

using a symmetric cryptosystem such as DES.

Thus, the confidentiality requirement can be trans-

lated into the following four requirements on key

distribution:

Non-group confidentiality: Users that were never

part of the group should not have access to any

key that can decrypt any multicast data sent to

the group.

Future confidentiality: Users deleted from the

group at time t do not have access to any keys used

to encrypt data after t unless they are added back
to the group.

Collusion freedom: No set of deleted users should

be able to pool the keys they had before deletion

to decrypt future communication.

Past Confidentiality: A user added at time t should

not have access to any keys used to encrypt data

before t while the user was not part of the group.

The last requirement is debatable. It protects

against an attack in which an unsubscribed user

could record encrypted broadcasts for a long per-

J. Snoeyink et al. / Computer Networks 47 (2005) 429–441 431
iod, then sign up for a short period to obtain

decryption keys. Such an attack is unlikely for cer-

tain types of data and distribution channels: stock

quotes, for example, have value only when they are

first broadcast. Fortunately, the bounds in this
paper show that if the first two requirements can

be satisfied, then the third and fourth come easily.

Specifically, we show that the models with and

without Past Confidentiality have the same loga-

rithmic lower bounds, but with different constant

factors. Thus dropping Past Confidentiality as a

requirement does not affect our results

significantly.
Paper organization: The rest of this paper is

organized as follows. In Section 2, we review the rel-

evant previous proposals for group security. In par-

ticular, we describe the Key Graph scheme in detail

and briefly discuss a subsequent paper [5] that

establishes a lower bound on the tradeoff between

key storage and communication costs. In Section

3, we describe graph models of a family of key dis-
tribution algorithms that distribute multiple keys

per user but use a single key for data encryption.

In Section 4, we discuss the difficulties of proving

such a lower bound, and why it involves a tradeoff

between add and delete costs. We prove our lower

bounds in Section 5; we conclude in Section 6 by

examining the significance of the results and consid-

ering further extensions of our results.
u u u u u u u u

k k

k k k

2 3

54 6 7

7654321 8

Delete u5

k1

Root

k

Fig. 1. An example of a logical tree underlying the Key Graph

scheme.
2. Previous work

We discuss previous work in the Internet and

the theory communities.

Internet proposals: The simplest solution advo-

cated in RFCs 2093 and 2094 for multicast key dis-
tribution is to assign a user key for each valid user,

and one group key for the group [10,9]. When a

user u leaves, the new group key is sent to each

remaining user ui by encrypting with that user�s
key using (n � 1) transmissions. The Iolus system

[13] improves scalability of adds and deletes using

a geographical hierarchy of keys. Unfortunately,

Iolus requires time-consuming encryption for sev-
eral multicast server encountered in the path, and

requires multiple trusted entities (the so-called

group security agents).
In the past few years, several groups

[1,4,20,6,19,15] have proposed variations on a tech-

nique to allow the use of a single group data key for

data transmission (as in RFC 2093/2094) while

having scalable add and delete operations (as in
Iolus). Thus it is possible to have the best of both

worlds. We use the term from Wong et al. [20],

and refer to a Key Graph scheme in this paper.

The main idea is to have a single server but to

have the server distribute subgroup keys in addi-

tion to the individual user keys and the group

key. Keys are arranged in a logical hierarchy with

the root key being the root and the individual user
keys being the leaves. The subgroup keys then cor-

respond to the intermediate nodes of this concep-

tual tree. Each subgroup key can be used to

securely multicast to the users that are leaves of

its corresponding subtree.

Fig. 1 shows an example of a group of 8 users,

u1 to u8, represented as leaves in what is almost a

binary tree. While the tree can be arbitrary, bal-
anced trees are required for fast adds and deletes.

The root key k1 is known to all the users, the sub-

tree key k3 to users u5, . . . ,u8, etc. Only the root

key is used for data encryption, achieving similar

performance for data encryption as in RFC

2093/2094. The subtree keys support fast rekeying.

Deletion is accomplished by rekeying all the

keys on the path from the deleted user to the root.
The main idea is to rekey from the bottom up, so

that child subtrees have their keys for use when

rekeying the parent. A balanced d-ary tree can be

maintained at a cost of H(d logdn) encrypted

432 J. Snoeyink et al. / Computer Networks 47 (2005) 429–441
messages per operation. It is easy to show that

d logdn is minimized when d is 3.

2.1. Previous work in the theory community

Starting with Fiat and Naor [8], and continuing

with [11,3,17], the theory community has studied

the multicast security problem using different mod-

els and different assumptions from those used in

the Internet community. We refer the reader to

[5] where these differences are well treated.

The results most closely related to ours is work

by Canetti et al. [5]. They describe a modification
of the RFC 2627 protocol using pseudo-random

number generators and other devices to achieve a

tradeoff between storage and communication costs.

They establish lower bounds on this tradeoff, based

on a limit to the number of keys held by a users. If

each user holds at most b keys, then the communi-

cation costs are at least n1/b � 1, and if the protocol

is from for a special class of structure preserving

protocols, which includes their protocol, the bound

can be strengthened to bn1/b � 1. Thus, if a user is

limited to logn keys and a structure-preserving pro-

tocol, the communication costs will be H(logn).

When evaluating broadcast key distribution

schemes, we agree with Canetti et al. [5] who state

that ‘‘communication complexity’’ is probably the

biggest bottleneck in current applications. Thus,
we believe an important question is whether the

Key Graph scheme is communication optimal.

The lower bound in [5] treats a different problem.

By contrast, we do not restrict ourselves to struc-

ture-preserving protocols, and show that irrespec-

tive of the number of keys held by users (as long as

it is not exponential), the communication cost is at

least logN.
To answer our question, we must have a general

model of single data key encryption schemes and

their accompanying key distribution mechanisms.

We now turn to proposing such a model, which

we then use to prove our lower bounds.
3. Base model

We start with essentially the model of Canetti

et al. [5], which we then translate into a graph
model that is more convenient for the lower bound

proof. Define the multicast group M = {u1,

u2, . . . ,un}, which is a (dynamically changing) sub-

set from a universe of all possible users, and a cen-

tral server s 62M, called the center in [5]. We
assume that any message sent to the multicast

group can be received by all current members of

M and possibly by other users not in M. Thus

all data sent to the multicast group is encrypted

using a group key kM that is shared by all current

members of M.

To abstract away the secret key cryptographic

details, following Canetti et al. [5], we assume
there is publically available black-box pair E,D

that takes as input a message m and key k and out-

puts a random ciphertext c = E(k,m); given cipher-

text c and key k, the box produces the original

message D(k,c) = m. Thus any user holding k will

be able to decrypt but no coalition of users not

holding k will be able to decrypt or gain any infor-

mation, even assuming a computationally un-
bounded adversary. We must, of course, assume

that users cannot distribute plaintext keys, or that

such distribution can be detected by infrequent

polling.

A multicast protocol specifies an algorithm by

which the server s can update the group key (and

possibly other keys) for two operations of ADDDD(u)

for u 62M, which results in the multicast group
changing from M to M [{u}, and DELETEELETE(u)

for u 2M, which results in the multicast group

changing from M to M n{u}.
We will study a more specific model called key-

based multicast protocols [5]. Let l be a security

parameter that is polynomial in the number of

users n. Let K � {0,1}l be a set of keys. Each user

ui 2M holds a subset K(ui) � K of keys;
jK(ui)j P 2 for all i, as every user holds the group

key kM and an individual key ki.

For security, we consider a computationally un-

bounded adversary who can repeatedly submit up-

date operations in any order and have access to

keys belonging to users that are not currently part

of M (but not to users currently in M). A

key-based multicast protocol is secure if for any
adversary, after any sequence of operations, the

adversary has no way to distinguish kM from a

random key. This definition provides past, future,

J. Snoeyink et al. / Computer Networks 47 (2005) 429–441 433
and non-group confidentiality, and assures collu-

sion freedom.

The model must handle two updates operations.

To handle an ADDDD(u) operation, the central server

can broadcast the group key encoded with the
individual key for u. To handle a DELETEELETE(u) oper-

ation, the server stops using the keys held by u. In

both cases, the server may also broadcast addi-

tional messages that result in one or more users

gaining new keys. Thus, it will be important that

our model allow us to determine which keys a user

holds.

We measure the communication cost of an up-
date in terms of the number of encrypted messages

broadcast by a server. We assume, for any two

keys k1 and k2, that E(k1,k2) is a message of c bits.

Notice that the single broadcast E(k1,k2) will send

the key k2 to exactly the set U of users that hold

the key k1. We focus on the worst case update

complexity for rekeying when adding or deleting

users.
Since unsubscribed users may still receive multi-

cast messages, we can consider whether they can

have memory and whether or not they can save

key distribution messages for later decoding,

should they come into possession of the appropri-

ate keys. This makes a difference in our models

and bounds.
4. Lower bound approaches

We briefly discuss why there must be a tradeoff

between delete and add costs by giving three exam-

ples. Then we outline the difficulty of extending the

lower bound approach of Canetti et al. [5] to find

an absolute lower bound on communication costs.
First, suppose that when a new user ui joins a

multicast group M 0, we distribute keys for all pos-

sible subsets of users in the set M = M 0 + ui.

Clearly, this addition scheme would broadcast

exponentially-many keys. But the deletion of user

uj can now be done by simply choosing a new

group key and sending it to M n{uj} using a single

encryption/multicast. Each node can discard all
keys held by subsets containing uj, so that they will

never again be used. Thus the cost of adding a user

is exponential, but deletion is O(1).
Asking n users to each store 2n keys is clearly too

much. For a second example at the other extreme,

suppose that each user ui can hold only two keys,

the group key and the individual user key. If some

user ui leaves M, then the server can only use the
individual user keys to send the new group key to

M n{uj}, and thus the delete cost is H(n).

Third, the Key Graph scheme [20,19] takes

H(logn) for both add and delete costs. These

examples suggest that algorithms can trade add

complexity for delete complexity or vice versa. In

particular, we aim to show that if the worst-case

delete (add) complexity is less than logarithmic in
the number of users, then the corresponding add

(delete) complexity is at least logarithmic. This

suggests we need to argue about sequences and

not just about isolated updates.

Canetti et al. [5] use the maximum number of

keys stored by a user to investigate delete costs.

In one example they suppose each user has at most

3 keys: jK(ui)j 6 3 for all i. Let X be the largest
subgroup other than M and let x = jXj. Suppose
a user ui is deleted from X. Then to send the new

global key to all users outside of X, we must pay

at least (n � x)/x encryptions (since each user

shares a key with at most x other users by assump-

tion). To send the new global key to all users

remaining in X, we must pay x � 1 encryptions be-

cause by assumption, each user in X is a member
of at most 2 groups other than the multicast

group; thus we must use individual encryptions

to reach the members of X. The total cost is

x � 1 + (n � x)/x which is minimized when

x ¼ ffiffiffi

n
p

for an overall minimum cost of 2
ffiffiffi

n
p � 2.

One might hope to extend this argument to the

case when every user has at most four keys as fol-

lows. Again let X be the largest set other than M.
Once again, if someone leaves within X we must

pay (n � x)/x to reach users not in X. However,

within X is now an instance of the problem where

each user has at most 3 keys. From the above re-

sult, we have an overall cost of 2
ffiffiffi

x
p � 2þ ðn� xÞ

=x. After minimizing, the result is a minimum cost

of 3n1/3 � 3. We might hope that the argument

would generalize to show that if each user has at
most j keys, the delete cost is at least jn1/j � j. This

in turn would imply that if j = logn, then the delete

cost is H(logn).

434 J. Snoeyink et al. / Computer Networks 47 (2005) 429–441
The flaw in the above argument for j P 3 is that

it assumes that subsets do not overlap (as in the

RFC 2627 algorithm). But they may overlap in

general, so that sending the new global key to all

users not in X could also be sending the key to
some users in X. The simple argument now breaks

down. This is why [5] introduces the extra assump-

tion of structure preserving protocols to prove

such a result. We would like a lower bound with-

out the assumption that the protocol is ‘‘structure

preserving’’ and without a bound on the number

of keys held by any user.
u32121

k

u u u u

k

l

Adding u3

Fig. 2. Simple state graph. The figure shows how the state of a

protocol shown on left changes after adding user u3 in the

simple state graph (new state on right). The actual communi-

cation is hidden because edges only indicate subset

relationships.
5. Proof of lower bound

We prove a logarithmic lower bound on key

distribution. In Section 5.1 we translate the prob-

lem for users with memory into a graph model;

this reduces the lower bound to an argument about

graph properties. In Section 5.2 we provide a lower
bound on the cost of communications, based on

the cost of deleting edges from the graph model.

In Section 5.3, we extend our graph model to users

without memory, and in Section 5.4 we extend our

lower bound to this setting.

5.1. Representing protocol state by a broadcast

history graph

We prove our lower bound using graph proper-

ties and, so as a first step, we translate the basic

group multicast model into one using graphs. A

natural model used by existing protocols is a direc-

ted graph whose nodes are in one-to-one corre-

spondence with keys. In fact, we use node k to

mean the node with key k. Each user is represented
by the node containing his or her individual key.

Since distribution of individual keys is not permit-

ted, user nodes have outdegree zero and will occa-

sionally be called the leaves in this directed graph.

Let users(k) denote the set of user nodes that

have a copy of k. Wong et al. [20] defined a Key

Graph as a bipartite graph with a path from a

key k to every user node in users(k). A hierarchi-
cally structured representation of this notion can

be defined as follows: the children of node k are

all nodes for keys l such that users(l) � users(k)
and there is no other key m such that

users(l) � users(m) � users(k). In other words, k�s
children are the keys whose user sets are the max-

imal subsets of k�s user set. This structured repre-

sentation is more compact, but it still has the
property that for every key k there is a path in

the directed graph from node k to each node in

users(k). There is always a root node that repre-

sents the group key, and has paths to all user

nodes.

The difficulty with these state representations is

that they keep no trace of past communications

used to distribute the keys. Thus it is harder to
infer past communication costs from the structure

of the graph.

Example 1. Suppose that the state graph is as

shown on the left in Fig. 2. Users u1 and u2 share a

group, created by say sending k to both u1 and u2
using their individual keys. Suppose now we add a
new user u3 and update the group state by first

creating a new individual key for u3, and then

creating a new group key l and sending it

individually to u1, u2 and u3. The state graph

changes to the one shown on the right in Fig. 2.

This is because l is now shared by all 3 users, but

users(k) � users(l). Although the algorithm sent

three messages to distribute l, the simple state
graph gains just two extra edges, one between l

and k and one between l and u3.

We prefer a broadcast-based history graph (see
Fig. 3) in which nodes correspond to currently

valid keys, and in which there is an edge from node

l to node k if and only if E(k, l) is broadcast,

u31u 2u 2u1u

kk

l

Adding u3

Fig. 3. History-based state graph. How the state of a protocol

shown on left changes after adding user u3. Notice that the

actual communication costs incurred so far is recorded in the

number of edges in the current graph.

J. Snoeyink et al. / Computer Networks 47 (2005) 429–441 435
sending key l encrypted by key k. Using this basic

model, the state of the same protocol before add-

ing u3 as described is shown at the left in Fig. 3

and the state after adding u3 is shown at right. No-

tice that 3 edges have been created, recording the
actual communication costs, unlike the simple

state model in Fig. 2. As before, the user keys

are leaves, and there is always a distinguished root

that represents the group key (e.g., for the two

examples of Fig. 3, the root is k at left and l at

right.

We would like to claim that the set of users who

could possibly decrypt a message sent encrypted
by key k are exactly those users with a directed

path from node k. As we will see in the next exam-

ple, the truth of this claim depends on whether or

not the users have memory for past messages.

Example 2. Suppose that a key k is created and

sent to two users u1 and u2 using their individual

keys. Next a new key l is broadcast encrypted by k
(and thus is read by u1 and u2). The state of the

broadcast history graph is shown on the left of

Fig. 4. So far so good. Suppose now u3 is added

and assigned an individual key. Then the update

protocol has the server send the old key k

encrypted by u3�s individual key. Thus our broad-
u3u2u1u2u1

u3
k

l

Adding

l

k k sent to u3

Fig. 4. Sending key k to u3 creates the graph on the right where

l has a path to u3 but u3 has no copy of key l.
cast history graph becomes as shown on the right

of Fig. 4 Notice that there is a path between l and

u3 although u3 does not directly receive a copy of l.

Suppose that user u3 has sufficient memory to

record broadcast messages received before it

joined the group. To be safe, it must be assumed

that u3 can recover key l: The arrow from l to k

indicates that sometime in the past E(k, l) was
broadcast, and u3 might have recorded that broad-

cast for later playback when he or she received key

k. Thus, for users with memory, the basic broad-

cast history graph accurately models the set of

users that could hold key l as those with a directed

path from node l.

On the other hand, for users without memory, a

path between a key node k and a user ui does not
imply that ui has a copy of k. This is problematic

because our lower bound proof will rely on the fact

that the root node (group key) is always connected

to all users. By looking only at the graph, one can-

not determine what users hold what keys. We will

modify the model to reflect users with no memory

in Section 5.3.
5.2. A lower bound for users with memory

To establish our lower bound, we first need an

intermediate result on the number of edges that

must be deleted in the broadcast history graph

when a user departs from the multicast group. This

does not directly imply a lower bound on actual

communication costs because these edges could
have been created by any past update operation.

However, we will exploit this result later in the sec-

tion by arguing about sequences.

For a user node ui in the broadcast history

graph G, define the ancestor weight wi as the sum

of the outdegrees of all nodes on paths from the

root to ui. (By the problem definition, we have at

least one path because ui must have received the
group key.) For example, if the history graph is

a binary tree, the ancestor weight of any leaf is

twice its depth. Let wG denote the maximum ances-

tor weight over all user nodes ui of G, and let w(n)

denote the minimum value of wG over all history

graphs G with n leaves.

A B C

A B C D

A B C D E F A B C D E F

E F G D E F G

5 5 5 5 5 5 5 5 5 5 5 5

6666

5 5 5 6 6 6 5 5 5 5

Fig. 5. Example transformations eliminating the lowest degree

two parent of a degree three node without increasing weight.

Numbers are ancestor weights of the labeled leaves.

436 J. Snoeyink et al. / Computer Networks 47 (2005) 429–441
Lemma 5.1. The ancestor weight of a leaf ui is the

number of edges that will disappear from the history

graph when the user corresponding to this leaf is

deleted.

Proof. Each node on a valid path to leaf ui corre-

sponds to a key k that ui holds. To preserve future

confidentiality, k cannot be used after ui is

deleted. h

Minimum ancestor weight is achieved by cer-

tain trees.

Lemma 5.2. The minimum ancestor weight for a

broadcast history graph of n leaves satisfies

w(n) P d3log3 ne. This is attained by a 2–3 tree.

Proof. The weight w(n) is an non-decreasing func-

tion of n: for any broadcast history graph with

n > 1 leaves, we can delete one leaf without

increasing ancestor weight, so w(n � 1) 6 w(n).

We can transform any history graph G, without

increasing ancestor weight, into a 2–3 tree in which

every node has outdegree two or three. First,
choose a directed tree in G with paths to all leaves.

A simple graph traversal shows that this is always

possible, since there are paths from the root to

every user node. We can omit all edges not in the

spanning tree, since this can only decrease the

number and degrees of ancestor nodes of any leaf.

Second, replace any node of outdegree greater

than three as follows. We start by transforming all
nodes of degree 4 and degrees greater than 5 into

balanced binary trees. Then, we transform all

nodes of degree 5 into a 2–3 tree, with root degree

two and one child of degree two and the other of

degree three. This replaces a degree-k node by a

path of at most dlogkedegree-two nodes, and

k P 2dlogkefor all k > 3. Next, merge each node

of outdegree one with its parent.
A final transformation moves all the degree-

two nodes to the lowest levels of the tree.

Repeatedly replace the lowest degree-two node m
that is a parent of a degree-three node as follows:

if m has two children of degree three, replace them

with a degree three parent of degree two children,

as in the top half of Fig. 5. Otherwise m has one
binary subtree, a portion of which can be replaced

by a shorter 3-ary tree as in the lower half of Fig.

5, without increasing the maximum ancestor

weight.

Now, consider the maximum number n of

leaves in a tree of a given weight w(n) = k; since
w(n) is an non-decreasing function on integers, this

information determines the function. We establish

by induction that the number of leaves for trees of

weight 3i, 3i + 1, and 3i + 2 are 3i, 4 · 3i�1, and

2 · 3i, respectively.

In the base cases, the maximum number of

leaves for trees of weight 3, 4, and 5 are,

respectively, 3, 4, and 6. (This last tree is in the
top of Fig. 5.) In the induction step, we form a tree

by adding a root to the best subtrees. We can

observe that the root must be degree three unless

the entire subtree below is binary. But this happens

only for the weight 4 tree on 4 leaves; at weight 6,

the binary tree with 8 leaves is dominated by the

ternary tree with 9 leaves. All roots after the base

case must have degree 3 and, therefore, the
induction holds. We can summarize by saying

that w(n) P d3log3ne. h

By Lemma 5.1, the ancestor weight of a leaf is

the number of edges that will disappear from the

broadcast history graph when the user correspond-

ing to this leaf is deleted. Thus, if an adversary de-

letes the node with largest weight, we know it must

have deleted at least a logarithmic number of

edges.

root root

J. Snoeyink et al. / Computer Networks 47 (2005) 429–441 437
It is tempting to infer that the communication

cost incurred during the insertion and deletion of

a node u is at least as large as the number of edges

deleted upon u�s deletion. If that were the case

then, by our Lemma, either insertion or deletion
would have a logarithmic lower bound. Unfortu-

nately, such an inference is flawed, because some

of the ancestor node and edges of u could have

been created during the insertion of other nodes,

not necessarily u. Thus, a bound on the edges de-

leted after a DELETEELETE() operation does not imply

anything about the communication costs incurred

for this particular operation. In particular, it does
not follow that every DELETEELETE(u) operation must

cost H(logn) in communication complexity.

All we know is that a logarithmic number of

edges deleted after every deletion operation must

have been created in some past update operation.

But this bound is sufficient to establish a lower

bound on the total cost of a specific sequence of

updates, as shown in the following theorem.

Theorem 5.3. For any secure multicast protocol,

there is a sequence of 2n ADDDD and DELETEELETE

operations such that the total communication cost

is H(n logn) encrypted messages.

Proof. Consider a sequence of n insertions of users

u1 through un and then a sequence of deletions of

all the users, where at each stage the user with

maximum ancestor weight is deleted. By Lemma

5.2, the total number of edges deleted must be

P 3(log3n + log3(n � 1) + log3(n � 2) + . . . log31).
Thus the number of edges is at least

3log3(n!) = H(n logn). Since each of these edges
must have been created in the past at a cost of a

constant c bits of encrypted communication, the

total communication cost over this sequence of n

operations is H(n logn). h
u3u2u1u2u1

u3
k

l

Adding

l

k

1

3

2 1 2 4

3

Fig. 6. Adding time stamp information allows us to deduce that

u3 does not have a copy of l because there is no path with non-

increasing time stamps from l to u3.
5.3. Annotating the broadcast history graph for

users without memory

For users without memory of previous key dis-

tribution messages, this lower bound proof does

not apply! Recall that the model of Section 5.1 as-
sumes that a user u holds each key k for which
there is a directed path in the broadcast history

graph from k to u. But if u has no memory, then

the path may have been created after k was broad-

cast, as it was in Fig. 4. Restricting the users� capa-
bilities gives more information to the protocol and
makes lower bounds harder to establish. In the rest

of the paper, we re-establish the lower bound with

slightly smaller constants.

First, we change the model by adding a little bit

of information to every edge. We give every broad-

cast message event a sequentially increasing time

stamp in the order they were sent by the server.

We then label any edge with the time stamp of
the broadcast event that caused this edge to be

formed. This permits cycles and multiple edges be-

tween nodes, and supports the modeling of quite

unstructured protocols.

In this graph, a valid path is a directed path such

that the time stamps on consecutive edges are non-

increasing. This graph will always have the prop-

erty that the user nodes that receive a copy of
key k are those reachable by a valid path from

node k. It is not hard to show inductively that this

is true when an edge from k to l is created in the

graph by a broadcast of k encrypted by l. The pro-

tocol must maintain that there is some valid path

from a distinguished root, holding the group key,

to every user node.

Thus if we revisit Example 2 with an annotated
history graph we get the two snapshots shown in

Fig. 6 for the state before (left) and after (right)

adding u3. We can easily tell that u3 does not have

a copy of l from the extra information because

there is no valid path from l to u3. While there is

a directed path from l to u3, since the first edge

has time stamp 3 and the last edge has time stamp

A B C D A B C D

4 3 2 1 3 3 2 1

Fig. 7. Transforming a spanning tree with timestamps into a

binary tree so that the original valid ancestor weight is bounded

from below by node depth.

438 J. Snoeyink et al. / Computer Networks 47 (2005) 429–441
4, the time stamps increase and this path is not a

valid path.

To update the annotated history graph when a

user ui is deleted, we first delete the leaf user node

and delete all key nodes (and their incident and
outgoing edges) that have valid paths to ui. These

keys cannot be used for future communication

without compromising future confidentiality, be-

cause ui has those keys. For example, if we delete

u1 from the right of Fig. 6, the update must first

start by deleting nodes k, l, u1 and their edges; only

then will new nodes be added. We note that the

update algorithm may not actually pay for any
broadcasts to delete these keys at that stage (or

to replace them); however, they cannot be used

for future broadcasts. Similarly, note that after ui
is deleted and we remove the key nodes that ui pos-

sesses, an algorithm can create an arbitrary num-

ber of key nodes and broadcast them using other

existing key nodes, thus creating edges. Notice that

it would be hard to define which edges should be
deleted in the basic broadcast history model as op-

posed to the annotated model. A formal model of

how to update the history model is described in

Appendix A.

5.4. A lower bound for users without memory

While timestamps do create some new compli-
cations, the basic machinery of the ancestor

weights in the annotated history graphs works

for proving the logarithmic lower bound.

When a user corresponding to a leaf ui departs

from the multicast group, it holds each key k on

valid paths from the root to ui. Key k cannot be di-

rectly used again, nor can any key that was broad-

cast encoded by k while ui held k; these edges must
disappear from the annotated history graph. Dis-

tributions that were encrypted using k before ui
held k remain safe, however, if ui is assumed to

have no memory.

We therefore define the valid ancestor weight for

a leaf ui as follows: Form a subgraph Si of the

annotated history graph that consists of all edges

on valid paths to ui; delete any edge not on some
valid path to ui. The valid ancestor weight for leaf

ui is now defined as the sum of the outdegrees of all

vertices in S. The valid ancestor weight of an anno-
tated history graph is again the maximum weight of

a leaf. We briefly sketch a bound on the minimum

valid ancestor weight for a graph of n leaves.

Lemma 5.4. The minimum valid ancestor weight for

an annotated history graph of n leaves satisfies
w(n) P dlog2 ne.

Proof. Valid ancestor weight is again minimized

by certain trees: since there are valid paths to all

leaves, we can form a spanning tree of valid paths

without increasing the weight of any graph. We

can assume that at each node the timestamps on

edges to children increase from right to left. For
any node u with a single child, we contract the ear-

lier of the two edges incident to u to merge that

node into its parent or child.

We transform an annotated history tree into a

binary tree (Fig. 7) by taking each node of degree

k > 2 and replacing it with a left-slanting tree of

k � 1 nodes; all children after the first become

right children of one of these nodes. The valid
ancestor weight that the original node contributed

to its children is the depth of each child, except for

the first child, whose valid ancestor weight was one

more than its height. The maximum in the

resulting binary tree of n leaves is simply the tree

height, which is at least dlog2ne. h

As before, we cannot bound the cost of an indi-

vidual addition or deletion, but we can bound the

cost of a sequence.
Theorem 5.5. For any secure multicast protocol,

there is a sequence of 2n ADDDD and DELETEELETE

operations such that the total communication cost

is H(n logn) encrypted messages.

J. Snoeyink et al. / Computer Networks 47 (2005) 429–441 439
Proof. Consider a sequence of n insertions of users

ui through un and then a sequence of deletions of

all the users, where at each stage the user with

maximum valid ancestor weight is deleted. By

our lemma Lemma 5.4, the total number of edges
deleted must be P(log2n + log2(n � 1) + log2
(n � 2) + � � � log21). Thus the number of edges is

at least log2(n!) = H(n logn). Since each of these

edges must have been created in the past at a cost

of a constant c bits of encrypted communication,

the total communication cost over this sequence

of n operations is H(n logn). h
Fig. A.1. Code for updating annotated broadcast history

graph.
6. Conclusion and open questions

We have shown that the logarithmic factor that

appears in secure group key maintenance schemes

such as RFC 2627 [19] is necessary under the

assumption that a single message contains a single

key and assuming that we restrict ourselves to

key-based multicast protocols. In order to obtain

a protocol with sub-logarithmic update costs,

therefore, one would need to use a different
model. One approach is to relax the security con-

straints, allowing delays for users joining or leav-

ing the group as in the Kronos system proposed

by Setia et al. [14], which allows users who leave

the group to receive content until a rekeying per-

iod. A similar idea is explored by Yang et al. [21],

who suggest processing multiple joins and leaves

in batches to both reduce the update cost and also
to alleviate the out-of-sync problem between re-

key messages.

A second approach is to consider average in-

stead of worst case bounds. For example, in [2],

authors show that if each group member can join/

leave the group with equal probability then the

average cost for group re-keying can be constant.

A third approach is to use more powerful ways
to build messages out of cryptographic functions

(e.g., using nested encryption or other primitives

such as pseudorandom generators). Recently, the

lower bound has been extended to such more gen-

eral classes of protocols by Micciancio and Panjw-

ani [12].

Finally, it would be nice to explore how limits

on the number of key broadcasts on deletion of
a user translate to more key broadcasts; for exam-

ple, if deletion from a group of size n must be

accomplished in one message, then keys must be

maintained for all subsets of size n � 1.
Acknowledgments

We wish to thank a reviewer for comments that

lead to clarifying the distinction between users

with and without memory. Yang et al. [22] inde-

pendently discovered and proved the same lower

bound. We are grateful to Justin Goshi and
Richard Ladner for helping us fix an error in the

original proof of Lemma 5.2.
Appendix A. A formal model for updating

broadcast history graph

We assume there is always a root node that cor-
responds to the group key and that there is always

a valid path between the root node and the set of

440 J. Snoeyink et al. / Computer Networks 47 (2005) 429–441
current users. (Thus for example the right half of

Fig. 6 is an invalid state.) We use CREATEREATEEDGESDGES

(Fig. A.1) to represent the creation and broadcast-

ing of new keys by the algorithm. We only require

that after the update process is finished, there is a
valid path between root and all user nodes. This

cannot be trivially satisfied after a DELETEELETE because

a DELETEELETE will begin by deleting the existing root

node.

References

[1] A. Ballardie, Scalable Multicast Key Distribution, RFC

1949, May 1996.

[2] S. Banerjee, B. Bhattacharjee, Scalable secure group

communication over IP multicast, in: Proceedings of

Internation Conference on Network Protocols, November

2001; also IEEE Journal on Selected Areas in Communi-

cations 20 (8) (2002) 1511–1527.

[3] C. Blundo, L. Mattos, D. Stinson, Tradeoffs between

communication and storage in unconditionally secure

schemes for broadcast encryption and key distribution,

in: Advances in Cryptology— CRYPTO�96, 1996.
[4] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B.

Pinkas, Multicast security: a taxonomy and efficient

authentication, in: Proceedings of INFOCOM�99, March

1999.

[5] R. Canetti, T. Malkin, K. Nissim, Efficient communica-

tion-storage tradeoffs for multicast encryption, in:

Advances in Cryptology, EUROCRYPT 1999, May 1999.

[6] G. Caronni, M. Waldvogel, D. Sun, B. Plattner, Efficient

security for large and dynamic multicast groups, in:

Proceedings of Seventh Workshop on Enabling Technol-

ogies, (WETICE �98), IEEE Computer Society Press,

Silverspring, MD, 1998.

[7] S. Casner, S. Deering, First IETF Internet audiocast,

SIGCOMMComputer Communication Review, July 1992.

[8] A. Fiat, M. Naor, Broadcast encryption, in: Advances in

Cryptology—CRYPTO�93, 1993.
[9] H. Harney, C. Muckenhirn, T. Rivers, Group Key

Management Protocol Architecture, RFC 2094, September

1994.

[10] H. Harney, C. Muckenhirn, T. Rivers, Group Key

Management Protocol Specification, RFC 2093, September

1994.

[11] M. Luby, J. Staddon, Combinatorial bounds for broadcast

encryption, in: Advances in Cryptology—EURO-

CRYPT�98, 1998.
[12] D. Micciancio, S. Panjwani, Optimal communication

complexity of generic multicast key distribution, in:

Advances in Cryptology: Proceedings of Eurocrypt 2004,

Springer, Berlin, 2004.

[13] S. Mittra, Iolus: a framework for scalable secure multi-

casting, in: Proceedings of ACM SIGCOMM�97, STW97,

September 1997, pp. 277–288.
[14] S. Setia, S.Koussih, S. Jajodia,E.Harder,Kronos: a scalable

group rekeying approach for secure multicast, in: IEEE

Symposium on Security and Privacy, 2000, pp. 215–228.

[15] C. Shields, J. Garcia-Luna-Aceves, KHIP—a scalable

protocol for secure multicast routing, in: Proceedings of

ACM SIGCOMM�99, 1999.
[16] M. Steiner, G. Tsudik, M. Waidner, Cliques: a protocol

suite for key agreement in dynamic groups, in: Proceedings

of ICDCS�98, Amsterdam, May 1998, Also Research

Report RZ 2984 (93030), IBM Zurich Research Lab,

December 1997.

[17] D. Stinson, T. van Trung, Some new results on key

distribution patterns and broadcast encryption, Designs,

Codes and Cryptography 14 (3) (1998) 261–279.

[18] R. Thayer, N. Doraswamy, R. Glenn, IP Security Docu-

ment Road Map, RFC 2411, November 1998.

[19] D. Wallner, E. Harder, R. Agee, Key Management for

Multicast: Issues and Architectures, RFC 2627, June 1999.

[20] C. Wong, M. Gouda, S. Lam, Secure group communica-

tions using Key Graphs, in: Proceedings SIGCOMM 98,

September 1998.

[21] Y.R. Yang, X.S. Li, X.B. Zhang, S.S. Lam, Reliable group

rekeying: a performance analysis, in: Proceedings SIG-

COMM 01, September 2001.

[22] R. Yang, S. Lam, A secure group key management

communication lower bound, Technical Report TR-00-

24, Department of Computer Sciences, UT Austin, July

2000, revised September 2000.

Jack Snoeyink received Ph.D. in
Computer Science from Stanford
University in 1990. After a postdoc-
toral year in Utrecht, he rose through
the faculty ranks at the University of
British Columbia, and joined the
Department of Computer Science at
the University of North Carolina at
Chapel Hill as a professor in 2000. He
works primarily in algorithms for
geometric problems, with applications
ranging from GIS to molecular
biology.
Subhash Suri is a professor in the
Department of Computer Science at
the University of California, Santa
Barbara. His current research interests
include algorithms, computational
geometry, sensor and mobile net-
works, algorithmic game theory, and
internet computing. He is a member of
the ACM and a senior member of the
IEEE. He is on the editorial board of
the journal Computational Geometry:
Theory and Applications, and has
acted as guest editor for special issues

of journals. He is a reviewer for NSF, NSERC, and numerous

journals. He is also a member of many conference program
committees, and has served as a consultant for several industrial
ventures.

er Networks 47 (2005) 429–441 441
George Varghese received his Ph.D in
1992 from MIT. He is a professor of
computer science at UCSD, where he
works on efficient protocol implemen-
tation and protocol design. Several of
the algorithms he has helped develop
(e.g., IP Lookups, timing wheels,
DRR) have found their way into
commercial systems. He is a Fellow of
the ACM.

J. Snoeyink et al. / Comput

	A lower bound for multicast key distribution
	Introduction
	Security requirements

	Previous work
	Previous work in the theory community

	Base model
	Lower bound approaches
	Proof of lower bound
	Representing protocol state by a broadcast history graph
	A lower bound for users with memory
	Annotating the broadcast history graph for users without memory
	A lower bound for users without memory

	Conclusion and open questions
	Acknowledgments
	A formal model for updating�broadcast history graph
	References

