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Abstract

A useful way to design simple and robust protocols is to make them self-stabilizing.
A protocol is said to be self-stabilizing if 1t begins to exhibit correct behavior even after
starting in an arbitrary state. We describe a simple technique for self-stabilization called
counter flushing which 1s applicable to a number of distributed algorithms. We show how
our technique helps to understand and improve some previous distributed algorithms. We
also apply it to create new self-stabilizing protocols for propagation of information with
feedback and resets. The resulting protocols are simple, require few changes from the

non-stabilizing equivalents, and have fast stabilization times.
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1 Introduction

As the world moves from an industrial economy to an information based economy, we are
already dependent on networks and will become even more so. Most users of data networks,
however, agree that current data networks are far more unreliable than say the telephone

network. This must change.

The current approach to network fault-tolerance is what we call the piecemeal approach.
The protocol designer enumerates the faults that the network will deal with — e.g., node and
link crashes, bit errors on links — and adds recovery mechanisms for each such fault. This

often adds complexity as the mechanisms are not orthogonal and often have subtle interactions.



Also, there are a number of more obscure errors (e.g., memory corruption) that occur in real
networks and are hard to anticipate and enumerate. Even if such faults occur rarely (say once

a month), it makes economic sense to have networks automatically recover from such faults.

These issues are illustrated by the crash of the original ARPANET protocol ([Ros81],[Per83]).
The protocol was designed never to enter a state that contained three conflicting updates. Un-
fortunately, a malfunctioning node injected three such updates into the network and crashed.
After this the network cycled continuously between the three updates. It took days of detective

work [Ros81] and much coast-to-coast coordination before the problem was diagnosed.

Self-stabilization: Ideally networks should recover by themselves, even from obscure faults.
As networks grow faster and are more commonly used, the likelihood of such obscure faults
occurring will increase. This paper describes a paradigm for designing what are known as
self-stabilizing network protocols. We do so to make network protocols simpler (i.e., a uniform
mechanism instead of a slew of mechanisms to deal with a catalog of anticipated faults) and
more robust (e.g., can recover from transient faults such as memory corruption as well as

common faults such as link and node crashes).

We model a computer network as a set of nodes that are interconnected by communication
channels. A network protocol consists of a program for each network node. Each program
consists of code and inputs as well as local state. The global state of the network consists of
the local state of each node as well as the messages on network links. A network protocol is
self-stabilizing if when started from an arbitrary state it exhibits “correct” behavior after finite
time. This definition allows arbitrary corruption of messages and node state variables in the

initial state.

Note that we allow network state to be corrupted but not the code executing the protocol.
This is reasonable because program code can be protected against arbitrary corruption of mem-
ory by redundancy since code is rarely modified. For example, the code can be checksummed.
However, it is not clear how one can detect corruption of network state (that is frequently

being modified) by using redundancy techniques.

The definition seems to imply that faults can occur only once (i.e., when the network
“starts”). However, the real assumption is: the average period between faults covered by self-

stabilization is larger than the time the protocol takes to stabilize.

The distributed algorithm literature also describes Byzantine fault models ([LSP82]) in
which arbitrary faults can continuously occur. This may appear to be a more general model
than self-stabilization. However, in Byzantine models, only a fraction of nodes are allowed

to exhibit arbitrary behavior. In the self-stabilization model, all nodes are permitted to start



with arbitrary initial states. Thus, the two models are orthogonal. In a practical setting the
crucial difference is that the cost of stabilization is quite cheap while Byzantine solutions are
expensive. For example, the self-stabilizing routing protocol in [Per83] is much cheaper than

the Byzantine routing protocol of [Per88].1

General Techniques for Self-stabilization: Self-stabilizing protocols were introduced by
Dijkstra [Dij74b], and have been studied by various researchers. [Sch93] contains a recent
review. While a large number of ad hoc self-stabilizing protocols have been introduced, there
have been few general techniques for self-stabilization. Katz and Perry [KP93] showed how
to compile an arbitrary asynchronous protocol into a stabilizing equivalent. Their general
transformation is expensive; hence more efficient (and possibly less general) techniques are
needed. Techniques that transform any locally checkable protocol into a stabilizing equivalent
are given in [AGV94, Var93]. However, local checking only applies to a subset of protocols
that have a special property called local checkability.

Our paper describes a new general technique, called counter flushing that is applicable
to protocols that are not locally checkable. The setting is that of a leader who wishes to
periodically deliver a message to every network node (and sometimes to every link) in the
network. By attaching a counter to the state of every node and to every message, and by using
a few simple checks, we ensure that the protocol will begin to work correctly regardless of the
initial messages and node states. The paradigm is also simple (in terms of the lines of code
added and the resulting proofs), and provides fast stabilization times (equal to a few round

trip delays).

Counter flushing can be applied to a variety of useful distributed applications. In par-
ticular, counter flushing applies to several total algorithms. Total algorithms [Tel89] involve
the cooperation of all network nodes. We apply counter flushing to token passing [Dij74a],
propagation of information with feedback [Seg83], and network resets [AG94].

The rest of the paper is organized as follows. Section 2 describes our model. Section 3
describes how counter flushing works on ring topologies and shows how this algorithm can be
used for token passing, request-response, and Data Link protocols. Section 4 describes how
counter flushing works on trees by describing a stabilizing broadcast protocol called Propaga-
tion of Information with Feedback. In Section 5, we extend counter flushing to a general graph.
We illustrate this by designing a stabilizing network reset protocol. In Section 6, we present a
uniform proof of stabilization and correctness of our three main protocols. The uniformity of

proof emphasizes the unity behind the diversity of applications. We conclude in Section 7.

'The protocol in [Per83] is the basis for the OSI Routing Protocol and the OSPF Routing protocol, both of

which are widely deployed; we know of no Byzantine routing protocol that is used in a real network.



2 Model

We restrict ourselves to message passing protocols for networks. The network topology is
modeled by a directed graph G = (V, F). Let n = |V| denote the number of network nodes
and D the network diameter. Except for the case when we consider a ring topology (Section 3),
we assume that the graph is symmetric — i.e., if (¢,7) € E then (j,7) € E. We assume there
is a distinguished leader node 0 € V that we often refer to as the root. Note that there are
many stabilizing protocols to construct a leader; e.g., [AKMT93, Dol94, AK93] all calculate a
leader in O(D) time. Finally, we model the nodes and links of the network using Input/Output
Automata (IOA) [LT89].

An IOA is a state machine whose state transitions are given labels called actions. There are
three kinds of actions. The environment affects the automaton through Input actions which
must be responded to in any state. The automaton affects the environment through Output
actions; these actions can be controlled by the automaton to only occur in certain states.

Internal actions only change the state of the automaton without affecting the environment.

Formally, an 10A is defined by a state set S, a action set A, an action signature 7 (that
classifies the action set into input, output, and internal actions), a transition relation R C
S x Ax S, and a set of initial states I C .5. We mostly deal with uninitialized IOA for which
I =S. An action « is said to be enabled in state s if there exist s’ € S such that (s,a,s’) € R.

Input actions are always enabled.

Nodes communicate with each other by sending to and receiving packets along links. Fix
a packet alphabet P. Nodes and links are modeled by IOA called node and link automata
respectively. A node automaton (see Figure 1) for node ¢ in graph G has output actions
(SEND; ;(p), p € P) to send a packet to every j such that (¢, j) € £} it also has input actions
to receive packets (RECEIVE;;(p),p € P) for every j such that (j,¢) € . Similarly, the link
automaton for link (¢, j) € F has input action SEND; j(p)? to receive packets from ¢, and output

action RECEIVE; ;(p) to deliver packets to node j (Figure 1).

| SENDi’j 'a RECEIVE;

NODE i LINK (i,j) NODE |

Figure 1: The rectangles represents node automata for nodes i and j with interfaces to send packets from i to j.
The circle represents the link automaton from i to j whose state is captured by a queue, Q; ;

2the convention for action subscripts is that the first subscript always represents the sending node and the

second the receiving node.



State of link Cj ; is a queune of packets @) ;.
In all states, |Q; ;| < Lmae

SEND; ;(p) (* node i sends a packet *)
Effects: Add p to the end of @Q; ;

RECEIVE; ;(p) (* node j receives a packet*)
Preconditions: p is the head of Q; ;
Effects: Remove p from @Q; ;

For time complexity, assume that any packet p

placed in @); ; is delivered in 1 time unit.

Figure 2: Formal Model of a Bounded Data Link

Node automata can be arbitrary except that they must have finite state sets, and have
the appropriate interface actions to send and receive packets. We assume that each link is a
FIFO queue with bounded storage. More formally, the state of the link automaton for link (¢, j)
is a queue of packets (); ;, that is restricted to store no more than L,,,, packets. A formal
specification of a bounded Data Linkis in Figure 2. We use a bounded model because not much
can be done with unbounded links in a stabilizing setting [DIM91], and real links are bounded
anyway. We describe why we believe this is a good model for many real networks at the end

of this section.

Define an network automaton for graph G = (F, V) as the composition of node automata
for each ¢ € V and link automata for each edge (¢,7) € E. Composition [LT89] produces a
composite state machine; input and output actions of the same name are performed simul-
taneously. Thus when node ¢ performs a SEND; ;(p) output action, the link between ¢ and j
performs a simultaneous input action (also SEND; ;(p)) to store packet p. The state of the
composition is the cross product of the states of every node and link automaton in the network

automaton.

When an IOA “runs” it produces an execution. An ezecution fragment is an alternating
sequence of states and actions (sg, a1, s1,...), such that (s;,a;,s;41) € R for all ¢ > 0. An
execution fragment F is fair if any internal or output action that is continuously enabled

eventually occurs.®> An execution is an execution fragment that begins with a start state and

*The IOA model actually specifies fairness in terms of equivalence classes; for this paper we assume each



is fair.

We express the correctness of an automaton using a set of legal exzecutions LFE as in [DIM93].
Let LE be a set of executions of some automaton A. Then we say that automaton A stabilizes
to LE if every execution of A has some suffix that is contained in LFE. The legal states are
the states that occur in legal executions. All the automata we will design in this paper will
be uninitialized IOA whose set of initial states I is identical to its state set 5. We do so by
not specifying initial node or channel states. It should be clear that the intuitive concept of
self-stabilization is captured by the stabilization of an uninitialized automaton to a set of legal

executions.

For time complexity, assume that every internal or output action that is continuously
enabled at a node occurs in 1 unit of time. Thus node processing takes 1 time unit. However,
we assume any packet stored on a link is delivered in 1 time unit. We say that A stabilizes to
LE in time t if every execution of A has a suffix that occurs within time ¢ and is contained in
LE. The stabilization time from A to B is the infimum across all ¢ such that A stabilizes to B

in time ¢.

The time complexity assumption for messages is reasonable for links, such as fiber links, in
which packets are not queued on links. The assumption is completely unrealistic for channels
that act like queues; a simple example is when the link is really a “network” which may consist
of internal switching nodes that can queue packets. However, since we expect our protocols
(such as token ring, broadcast on trees, and resets) to be used over networks with the former

type of link, we believe this assumption is reasonable.

The time complexity assumption also seems to imply (see description of algorithms later)
that each node has to send a stabilization message every step. In particular, this seems to
follow because we have made the time complexity for nodes to send messages the same as the
time complexity for a message to travel on a link. We choose this for simplicity in order to
avoid having two parameters for the two times. A similar (but slightly more messy) analysis
of the algorithms can be carried out in which the time to perform an internal node action is
bounded by some parameter ¢,,. The general model would allow stabilization messages to be
sent at any reasonable interval, and would provide the usual tradeoff between message overhead

and stabilization time.

There are several other methods of calculating time complexities for stabilizing protocols.
These include methods in which messages in which time complexity is measured in terms of
rounds in which every processor takes a step. Our time complexity measure is not directly

comparable to these other measures.

action 1s in a separate class.



Why Use Bounded Links? In a stabilizing setting, if a link can store an unbounded
number of packets, it is impossible to produce solutions (with bounded stabilization time) for

most non-trivial tasks [DIM91]. Moreover, real links are bounded.

In other work, we have modeled bounded links as unit capacity data links (UDLs) that can
store at most one packet at any instant. A UDL [Var93] is a model of a reliable Data Link
protocol that delivers one packet at a time. The UDL model is appropriate for routing (and
other) protocols that use an underlying reliable link protocol. However, many real protocols
that work over very low error rate links (e.g., FDDI, ATM, Frame Relay [Tan93]) do not use
an underlying Data Link protocol. Such links store a bounded number of packets because the
link sender and receiver are synchronous. The receiver removes packets as fast as the sender
inputs packets. However, there is no common clock for the entire network; node processing is

still asynchronous.

We can model this using an asynchronous model like IOA if we only consider executions in
which there are no more than L,,,, packets on each link in each state. In our bounded model
we assume that any stored packet is delivered in constant time. For example, suppose the
minimum packet size is 20 bytes, nodes transmit at 100 Mbit/sec and links are up to 10 miles
long. Then L., = 30 and (assuming speed of light limitations) any stored packet is delivered

in 50 usec. Both numbers are constants that depend only on the maximum length of a link.

3 Counter Flushing on Rings

To illustrate counter flushing, we first show how counter flushing can be used in rings. Our
protocol is a message passing version of a shared memory protocol presented in [Dij74a]. We
have a leader node 0 called the root. Nodes 0...n — 1 are arranged in a ring topology such
that there is a directed link (¢,¢+ 1) for ¢ = 0,...n — 1. Assume that addition on process

indices is always implicitly modn so that n — 1+ 1 = 0.

We wish to do mutual exclusion on this ring topology. In a ring, without the need for
stabilization, this can easily be done by sending a special Token packet round the ring. Each
node ¢ would then have a flag which would be set to true when a token arrives at ¢, and is set
to false when node 7 sends its token to node ¢4 1. As long as we start in a state where there is
exactly one token, this protocol will maintain a mutual exclusion property: no more than one

node can have its token flag set to true in any state.

However, in a stabilizing setting, the token protocol can deadlock. Clearly, we can start the
token protocol in a state that does not contain a token. A simple way to avoid deadlock is to

have nodes retransmit packets. But this introduces the possibility of a node receiving duplicates



during each cycle. Thus we change the state of each node ¢ (and each packet) to have a counter
instead of a flag. A node with counter value ¢ can identify a packet numbered ¢ as being a

duplicate. This is analogous to the use of sequence numbers in network protocols [Tan93].

However, counters cause new complications. In the initial state, the counter values may be
arbitrary. Let ¢,,4,» be the maximum number of counters that can be stored in the network in
the initial state. Because of the initially bounded model, ¢4 = |E|Lmaz + |V|. We will show
that if the size of the counter space is greater than ¢;,,., then the protocol stabilizes in time
proportional to the network diameter. The underlying constant is small, typically equal to 3.
We will prove that every execution reaches a state in which the root has a fresh value that
is not present in the network; then we show that any execution starting with a “fresh” value
will reach a legal state. The fresh value propagates through the network “flushing” old values

much like cleaning fluid moving through a messy drain.

Figure 3: Progress to Stabilization in a Token Ring with Counters. Starting with an arbitrary
state (A) we reach a state in which the root has a fresh value (B). The fresh value (i.e., 8)

moves round the ring (C) until we reach a legal state (D)

In Figure 3 the lower left hand corner (configuration D) describes a good global state of
our protocol. There are four nodes which we call North, East, South and West and all packets
travel clockwise around the ring. North is the root. Each node other than North has a counter

value of 8 and there is a token carrying the value 8 in transit from West to North.

Each node periodically retransmits its counter value in a token packet downstream. Thus
mere receipt of a token packet is not enough for a node to assume it has the token. Instead,
when any node ¢ receives a token from its upstream neighbor, node ¢ does the following. If ¢
is not the root and the counter value in the token (say ¢) is different from the counter stored

at node ¢ (i.e., ¢;), then node ¢ assumes it has received a valid token and sets ¢; equal to ¢; if



¢ = ¢; and ¢ is not the root, ¢ ignores the received token. If ¢ is the root, however, a different
rule is used: if the counter ¢ in the token is equal to the root’s local counter, then the root
assumes it has received a valid token, and increments its counter value mod Maz; if ¢ # ¢;,

then the root ignores the received token.

Consider legal configuration D of Figure 3. In this state all token packets on links have
a counter value 8, and the counter values at all nodes except North is also 8. The counter
value at North is 9 # 8. In that case, we say that North has the token. Eventually North will
transmit a token packet containing 9. When this packet reaches Fast, Fast sets its counter
value to 9. This process continues with the token moving clockwise until West receives the

token and transmits it to North. North chooses a new value (10) and the cycle continues.

In legal states the ring can be partitioned into two bands. The first band starts with the
root and continues up to (but not including) the first counter value (either in a token packet
or at a node) whose counter value is different from that of North. The remainder of the ring
(including links and nodes) is a second band containing a counter value different from North.
The valid token is at the end of the first band.

The protocol stabilizes to legal states regardless of initial values of node and packet counters.
Assume ¢4, (the number of distinct counter values stored in nodes and links in the initial
state) is less than the counter size Maxz. For example, with a 1000 node ring transmitting
at 100 Mbp/s and assuming 10 mile links, ¢4, = 31,000. If we use a 32 bit counter, then
Maz = 23?2 > ¢,,4, for even the largest size rings that occur in practice. The stabilization
argument is illustrated in Figure 3. We provide a formal argument in Section 6. For now we
sketch an informal argument that illustrates the three essential features of the counter flushing

argument (increment liveness, freshness, and flushing.)

1. In any execution, North will eventually increment its counter: Suppose not.
Then North’s value will move around the ring until North gets a token with a counter value

equal to its own.

2. In any execution, North will reach a “fresh” counter value not equal to
the counter values of any other process: (see Figure 3, configuration B). In the initial
state there are at most (say) ¢jq. distinct counter values. Thus there is some counter value
say f not present in the initial state. Since North keeps incrementing its counter, North will
eventually reach f;in the interim no other process can set their counter value to f since only

North “produces” new counter values.

3. Any state in which North has a fresh counter value f is eventually followed
by a state in which all processes have counter value f: (see Figure 3, configurations

C,D). The value f moves clockwise around the ring “flushing” any other counter values, while



North remains at f.

Define a round trip delay to be equal to 2N time units (i.e., the time it takes for a packet to
travel around the ring with a unit delay at each node and link.) The worst-case stabilization

time of this protocol is equal to 3 round trip delays.

First consider a modification to the protocol in which the root chooses a new counter value
randomly instead of incrementing the old value. Assume that Maz > ¢4 (i-e., counter size is
much greater than the maximum number of stored packets. With very high probability (i.e.,
1 — ¢pnax/ Maz, roughly 271€ for our ring example), the root picks a “fresh” value after its first
opportunity to change its counter. The protocol stabilizes within 2 round trip delays times

with high probability. We call this randomized counter flushing.

However, simple deterministic incrementing also guarantees a worst case stabilization time
of 3 ring round trip delays. Here is the intuition. Consider an execution with initial state sy
and some state sg that occurs 1 round trip delay later. Let the counter value of the root in
sy and sp be ¢(I) and ¢(F) respectively. In one round trip delay, there is enough time for
information from the root to “flow” through the entire ring. Thus all node counters in state
sy must have been “produced” by the root since the execution began. More formally, in sp,
all counter values are in the range [¢(]) ...c(F)]. If ¢(F) is fresh, we are done (see stabilization
argument above) 1 round trip delay later. Otherwise, the next root increment will cause a fresh
value because ¢(F)+1 ¢ [c(I)...c(F)]. (This last fact follows because the root will increment
at most once for every packet received, and can receive at most ¢,,,, < Maz packets in the

interval [s7, sp].) But the next increment will happen after at most one round trip delay.*

The formal code for our stabilizing token passing protocol is in Figure 4. Our protocol is a
message passing version of the shared memory protocol [Dij74a]. One of our contributions is to
prove that the stabilization time is equal to 3 ring delays, using our model of time complexity®,
which we believe is realistic. But our main contribution is abstracting the mechanism and
applying it to other examples, as we show below. A formal proof of correctness and stabilization

is deferred to Section 6.

We note that token passing protocols are widely used in Local Area Networks in order to
regulate access to the network. Existing token passing protocols recover from lost tokens using
global timers that are refreshed whenever a token is seen. In the IBM token ring [Tan93],
the monitor (i.e., root) uses a timer that is set to the longest possible delay it can take for a

token to traverse the ring. When this timer expires, the monitor reinitializes the ring. Thus the

*A more careful accounting shows that 2 round trip delays suffice for stabilization. We prefer to use 3 round
trip delays because of the simplicity of the proofs.

SThere are no time complexity results in [Dij74a]
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recovery time of the IBM token ring protocol is proportional to the worst-case delay around the
ring. The recovery time of a token passing protocol based on counter flushing (see [Cos96] for
details) is proportional to the actual delay around the ring, which can be an order of magnitude

faster than the worst-case delay.

3.1 Further Applications of Counter Flushing on Rings

Counter flushing on rings can be applied to two more interesting settings: request-response

protocols, and alternating bit protocols between two nodes.

Request-Response Protocols: Suppose a leader node wishes to periodically send a Request
packet to a set of network nodes. The responders must each send back a Response packet before
the sender sends its next request. In order to properly match responses to requests, the sender
numbers [Var93] each request with a counter. Responders only accept Request packets with
a number different from the last Request accepted. After accepting a Request the responder
sends back a Response with the same number as the Request. The sender retransmits the
current Request till it receives each matching Response with the same number. After all
matching Response packets arrive, the sender increments its counter and starts a new phase.
The protocol will work correctly if Maxz > ¢4, and the links are FIFO (or guarantee the

‘flushing” property in some other way.)

Data Link Protocols: The token passing protocol in Figure 4 can be adapted to send
packets reliably between a sender and receiver by having each token packet carry a piggybacked
data packet. It is important to compare this with the elegant stabilizing Data Link protocol
of Afek and Brown [AB93]. They use bounded length counters of size greater than 2, but such
that the sequence of counter values used is aperiodic. A trivial corollary is that for a pair
of nodes connected by a pair of unidirectional links, it suffices to use a counter whose size is
larger than 1 plus the maximum number of outstanding packets. They also suggest the use of

a random sequence instead of an aperiodic sequence.

However, Afek and Brown’s result is confined to Data Link protocols between a pair of
nodes and to rings. The paradigm has not been extended to trees or general networks as we do
below. Also the randomized equivalent of Afek-Brown’s protocol uses randomized sequences
instead of the Random-Increment function; the expected stabilization time of their protocol is
shown to be O(¢pq,) round trip delays for large values of Maz, while our stabilization time is

only approximately 2 round trip delays.
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A token packet is encoded as a tuple (Token, c) where ¢ is an integer in the range 0..Maz
The state of each node 7 consists of an integer count; in the range 0..Maz.

The root has an additional flag token_expected,.

Assume there are n nodes numbered from 0 to n — 1.

All addition and subtraction of process indices is mod n.

All addition and subtraction of counters is mod Maz.

Finished(i) (* boolean function used by action routines below *)
Always true for all nodes other than node 0

Finished(0) is true if and only if token_expected, = false

RoOT_START (* Node 0 is considered the root or leader of ring *)
Preconditions:
Finished(0) = true
Effects:
county = county + 1 (* increment root counter *)

token_expected, = true

RECEIVE,,_1,0( Token, ¢) (* node 0 receives token from node n — 1 *)
Effects:
If ¢ = county then (* token counter matches node counter *)

token_expected, = false (* node 0 treats this packet like an ack*)

RECEIVE;_1 ;( Token, c),i # 0 (* node i receives token from clockwise neighbor node i-1%)
Effects:
If ¢ # count; then (* token counter differs from node counter *)

count; = ¢ (*set value to counter in token packet*)

SEND; ;4+1(Token, ¢), (* node i sends token to clockwise neighbor node i + 1%)
Preconditions:

¢ = count; (* counter of token matches node counter *)

For any node, a SEND; ;41 action will occur in 1 unit of time

starting from any state.

Figure 4: Code for node processes in a token ring
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4 Counter Flushing on Trees

In the last section, we described counter flushing on a ring topology using a mutual exclusion
protocol that is essentially sequential. By contrast, in this section, we describe a broadcast
protocol on a tree which exhibits considerable parallelism. In this problem, we have a root
node 0 that wishes to broadcast a sequence of values to every node in the network. Correct
executions of the protocol can be partitioned into an infinite number of cycles: in cycle M
the root must send the packet corresponding to M exactly once to all network nodes. Cycle
M begins after cycle M — 1 ends. In order to detect when the current broadcast cycle has
terminated the root needs to obtain feedback from the other nodes. Thus the problem is often
called Propagation of Information with Feedback (PIF).

We model the sequence of values that the root wishes to broadcast by having the root have
access to a function f that computes the next value to be sent as a function of the previous

value sent. In a more general setting, the values could be supplied by some external application.

We assume a leader/root node 0 and a spanning tree rooted at node 0, such that each node
i has a parent variable parent(i) that points to its parent in the tree. Without stabilization, it is
easy to solve this problem using the protocols due to Segall and Chang [Seg83, Cha82]. When
the root finishes broadcasting a previous value, it chooses a a new value using the function f.
It then sends a token packet containing the new value to all its children; other nodes accept
new values only from their parents, upon which they send the value to their children. When a
leaf of the tree gets a new value, it sends an ack up to its parent. Nodes other than the root
send an ack up to their parents when they have received acks from all children. When the root
receives an ack from all children, the root starts a new cycle by choosing a new value. Clearly
this protocol can deadlock if initialized in a state where the root is expecting acks from its

children, but the children do not send any further acks.

To make the protocol stabilizing, we tag each packet sent (and each value stored) with a
counter. When sending a new value, the root chooses a new counter value. Node ¢ accepts
a new value only when it is tagged with a different counter value from the counter stored at
node 7. Node 7 accepts an ack only when the counter in the ack is identical to node ¢’s counter.

Adding counters and checks also allows us to periodically retransmit Token packets to avoid

deadlock.

The code is given in Figure 5. For simplicity, we do not encode “Acks” separately but just
have children send (Token, ¢, v) packets to their parents as acks, where ¢ and v are the counter

and value respectively at the sending node at the instant the packet was sent.

Figure 6 shows a legal state of the protocol where a new value x is being broadcast to

replace the previous value v. The new counter tag for  is 13 while the counter tag for v was
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We assume all counters are integers in the range 0..Maz and all values are drawn from some domain V.
A token packet is encoded as a tuple (Token, ¢, v) where ¢ is a counter and v is a value.
The state of each node ¢ consists of:

a counter count;, a boolean flag token_expected,[j] for each neighbor j of i and a value field v;.

We assume that each node ¢ has a function parent(d) that points to i’s parent in the tree.
We assume the root is node 0 and all addition of counters are done mod Max.

Finished(i) (* boolean function used by action routines below *)
(* set to true when not expecting tokens from any children *)

Return true if ¢ is a leaf, or if ¢ is not a leaf and for all children & of ¢: token_expected;[k] = false

RoOT_START (* Root starts a new cycle of broadcasting values *)
Preconditions:

Finished(0) = true
Effects:
vo = f(vr) (* compute new value to be broadcast*)
county = county + 1 (*choose new counter value mod Max*)

For all children & of root

token_expectedy[k] = true (* set to true when expecting a correctly numbered token*)

SEND; ;( Token, ¢, v), (* node i sends token to node j *)
Preconditions:
¢ = count; (* counter of token matches node counter *)

v =v; (* value equal to store value *)

J # parent(i) or (j = parent(i) and Finished(i)) (* send to children, and to parent if finished *)

RECEIVE; ; ( Token, ¢, v) (* node 7 receives token from node j *)
Effects:
If j = parent(i) and ¢ # count; then (* new counter from parent *)
v; = v (* set stored value equal to value in token packet*)
count; = ¢ (*set local counter to counter in token packet*)
For all children & of ¢

token_expected;[k] = true (* set to true when expecting a token *)
Else if ¢ = count;

token_expected;[j] = false (* treat as a valid ack from child j*)

Any action that is continuously enabled for 1 unit of time occurs in 1 unit of time.

Figure 5: Code for Stabilizing Propagation of Information with Feedback
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12. The new value z has reached the right child of the root and is in transit to the rightmost
leaf node. When this leaf node gets a packet containing (z,13) it will accept the new value
because 12 # 13. It will then send an ack containing the counter 13 to its parent; the parent

will accept this as a valid ack.

Figure 6: Using counter flushing to make Broadcast on a Tree Stabilizing. A new value x is being broadcast to

replace the previous value v. A black dot indicates that a node is waiting for an ack on that link.

Suppose the counter size is greater than Maxz = nlL,,q,. Then the counter flushing argument
guarantees that this protocol will enter a legal state in 4h 4+ 2 time (h is the tree height)
regardless of the initial state. Once it stabilizes, the protocol correctly broadcasts subsequent

values generated at the root. We defer a formal proof of correctness to Section 6.

The reader may feel that because the PIF protocol works on a tree that it is possible to
avoid the use of counters completely; however, it is easy to construct counterexample executions
where if the counter is not used (or its size is less than Maz), then the system stays in an
incorrect state forever. Note that Maxz must once again be larger than the maximum number
of outstanding counters in the initial state, which is nlL,,,, where n is the number of tree

nodes.

Another fairly general method for constructing stabilizing protocols is the method of local
checking as described in [APV91] and [Var93]. However the PIF protocol of Figure 5 is not
locally checkable and so the earlier technique is not applicable. In a good state of the PIF pro-
tocol there can be at most two values present in the tree, the value currently being propagated
and the old value that is still present in the lower limbs of the tree. Thus in a good local state
it is possible to have a parent have counter ¢ and the child have counter ¢’ # ¢. But in that
case we can construct a bad global state in which each child of the root has a different counter
value but each pair of neighbors appears to be in a good state locally. Thus the protocol of

Figure 5 is not locally checkable.

Independently, Gouda [Gou94] used the concept of observers to unify tree and ring stabi-

lizing systems. The paper, however, uses a different proof from ours.
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Applications of Counter Flushing on Trees: Propagation of Information with feedback
is a specific example of a centralized total algorithm [Tel89]. A centralized total algorithm is
an algorithm where each process in the network must take some decision before the initiator
takes a decision event. Tel [Tel89] shows that many protocols such as PIF, Finn’s Resynch
Protocol [Fin79], and distributed infimum® are all examples of Total algorithms. Tel also shows
that PIF can be used to solve any total algorithm. Thus the stabilizing PIF protocol described
in Figure 5 appears to be important because it appears to offer a stabilizing solution to many
problems that require total solutions. We note that another interesting application of the sta-
bilizing PIF protocol is for topology update. For example in the Autonet network [MAMT90],

topology distribution is done over a tree.

5 Counter Flushing in General Graphs with a Spanning Tree

We broaden the scope of counter flushing to consider general graphs. However, we continue
to assume that we have a root r that is the root of a BFS spanning tree. Besides links from
parents to children we now also have cross links that are not part of the tree. So far we only
seen how to use counter flushing to flush tree links. We now extend the paradigm so that the

use of a fresh counter value at the root will flush all links, both tree and cross links.

The basic idea is simple. As before a node 7 only accepts a new counter value ¢ from its
parent, and waits till it gets tokens from its children (numbered with ¢) before it sends a token
up to its parent. However, in addition, ¢ sends a token packet on any cross links it is part of,

and waits to get a token (numbered with ¢) on every link before it sends a token to its parent.

The only difficulty is deciding how to reply to token packets received on cross links. Before
we see what the problems are, we introduce an application for this general counter flushing
paradigm. Suppose we have an underlying protocol P and suppose that the root may peri-
odically get a request to reset protocol P. We stipulate that at the point the reset procedure
terminates, the state of the underlying protocol P is reset to some successor of a legal initial
state of P. To do so, at some point during the reset procedure i) each node ¢ must locally reset
its Protocol P state ii) Define the reset interval of a node to be the interval from the time a
node is locally reset until the reset procedure terminates. Then for any pair of neighbors ¢, j
the sequence of packets received by node j in j’s reset interval must be a proper prefix of the

sequence of packets sent by node ¢ during ¢’s reset interval.

In Figure 7, node ¢ has received the counter value (5) corresponding to the current reset

Sthis can be described roughly as calculating a bound on the minimum of a set of values stored at network

nodes and links
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Figure 7: Reason for delaying responses to token packets received on cross links.

and has sent a token packet containing 5 to j. Node j has not received information on the
current reset and has an “old” protocol packet in transit from its parent. Suppose node ¢’s
token packet reaches node j first and node j sends back a token immediately (but without
changing its counter value or initializing protocol P). Then node j can subsequently receive
the “old” protocol packet and send another “old” protocol packet to node ¢. Thus we could
have a packet sent before node j was reset being received by node ¢ after node ¢ has reset, an

error.

It may appear that a simple solution is for node j to reset itself locally (and accept the
new counter value) when it receives the token packet on the cross link from node 7. But that
causes the entire counter flushing paradigm to break down. This is because if a node accepts
counters on cross links to its neighbors then in the initial configuration we could have a cycle
of nodes each having different values which results in a form of livelock, where the counters
move around in the cycle. This problem can occur for instance in the protocol proposed by
Katz and Perry [KP93]. Katz and Perry resolve this livelock problem by having each token
packet carry a counter and a list of visited nodes; a token packet is dropped when it visits a

node in the visited list. While this solution works, it increases message and time complexity.

The livelock problem disappears if nodes only accept counter values from their parents as
we have done in the last subsection. To solve the problem we referred to in Figure 7, we do
two things. First, we can tag all protocol P packets with the counter at the sending node; we
discard a protocol P packet with a counter that does not match the receiver’s counter. While
this solution eliminates the problem in Figure 7 because the “old” packet will have a different
counter value from that of node i, it introduces another problem. Suppose node ¢ sends a
protocol P packet to j after node ¢ resets, but the packet is received before j resets. Then if
we simply check the packet tag, the packet will be dropped at j. One might consider buffering
the packet at j if the counter tag in the packet is “greater” than the counter at j; however,
defining one counter to be greater than another is fraught with complications if the counters

are of bounded size.
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Instead we have each node j delay responding until the local counter at node j is equal to
the counter of the token packet received. Thus in Figure 7 when j receives the token packet
from ¢ numbered 5, node j does not send a token numbered 5 back to node ¢, until node 5 has
also received a token packet numbered 5 from its parent. In the meanwhile, node ¢ will keep
retransmitting a token packet numbered 5 to j. Node j will ignore these packets until it, too,

has the same counter value of 5. It will then send a token packet back to ¢ with number 5.

We also do not allow protocol P to send packets at node ¢ if node 7 is waiting for a token
packet on one of its links. This implies that (in good executions) any packet sent by ¢ after
¢ has locally reset is sent after j is at the same counter value as 7; thus this packet will be

accepted by j.

The formal code for this protocol is described in Figure 8. Once again, we defer the proof of
correctness and stabilization to Section 6. We will show there that the reset protocol stabilizes

in three round trip delays.

5.1 Comparison with Other Reset Protocols

To construct a full-fledged reset protocol, we need to augment the protocol described so far to
allow any node to make a reset request. This is done as follows. Each node has a reset request
bit that is set when the node gets a reset request, or when it has received a Request packet
from its children. When a node’s request bit is on, it periodically sends a Request packet to its
parent. When the root gets a Request packet, the root treats it like a REQUEST_RESET action.
On doing a local reset a node clears its request bit; each node 7 also ignores reset requests and

Request packets while Finished(i) = false.

The resulting reset protocol is similar to a stabilizing reset protocol due to Arora and
Gouda [AG94] but has some important differences. First, the protocol [AG94] is based on a
shared memory model and thus only requires node counters of size 2. In a message passing
model, where each link can store L,,,. counter values, we believe that larger counter values,
as in our protocol, are necessary. A second difference between our protocol and the one in
Arora-Gouda is the use of “delayed acks” and flushing of cross links. This is unnecessary in
[AGY94], because protocol P is modified so that a node does not read the state of its neighbors
unless they have the same counter value. This is possible in a shared memory model but not

in a message passing model.

There is also the stabilizing reset protocols of [APV91] which is in turn based on the non-
stabilizing reset protocol of [AAGS87]. However, this protocol takes O(n) time to stabilize which
is slower than our reset protocol or the Arora-Gouda protocol. [AKMT93] suggests making
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A token packet is encoded as a tuple (Token,c) where ¢ is an integer in the range 0..Maz

The state of each node ¢ consists of:
an integer count; in the range 0..Maz, and a flag token_expected,[j] for each neighbor j of i:
token_expected;[j] is always false if j = parent;

We assume parent(?) points to ¢’s parent, the root is node 0, and addition of counters is mod Max.

Finished(i) (* boolean function used by action routines below *)
(*set to true when not expecting tokens from any non-parent links *)

Return true if for all neighbors token_expected;[k] = false

ROOT_START (* root receives request to reset Protocol P *)
Effects:
if Finished(0) then (* ignore request if finishing current reset *)
county = county + 1 (*choose new counter value mod Max*)
LocaL_RESET(0) (* locally reset Protocol P *)

For all neighbors k of root, token_expectedy[k] = true (* expect an ack from all neighbors*)

SEND; ;( Token, ¢), (* node i sends token to node j *)
Preconditions: (* retransmit periodically regardless of ack bit *)
¢ = count; (* counter of token matches node counter *)
J # parent(i) or (j = parent(i) and Finished(i)) (* send to children, and to parent if finished *)

RECEIVE; ; ( Token, ¢) (* node i receives token from node j *)
Effects:

If j = parent; and ¢ # count; then (* new counter from parent*)
count; = ¢ (* set value to counter in token packet*)
LocAL_RESET(i) (* locally reset Protocol P *)
For all neighbors k& # j of ¢ (* don’t expect ack from parent *)

token_expected;[k] = true (* set to true when expecting a token packet *)
Else if count; = ¢ then

token_expected;[j] = false (* treat as a valid ack from neighbor j*)

RESET_FINISHEDg (* root reports finishing of reset *)

Preconditions:

Finished(0)

Protocol P packets are only sent at node ¢ when Finished(i) is true and are tagged with count;.
A protocol P packet M received at node 7 is relayed to the application iff the tag of M is equal to count;.

Any action that is continuously enabled for 1 unit of time occurs in 1 unit of time.

Figure 8: Simple Reset Protocol using Counter Flushing
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this protocol faster by running it over a spanning tree, but in that case much of the complexity
of that protocol is not needed. The fast and lean reset protocol of [IL94] does a reset in
constant space. We believe that a 32 bit counter is adequate for most networks, and hence
the requirement for logarithmic space in our protocol is not a problem for practical protocols.

Our reset protocol is also much simpler.

6 General Proofs

In this section, we present our proofs of stabilization and correctness for the three protocols
(Token Ring, PIF, and Reset) described in Figures 4, 5, and 8 respectively. The three protocols
seem very different, work on different topologies, and have different objectives. Despite this,

we will describe a uniform stabilization proof that will apply to all three protocols.

We describe the legal states of all three protocols as uniformly as possible. However, we
are sometimes forced to distinguish between the Ring System (Figure 4) and what we call the
Tree Systems (the PIF and reset protocols, Figures 4 and 8). There is also a small price to be
paid for uniformity of proof: we added an extra ROOT_START action to the Ring System that
is strictly not needed; we also used the ROOT_START action name in the Reset Protocol (to

denote the action that initiates a Reset) instead of a more mnemonic name.

Our proof is structured in four subsections: in Section 6.1 we define some useful termi-
nology; in Section 6.2 we describe the legal states of all three protocols; we prove that all
three protocols stabilize quickly to the legal states and legal executions in Section 6.3; finally,
in Section 6.4 we show that all three protocols exhibit the desired properties (that we have

intuitively described before) in legal executions.

6.1 Definitions

We have already defined the parent of a node for tree systems. For a ring, we define the parent
of node ¢ to be node ¢ — 1. We define the parent path of a node ¢ to be the sequence of nodes
205 21, b2, - - ., 2 such that ¢ = 0, ¢; = ¢, and the parent of ¢,, is equal to i,,_1 for m =1,...,[.
We define the links in a parent path g, 1,...,% to be the links (¢,%1),...(¢;—1,7;). Notice
that the links in the parent path are the links directed “downwards” from the root, and do not

include any “upward” or “cross” links.

We define the counter at a node ¢ to be count;. We will often use root counter to denote
counly, the counter at the root node 0. We say that the counter in packet m is ¢ if m is of the

form (Token,c,*). We say that packet m’ is behind packet m in link (¢, 7) in some state s if
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Figure 9: Examples of parent paths and upstream counters in a Ring and Tree. The numbers at nodes represent
node counters and the numbers attached to a link represent the counter in a (Token, x) packet stored on that link.

m and m’ are both stored in s.Q); ; and m is closer to the head of (); ;. Recall from Figure 2

that @; ; models the queue of packets that represent undelivered packets on link (¢, 7).

In order to describe the legal states we need to define the notion of counters upstream from

a node or packet m. Intuitively, these are counters stored on the parent path that leads to m.

Let s be any state of the tree or ring systems. Formally, we define the counters upstream
from node m in state s to be the set of counters in all nodes (including m) and links in the
parent path of m in state s. If a packet m is stored on link (7, 7) in state s, then the counters
upstream from packet m is the union of the set of counters in packets behind m in link (7, j),
together with the set of counters upstream from node ¢ in state s. We will often refer to the

counters upstream from m without reference to state s if it is clear by context what state s is.

Figure 9 gives examples of these definitions for a ring system (left) and tree system (right).
Notice first that the ring system has a sequence of unidirectional links oriented clockwise in
the picture. However, the tree system has a pair of unidirectional links between every pair of
neighbors. In the case of the reset protocol, the tree system may include cross links (shown
dashed) between neighbors such that neither is the parent of the other. The figure on the left
shows a state of the ring system, and the figure on the right shows a state of the tree system.
The numbers at nodes and links represent node and packet counters. Thus in both states, link
(0, 1) has two stored packets, the first with counter 2 and a second packet behind the first with

counter 4. In both states, node 2 has node counter 8.

The parent path of node 2 is the sequence 0, 1,2 in both pictures. The links in the parent
path of node 2 are (0,1) and (1,2) in both pictures. In the state on the left of Figure 9, the
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counters upstream from node 2 is the set {8,3,2,4,7}. In the state on the right, the counters
upstream from node 2 is the set {8,6,3,2,4,7}. Notice that the set does not contain 11 as the
packet containing 11 is not in the parent path of node 2. In both states the counters upstream

from the packet containing counter 2 is the set {4, 7}.

6.2 Legal State Definitions

Before we describe the legal states, we first describe a one-band property that holds in legal
states. The one band property is a useful stepping stone in proving stabilization results.
Intuitively, the system satisfies the one-band property if there is a continuous region starting
at the root and consisting of nodes and packets with counters equal to the root counter. There

are also some additional predicates.

The one-band predicate is illustrated in State C of Figure 3 for a ring system. Notice that
there is a band of counters starting from the root extending to FEast and a token packet on
the link from East to South, all of which have counter equal to 8. Notice that the remaining
counters in the ring are not equal to 7, which is what we would expect in a legal state. Thus
State C satisfies the one-band predicate but not the legal state predicate, both of which are
defined below. Notice that the counters below the band can be arbitrary. Figure 6 illustrates
a legal state for the PIF protocol. Notice a single band of values equal to 13 starting from
the root and extending to the right child of the root. Even if the other node counters were

arbitrary, this would suffice to satisfy the one-band predicate. We proceed formally.

Definition 6.1 We say that a state satisfies the one band property if the following five predi-
cates hold in that state:

o O1: If there is packet or node m with counter equal to the root counter, then all counters

upstream of m are equal to the root counter.
e O02: [f Finished(0) is true, then all counters are equal to the root counter.

o 03: (Tree Systems only) If a packet m is on link (¢, ) with counter equal to the root

counter and j is the parent of i, then Finished(i) is true and count; = county.

o O4: (Tree Systems only) If token_expected,[j] = false and count; = county and i is the
parent of j, then Finished(j) = true.

e O5: (Tree Systems only) If token_expected;[j] = false and count; = county, then all

counters in link (j,t) and count; are equal to the root counter.
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The following lemma states that once the one band property begins to hold in any execution

of any system, it continues to hold.
Lemma 6.1 The one band predicate is a stable property for all three systems.

Proof: Easily checked by checking all possible transitions from such a state. Details can be

found in [Var98]. O

We can now define legal states to to be those in which the one band property holds and all
counters not equal to the root counter are one less than the root counter. For tree systems,
we also require that if a node counter is not equal to the root counter, then it is not expecting
any acknowledgements. For PIF systems, we also require a value correspondence property. In

the following definition recall that addition and subtraction of all counters is always implicitly
mod Maz.

Definition 6.2 We say that a state s of any of our three systems is a legal state if:

o L1: s satisfies the one band property
o L2: Any counter that is not equal to the root counter c is equal to ¢ — 1.
o L3: (Tree Systems only) If count; is not equal to county, then Finished(i) = true.

o L4: (PIF systems only) For all j, k where j and k can either be packets or nodes, if the
counter associated with j is equal to the counter associated with k, then the two associated

values are the same.

We will refer to L4 as the wvalue correspondence property. The ring and reset systems

trivially satisfy value correspondence in all states.

Lemma 6.2 The legal state predicate is a stable property for all three systems.
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Proof: Easily checked by checking all possible transitions from such a state. Details can be

found in [Var98]. O

6.3 Stabilization Proof

Define a home state for all systems to be a state in which all counters in nodes and packets
are equal and Finished(i) = true for all nodes i. The following lemmas are easy to check using
the definitions.

Lemma 6.3 Any home state that satisfies value correspondence is a legal state,

Lemma 6.4 Any state that satisfies the one band property and has Finished(0) = true is a

home state.

Formally, define a fresh state for all systems to be a state in which all counters in packets
and nodes other than the root are not equal to the root counter and Finished(0) = false. The

following lemma is easy to check from the definitions.

Lemma 6.5 Any fresh state satisfies the one band property.

Let the height h of the system be the maximum length of a parent path. Clearly h = n—1
for the ring. Let R, the round trip delay of a system, be 2h + 2 for the ring and 45 + 2 for the
tree systems. Intuitively, R represents the maximum time for information sent by the root to

causally flow to all nodes in the system and then flow back to the root.

The following and subsequent lemmas are stated in terms of time complexity results. They
can be translated to liveness results (which do not require the time complexity assumptions
we made in our model, and only require standard fairness assumptions) by replacing “within

time X7 by “eventually”

Lemma 6.6 Within R time of any state sy, either the root counter will change or the protocol

will enter a home state.
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Proof: Let sp be a state after sy such that R units of time have elapsed from s; to s and
such that county has not changed in the interval [s7, sp]. We will show that sy is a home
state. Let h; be the length of the parent path of node 7 in all three systems. It is easy to
show by induction that within time 2h; of sy each node with height h; will set count; = ¢ and
count; will remain unchanged till state sp. Intuitively this is because any packet on a link is
delivered within 1 time unit, each node accepts any value sent to it by its parent, and each

node retransmits a new counter value to its children in 1 unit of time.

Thus in time 2h, all nodes will have their counter values equal to ¢ and will remain with
this value to the end of the interval. For the ring system, in time 2h + 2, the root will receive

a packet with counter equal to ¢ and the system will enter a home state.

For a tree system, the argument is slightly longer. In time 2h 4 2, each node will receive
a token packet numbered ¢ on all its “cross” links and thus will set the token_expected flag to
false for such links. Thus by time 2h+ 2, all leaves [ will have Finished(l) = true, all nodes and
token packets will have counter value ¢, and token_expected;[j] = false for all “cross” links (¢, j).
Let h! be the maximum length of a path from a leaf in the subtree rooted at node ¢ to node .
Then it is easy to see, by a similar induction on the height, that within time 2h + 2 + 2A} all
nodes ¢ will have Finished(:) = true and this will remain true till sp. Thus within time 4h + 2,
Finished(0) = true. Thus sp must be a home state. O

Lemma 6.7 A home state will occur within R time of a fresh state.

Proof: Consider an execution fragment beginning with a fresh state s;. Now within R time
either the root counter will not increment (Case 1) or it will (Case 2). Consider Case 1. In
that case the root counter does not increment within R time and so we must reach a home
state by Lemma 6.6. So consider Case 2. Suppose the root counter increments for the first
time in some state sy that occurs within R time after s;. We know from Lemma 6.5 that
sy satisfies the one band property as a fresh state. We know from Lemma 6.1 that all states
after sy satisfy the one band property. Thus we know that states sg and sp_; satisfy the one
band property. We see from the code of all three systems that we cannot increment the root
counter unless Finished(0) = true. Thus Finishedy = true in sp_;. But by Lemma 6.4, state
sp—1 must be a home state because sp_; is fresh and has Finished(0) = true. Thus sp_; is a

home state that occurs within R time of s; and we are done. O

We say that the root counter wraps around in an execution fragment sy, ...sp if we have

sj.county = sy.counly — 1 for some J in [I, F].
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Lemma 6.8 Any execution fragment in which the root counter wraps around must contain a
fresh state.

Proof: In state sy there are at most ¢,,,, counters. Since Maz, the modulus of the counter
space, is strictly greater than ¢,,4,, there must be some counter value f that is not present in
any node or packet in the first state s;. Since the root counter wraps around in the interval
[s1,sp] and the root counter only changes by incrementing (mod Maz ), there must be some
intermediate state in the interval [s7, sp] in which the root counter is equal to f. Let s; be
the first such state. It is easy to see that since the value f was not present in state sy it is not
present in any state in the interval [s7, sy_{]. This is because, in all our systems, only the root
produces new counters. Thus in state sy only the root changes its counter value to f and sets
Finished(0) to false (because the action that takes us to state s; must be a RootStart action).
Thus sy is a fresh state. O

Recall we defined the parent of a node ¢ for the ring system to be node : — 1. We define
the parent link of a node ¢ to be a link (7, ¢) such that j is the parent of i. We define a node
or packet m to be causally connected (to the root) in an execution fragment E that ends with

state s if either:

e m is the root

e m is a node and there is some state that occurs before s in which node m receives a

causally connected packet on its parent link.

e m is a packet which was sent by some node ¢ in some some state that occurs before s in

which node ¢ was causally connected.

Lemma 6.9 Consider any execution fragment sy ..., sp. Suppose node or packet i is causally
connected at the end of this execution fragment. Then the counter associated with 1 is contained

in the sequence sy.county, Syy1.county, . .., Sg.county.

Proof: We use induction on execution fragment length. The lemma is obviously true in
the initial state of an execution fragment because only the root is causally connected and
the Lemma is clearly true for root. So consider any action that extends the last state of the

fragment from say sy to sj41.

If this action is the receipt of a packet m by node 7, and m is not received on a par-

ent link then the counter of ¢« will not change and so the Lemma remains true if it was true
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in state sy. If however, it is received on a parent link, and the packet was causally con-
nected, then after the receipt, node ¢ is causally connected and changes its counter to the
counter ¢ associated with m. But since m was causally connected, by inductive hypothesis ¢ €
sy.count, sy4q.count, . . ., sy.count. Thus sj1q.count; = ¢ € sy.count, Syyy.count, ..., sjy1.count.
A similar argument holds for the sending of a packet ¢ by a causally connected node. The only
other event is ROOT_START after which the Lemma clearly holds for the root and trivially

holds for all other nodes whose counters remain unchanged. O

Lemma 6.10 In any execution fragment, every node and packet will be causally connected
within R time of the start of the fragment.

Proof: Let h; be the length of the parent path of node ¢ in all three systems. It is easy to
show by induction that within time 2h; each node with height k; will be causally connected.
This follows because once a node becomes causally connected, it sends a message to each child
which arrives at most 2 time units later causing the child to be causally connected. Thus all
nodes will be causally connected by time 2h in say state s;. Let sg be first state after s;
in which all packets stored in links in s; are delivered. Also, since all packets in links in sg
must have been sent after sy, all packets in sg are also causally connected. The lemma, follows
because 2h < R — 1 for all three systems, and because packet delivery takes at most 1 time
unit. O

Lemma 6.11 If an execution fragment contains a state s which is causally connected, then

state s and all subsequent states satisfy value correspondence.

Proof: We use induction on execution length using the following inductive hypothesis. For all
causally connected j, k where j and k can either be packets or nodes, if the counter associated
with 7 is equal to the counter associated with k, then the two associated values are the same.
Once all nodes and packets are causally connected the lemma follows from the hypothesis. The
basis is true in the initial state as the root is causally connected. For the inductive step, if the
action that extends the last state is the sending of a packet & by causally connected node 1,
if the counter of k is equal to some other j then the counter of 7 is equal to k, and thus the
value of k is equal to the value of 7 which is equal to the value of k. A similar argument can

be made for the reception of a causally connected message by a node 1. O

Lemma 6.12 Within 2R time of the start sy of any execution fragment F, we will reach a

fresh state or a home state that satisfies value correspondence.
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Proof: Let s be first state after s; in which all packets and nodes are causally connected.
From Lemma 6.10, sy occurs within R time of s;. By Lemma 6.11, state sy and all subsequent
states in the execution fragment satisfy value correspondence. If the root counter has wrapped
around in [s7, sp| we are done by Lemma 6.8. So assume the root counter has not wrapped
around. Let ¢ = sp.county. Thus c+11is not in the sequence sy.count, syyy.count, ..., sp.count.
But by Lemma 6.9 all nodes and packets in states after sy have counters in the sequence
sy.count, sy4q.count, . . ., sp.count. Thus we know that as soon as the root counter first incre-
ments to ¢+ 1 we are in a {resh state. But we know that such a state must occur within R
time of sg by Lemma 6.6 or we will reach a home state. Since sg occurs within R time of s;

the Lemma follows. O

Lemma 6.13 A home state that satisfies value correspondence occurs within 3R time of any

state.

Proof: By Lemma 6.12, within 2R time we reach a home state or a fresh state that satisfies
value correspondence. By Lemma 6.7, within R time of a fresh state we reach a home state.

Thus within 3R time we reach a home state that satisfies value correspondence. O

So far we have not defined the legal executions of any of the three systems. By Theorem 6.14,
we know that all three systems stabilize to a home state in 3R time, and by Lemma 6.3, we
know that such a home state is a legal state. Thus it makes sense to define the legal execu-
tions of all three systems as the executions that begin with a home state that satisfies value

correspondence. An immediate corollary to this definition and Lemma 6.13 is:

Theorem 6.14 The token ring, PIF, and Reset systems all stabilize in 3R time.

6.4 Correctness after Stabilization

We see from Theorem 6.14 that all three systems stabilize to legal executions in 3R time. We
now wish to show that each legal execution will result in correct behavior for all three systems.
Notice that by Lemma 6.13, we can partition a legal execution into fragments that start and
end with a home state that satisfies value correspondence. We start by understanding the

structure of such fragments.

Define a fresh counter interval to be an execution fragment” F such that:

Tan execution fragment is a portion of an execution that begins and ends with a state
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The first state in F is a home state that satisfies value correspondence.

The first action in F is a ROOT_START event.

The second state (i.e., the state following the ROOT_START event) is fresh.

e The last state in E' is the first state in £ (other than than the first state) in which
Finished(0) = true.

The value of interval E is defined to be the value of county in the second (fresh) state in
E. For any execution sgp, g, S1,... we can denote an execution fragment by its first and last

state indices [I, F] where s; is the initial state and sp is the final state.

For a fresh counter interval [I, F] with value ¢ we make the following definitions:

e Let I(j) be the index of the first state in [/, F] such that count; = c.

Let L(j, k) be the index of the first state after /(j) which follows the sending of a packet
from j to k.

For tree systems, let F'(j,k) be the index of the first state such that count; = ¢ and
token_expected;[k] = false.

Let F(j) be the index of the first state such that count; = ¢ and Finished(j) = true.

We now prove some simple and useful facts relating these definitions that are key to cor-

rectness.

Lemma 6.15 For any fresh counter interval [I, F], every node j and every neighbor k of j:

o The states I1(j), L(j, k), F'(j,k) and F(j) exist.

o L(j, k) < I(k) if j is the parent of k. (i.e., a node’s counter value cannot change until

its parent sends it the new counter value.)

o [nthe interval [1(j), F]: count; = c (i.e., the value of a node’s counter remains unchanged
from the time it is initiated till the end of the interval).

o [(k)< F(j,k) < F(j) (i.e., a node cannot finish until each of its neighbors is initiated.)

o ['=F(0) is a home state.
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Proof: We use the fact that any home state that satisfies value correspondence is a legal
state. Since legal states are stable (Lemma 6.2), every state in the interval [s;, sp] is a legal
state and satisfies the predicates O1, 02, 03, 04, and O5.

o We know that Finished(0) = true in sy and sp. Thus we know (from O2 and O4
applied repeatedly in sp) that all node counters must be equal to the root counter and
Finished(j) = true for all nodes j. We also know that the first action causes the root
counter to increment to ¢. Thus I(j) = I + 1, if j is the root. Also for all nodes j other
than the root, count; is not equal to c. But in sg, count; is equal to c. Thus there must
be some first state I(7) in the interval [s7, sp] in which j first changes to ¢. It is is easy
to see that L(j, k) must exist because j will eventually send a packet to neighbor k after
I(7) in any execution. Also in state /(j), since j changes its counter value, it is easy to
see from the code that token_expected;[j] is true. But in state sp, token_expected,[j] is
false. Thus there must be some intermediate state F'(j, k) in which token_expected;[j] first
becomes false. Similarly, there must be a first state F'(j) in which F(j, k) first becomes
true for all neighbors k of j.

e In the state preceding I(j), we conclude from O1 that county is not equal to ¢, and
there are no counters equal to ¢ in link (j, k). Since L(j, k) is the first state after I(j)
in which j sends a packet numbered ¢ on link (j, k), there can be no packets numbered
c in the interval [I(j), L(j,k)]. Since count; was not equal to ¢ in I(j) and can only

change its counter value by receiving a packet numbered ¢ from its parent j, it follows

that L(j, k) < I(k).

e [t is easy to see that the root cannot change its counter after s;; because the root (see
code) cannot increment unless Finished(0) = true and sp is the first state after s;y; in
which Finished(0) = true. If a node j other than the root changes its counter value after
I(j) to some value other than ¢, it means it received a counter not equal to ¢ on its

parent link. By O1, this implies that the root counter is not equal to ¢, a contradiction.

e The state s that precedes F(j, k) must be (see code) the receipt of a packet with counter
equal to count; = conlink (k, j). Thus by O1, count, = cin state s. Thus I(k) < F(j, k).
Also F(j) = Max F(j, k) over all neighbors k of j. So F/(j, k) < F(j).

e This follows immediately from O2 in state sg.

d

Armed with this theorem, we now show correctness separately for all three systems. Re-

call that any legal execution can be partitioned into fresh counter intervals. Thus to show
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correctness, we need only show correctness for a fresh counter interval.

Token Ring Correctness:

Theorem 6.16 In any legal execution, at most one node has the token in any state and every

node will receive the token infinitely often.

Proof: We say that a node j has the token starting from any state s in which node j changes
its counter value up to the first state after s in which node j sends a packet to 7+ 1. Since it is
sufficient to show correctness for a fresh counter interval within a legal execution, consider one
such interval. It follows from Lemma 6.15 that I(j) < L(j,7+1) < I(j+1)forj=0,...n—1.
Thus [1(j), L(j, 7+ 1)] is disjoint for all j. Thus at most one node has the token in any state.
Similarly, we know from Lemma 6.15 that I(j) exists for all j and so every node j receives
the token during a fresh counter interval. It follows from Lemma 6.13 and the fact that the
ROOT_START event is always enabled in a home state, that the token system has an infinite

number of fresh counter intervals. Thus every node receives the token infinitely often. O

PIF correctness:
Theorem 6.17 In any legal execution of the PIF system:

e In any state s, v; is either equal to vy or the previous value of vg.

o [f the value of some node is not equal to vy in state s, there is a later state in which all

node values are equal to vg.

o Once a node j’s value is equal to vy, its value cannot change until we reach a state in

which all node values are equal to vy.

Proof: First, it is easy to see that the ROOT_START event is enabled in a home state and will
cause the value of the root counter to change. Thus every legal execution will have an infinite

number of home states.

The first part follows from L2 in the definition of a legal state and the fact that the counter

associated with the previous value of vg must be county — 1.

The second part of the theorem follows because we know from Lemma 6.13 that a home
state will occur in 3R time after state s; in this home state count; = county for all nodes j.

Thus by value correspondence (L4), v; = vg for all j.
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The third part of the theorem follows from value correspondence and the third statement
in Lemma 6.15 which says that a node counter cannot change again until after the next home

state. Thus by the code, its value will also remain unchanged in this interval. O

Reset Protocol Correctness: The following theorem shows that the reset protocol behaves

correctly in a legal execution:

Theorem 6.18 In cvery legal execution of the reset system:

e Once the protocol is in a home state, it remains in a home state until the next reset

request, and no node will perform a local reset in this interval.

o Consider any reset request that occurs when the reset protocol is in a home state. Then
the reset protocol will enter a home state in O(R) time after this reset request and in this

home state, the underlying protocol P is in a legal state.

Proof: The first part follows easily from the code and the definitions of a home state and a
fresh counter interval. Notice that when the reset protocol is in a home state, it is impossible
for a node j to receive a (Token, c) packet with ¢ # count;; thus (from the code) j will never

perform a local reset. We now turn to the second part of the theorem.

We know that any reset request that begins in a home state will result in the root picking
a fresh counter value, say ¢, which begins a fresh counter interval. We know from Lemma 6.13
that within O(R) time, this fresh counter interval will end. Thus from Lemma 6.15 if this
interval is denoted by [I, F] then there is a state I(j) for each node j at which the node is
initiated into the current reset computation. From the code it is easy to see that in this state,
protocol P is locally reset and since count; remains at ¢ this means that there are no further

local resets of Protocol P at node j.

To show that Protocol P is properly reset at the end of the fresh counter interval, we have
to show that for any two neighbors j, k: the sequence of packets received by k from j during
the interval [I(k), F] is a prefix of the sequence of packets sent by j during [I(j), F]. Let us
call the interval [1(j), F] the reset interval at node j.

So consider any packet m sent by j during the interval [I(j), F]. From the protocol code,
we know that j does not send any packet during the interval [1(j), F'(j)]. So we can assume
that m is sent after F'(j). Thus m will be tagged with ¢, the value of this fresh counter interval.
Now by state F, we know from the properties of link automata, that either m will be delivered

by state sy or is stored on link (j, k) in state sp. If m is delivered, m must have been delivered
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after F'(j) (since it was sent after F'(j)) and hence by Lemma 6.15 it is delivered in the interval
[1(k), F]; but in this interval, count; = ¢ and so m is accepted. On the other hand, if (in state
F) m is stored on link (j, k), we know (because the link is FIFO) that all packets sent after m
are not delivered. Thus, applying this argument to all packets sent by 7 to k during [I(j), F],
we see that: if m is received and accepted, then all packets sent before m in [I(j), F] are
received and accepted by k; but if m is not received, then all packets sent after m in [1(j), F]

are not received.

All that remains is to show that any Protocol P packet m received and accepted by k in
[1(k), F'] was sent by j in [I(j), F']. But if m was accepted it must have tag ¢. Thus m must
have been sent in [I(j), I]; this is because, by definition, any protocol P packets sent by j in
[1,1(j)— 1] must have a counter value ¢’ # c. Recall that I(j) is the first state in [/, F] that

has count; = c. O

7 Conclusions

Counter flushing is a simple paradigm that has a fairly wide range of applications, and can
be used over different topologies. Besides the examples discussed in this paper (token passing,
broadcast, and reset), counter flushing can be used to design stabilizing protocols for deadlock
detection and snapshot protocols [Var94]. The token ring protocol we described in this paper
has been used [Cos96] to design a stabilizing version of the FDDI protocol. The modified FDDI
protocol [Cos96] recovers from multiple tokens in less than 5.7 ms, while the existing FDDI
MAC might never recover; it modified FDDI recovers from lost tokens more quickly than FDDI
(0-0.36 ms versus 2.5-4.1 ms).

Our paper exploits a connection between seemingly disparate protocols such as Dijkstra’s
token ring protocol, Afek and Brown’s Data Link protocol, and reset protocols. At one level,
they can all be regarded as repeated versions of a centralized total algorithm [Tel89] in which
cooperation is needed from all nodes to reach a decision; at another level, the Data Link
and Reset problems can be regarded as synchronization problems whose correctness can be
formalized in terms of a mating relation [AES83, Spi88, Var93]. The unified approach allows us

to describe a general proof that applies to three rather different systems.

Counter flushing, as described in this paper, has three aspects. First, we establish the
presence of a non-existent counter based on bounding the space of counters; second, we argue
a liveness property that guarantees that deterministic incrementing (randomized choosing also
works trivially) will lead to a unique counter in a very short time; third, we show a flushing

condition to show that a non-existent counter flushes out all bad values. Thus, while the
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elegant papers in [Dol94, AK93] do use randomization to choose a non-existent counter, they

do not need the other two conditions.

Local Checking and Correction is another general paradigm that has been used before
([APVO91, Var93, AGV94]) to design and explain efficient stabilizing protocols. On a theoretical
level, there are some problems for which counter flushing is applicable but local checking is not
(e.g., protocols that are not locally checkable like token passing on a ring) and some problems
for which local checking is applicable but counter flushing is not (e.g., synchronizers). There
are also a number of problems where they are both applicable (e.g., resets, token passing on
a tree). We believe that while they are both practical methods, counter flushing is simpler to
implement. Local checking [APV91, Var93] requires a careful enumeration of predicates and

the addition of periodic local snapshots and resets.

We have already generalized counter flushing to window washing [CV96]. We have also
applied it to design a real token passing protocol in [Cos96]. Our goal is to design elegant
theoretical techniques that can help design simple, effective, and practical protocols.
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