
Self�stabilization by Counter Flushing

George Varghese

Dept� of Computer Science

Washington University in St� Louis

St� Louis� MO �����

August ��� ����

Abstract

A useful way to design simple and robust protocols is to make them self�stabilizing�

A protocol is said to be self�stabilizing if it begins to exhibit correct behavior even after

starting in an arbitrary state� We describe a simple technique for self�stabilization called

counter �ushing which is applicable to a number of distributed algorithms� We show how

our technique helps to understand and improve some previous distributed algorithms� We

also apply it to create new self�stabilizing protocols for propagation of information with

feedback and resets� The resulting protocols are simple� require few changes from the

non�stabilizing equivalents� and have fast stabilization times�

Keywords� distributed algorithms� self�stabilization

AMC subject classi�cations� ��Q��� ��Q��� ��Q��

� Introduction

As the world moves from an industrial economy to an information based economy� we are

already dependent on networks and will become even more so� Most users of data networks�

however� agree that current data networks are far more unreliable than say the telephone

network� This must change�

The current approach to network fault�tolerance is what we call the piecemeal approach�

The protocol designer enumerates the faults that the network will deal with � e�g�� node and

link crashes� bit errors on links 	 and adds recovery mechanisms for each such fault� This

often adds complexity as the mechanisms are not orthogonal and often have subtle interactions�

Also� there are a number of more obscure errors �e�g�� memory corruption� that occur in real

networks and are hard to anticipate and enumerate� Even if such faults occur rarely �say once

a month�� it makes economic sense to have networks automatically recover from such faults�

These issues are illustrated by the crash of the original ARPANET protocol �
Ros�
��
Per�����

The protocol was designed never to enter a state that contained three con�icting updates� Un�

fortunately� a malfunctioning node injected three such updates into the network and crashed�

After this the network cycled continuously between the three updates� It took days of detective

work
Ros�
� and much coast�to�coast coordination before the problem was diagnosed�

Self�stabilization� Ideally networks should recover by themselves� even from obscure faults�

As networks grow faster and are more commonly used� the likelihood of such obscure faults

occurring will increase� This paper describes a paradigm for designing what are known as

self�stabilizing network protocols� We do so to make network protocols simpler �i�e�� a uniform

mechanism instead of a slew of mechanisms to deal with a catalog of anticipated faults� and

more robust �e�g�� can recover from transient faults such as memory corruption as well as

common faults such as link and node crashes��

We model a computer network as a set of nodes that are interconnected by communication

channels� A network protocol consists of a program for each network node� Each program

consists of code and inputs as well as local state� The global state of the network consists of

the local state of each node as well as the messages on network links� A network protocol is

self�stabilizing if when started from an arbitrary state it exhibits �correct� behavior after �nite

time� This de�nition allows arbitrary corruption of messages and node state variables in the

initial state�

Note that we allow network state to be corrupted but not the code executing the protocol�

This is reasonable because program code can be protected against arbitrary corruption of mem�

ory by redundancy since code is rarely modi�ed� For example� the code can be checksummed�

However� it is not clear how one can detect corruption of network state �that is frequently

being modi�ed� by using redundancy techniques�

The de�nition seems to imply that faults can occur only once �i�e�� when the network

�starts��� However� the real assumption is� the average period between faults covered by self�

stabilization is larger than the time the protocol takes to stabilize�

The distributed algorithm literature also describes Byzantine fault models �
LSP���� in

which arbitrary faults can continuously occur� This may appear to be a more general model

than self�stabilization� However� in Byzantine models� only a fraction of nodes are allowed

to exhibit arbitrary behavior� In the self�stabilization model� all nodes are permitted to start

�

with arbitrary initial states� Thus� the two models are orthogonal� In a practical setting the

crucial di�erence is that the cost of stabilization is quite cheap while Byzantine solutions are

expensive� For example� the self�stabilizing routing protocol in
Per��� is much cheaper than

the Byzantine routing protocol of
Per�����

General Techniques for Self�stabilization� Self�stabilizing protocols were introduced by

Dijkstra
Dij��b�� and have been studied by various researchers�
Sch��� contains a recent

review� While a large number of ad hoc self�stabilizing protocols have been introduced� there

have been few general techniques for self�stabilization� Katz and Perry
KP��� showed how

to compile an arbitrary asynchronous protocol into a stabilizing equivalent� Their general

transformation is expensive� hence more e�cient �and possibly less general� techniques are

needed� Techniques that transform any locally checkable protocol into a stabilizing equivalent

are given in
AGV��� Var���� However� local checking only applies to a subset of protocols

that have a special property called local checkability�

Our paper describes a new general technique� called counter �ushing that is applicable

to protocols that are not locally checkable� The setting is that of a leader who wishes to

periodically deliver a message to every network node �and sometimes to every link� in the

network� By attaching a counter to the state of every node and to every message� and by using

a few simple checks� we ensure that the protocol will begin to work correctly regardless of the

initial messages and node states� The paradigm is also simple �in terms of the lines of code

added and the resulting proofs�� and provides fast stabilization times �equal to a few round

trip delays��

Counter �ushing can be applied to a variety of useful distributed applications� In par�

ticular� counter �ushing applies to several total algorithms� Total algorithms
Tel��� involve

the cooperation of all network nodes� We apply counter �ushing to token passing
Dij��a��

propagation of information with feedback
Seg���� and network resets
AG����

The rest of the paper is organized as follows� Section � describes our model� Section �

describes how counter �ushing works on ring topologies and shows how this algorithm can be

used for token passing� request�response� and Data Link protocols� Section � describes how

counter �ushing works on trees by describing a stabilizing broadcast protocol called Propaga�

tion of Information with Feedback� In Section �� we extend counter �ushing to a general graph�

We illustrate this by designing a stabilizing network reset protocol� In Section �� we present a

uniform proof of stabilization and correctness of our three main protocols� The uniformity of

proof emphasizes the unity behind the diversity of applications� We conclude in Section ��

�The protocol in �Per��� is the basis for the OSI Routing Protocol and the OSPF Routing protocol� both of

which are widely deployed� we know of no Byzantine routing protocol that is used in a real network�

�

� Model

We restrict ourselves to message passing protocols for networks� The network topology is

modeled by a directed graph G � �V�E�� Let n � jV j denote the number of network nodes

and D the network diameter� Except for the case when we consider a ring topology �Section ���

we assume that the graph is symmetric � i�e�� if �i� j� � E then �j� i� � E� We assume there

is a distinguished leader node � � V that we often refer to as the root� Note that there are

many stabilizing protocols to construct a leader� e�g��
AKM���� Dol��� AK��� all calculate a

leader in O�D� time� Finally� we model the nodes and links of the network using Input�Output

Automata �IOA�
LT����

An IOA is a state machine whose state transitions are given labels called actions� There are

three kinds of actions� The environment a�ects the automaton through Input actions which

must be responded to in any state� The automaton a�ects the environment through Output

actions� these actions can be controlled by the automaton to only occur in certain states�

Internal actions only change the state of the automaton without a�ecting the environment�

Formally� an IOA is de�ned by a state set S� a action set A� an action signature Z �that

classi�es the action set into input� output� and internal actions�� a transition relation R �

S �A� S� and a set of initial states I � S� We mostly deal with uninitialized IOA for which

I � S� An action a is said to be enabled in state s if there exist s� � S such that �s� a� s�� � R�

Input actions are always enabled�

Nodes communicate with each other by sending to and receiving packets along links� Fix

a packet alphabet P � Nodes and links are modeled by IOA called node and link automata

respectively� A node automaton �see Figure
� for node i in graph G has output actions

�Sendi�j�p�� p � P � to send a packet to every j such that �i� j� � E� it also has input actions

to receive packets �Receivej�i�p�� p � P � for every j such that �j� i� � E� Similarly� the link

automaton for link �i� j� � E has input action Sendi�j�p�� to receive packets from i� and output

action Receivei�j�p� to deliver packets to node j �Figure
��

Q
SEND RECEIVE

NODE i LINK (i,j)

i,j i,j

NODE j

i,j

Figure
� The rectangles represents node automata for nodes i and j with interfaces to send packets from i to j�

The circle represents the link automaton from i to j whose state is captured by a queue� Qi�j

�the convention for action subscripts is that the �rst subscript always represents the sending node and the

second the receiving node�

�

State of link Ci�j is a queue of packets Qi�j�

In all states� jQi�jj � Lmax

Sendi�j�p� �� node i sends a packet ��

E�ects� Add p to the end of Qi�j

Receivei�j�p� �� node j receives a packet��

Preconditions� p is the head of Qi�j

E�ects� Remove p from Qi�j

For time complexity� assume that any packet p

placed in Qi�j is delivered in � time unit�

Figure �� Formal Model of a Bounded Data Link

Node automata can be arbitrary except that they must have �nite state sets� and have

the appropriate interface actions to send and receive packets� We assume that each link is a

FIFO queue with bounded storage� More formally� the state of the link automaton for link �i� j�

is a queue of packets Qi�j � that is restricted to store no more than Lmax packets� A formal

speci�cation of a bounded Data Link is in Figure �� We use a bounded model because not much

can be done with unbounded links in a stabilizing setting
DIM�
�� and real links are bounded

anyway� We describe why we believe this is a good model for many real networks at the end

of this section�

De�ne an network automaton for graph G � �E� V � as the composition of node automata

for each i � V and link automata for each edge �i� j� � E� Composition
LT��� produces a

composite state machine� input and output actions of the same name are performed simul�

taneously� Thus when node i performs a Sendi�j�p� output action� the link between i and j

performs a simultaneous input action �also Sendi�j�p�� to store packet p� The state of the

composition is the cross product of the states of every node and link automaton in the network

automaton�

When an IOA �runs� it produces an execution� An execution fragment is an alternating

sequence of states and actions �s�� a�� s�� � � ��� such that �si� ai� si��� � R for all i � �� An

execution fragment E is fair if any internal or output action that is continuously enabled

eventually occurs�� An execution is an execution fragment that begins with a start state and

�The IOA model actually speci�es fairness in terms of equivalence classes� for this paper we assume each

�

is fair�

We express the correctness of an automaton using a set of legal executions LE as in
DIM����

Let LE be a set of executions of some automaton A� Then we say that automaton A stabilizes

to LE if every execution of A has some su�x that is contained in LE� The legal states are

the states that occur in legal executions� All the automata we will design in this paper will

be uninitialized IOA whose set of initial states I is identical to its state set S� We do so by

not specifying initial node or channel states� It should be clear that the intuitive concept of

self�stabilization is captured by the stabilization of an uninitialized automaton to a set of legal

executions�

For time complexity� assume that every internal or output action that is continuously

enabled at a node occurs in
 unit of time� Thus node processing takes
 time unit� However�

we assume any packet stored on a link is delivered in
 time unit� We say that A stabilizes to

LE in time t if every execution of A has a su�x that occurs within time t and is contained in

LE� The stabilization time from A to B is the in�mum across all t such that A stabilizes to B

in time t�

The time complexity assumption for messages is reasonable for links� such as �ber links� in

which packets are not queued on links� The assumption is completely unrealistic for channels

that act like queues� a simple example is when the link is really a �network� which may consist

of internal switching nodes that can queue packets� However� since we expect our protocols

�such as token ring� broadcast on trees� and resets� to be used over networks with the former

type of link� we believe this assumption is reasonable�

The time complexity assumption also seems to imply �see description of algorithms later�

that each node has to send a stabilization message every step� In particular� this seems to

follow because we have made the time complexity for nodes to send messages the same as the

time complexity for a message to travel on a link� We choose this for simplicity in order to

avoid having two parameters for the two times� A similar �but slightly more messy� analysis

of the algorithms can be carried out in which the time to perform an internal node action is

bounded by some parameter tn� The general model would allow stabilization messages to be

sent at any reasonable interval� and would provide the usual tradeo� between message overhead

and stabilization time�

There are several other methods of calculating time complexities for stabilizing protocols�

These include methods in which messages in which time complexity is measured in terms of

rounds in which every processor takes a step� Our time complexity measure is not directly

comparable to these other measures�

action is in a separate class�

�

Why Use Bounded Links� In a stabilizing setting� if a link can store an unbounded

number of packets� it is impossible to produce solutions �with bounded stabilization time� for

most non�trivial tasks
DIM�
�� Moreover� real links are bounded�

In other work� we have modeled bounded links as unit capacity data links �UDLs� that can

store at most one packet at any instant� A UDL
Var��� is a model of a reliable Data Link

protocol that delivers one packet at a time� The UDL model is appropriate for routing �and

other� protocols that use an underlying reliable link protocol� However� many real protocols

that work over very low error rate links �e�g�� FDDI� ATM� Frame Relay
Tan���� do not use

an underlying Data Link protocol� Such links store a bounded number of packets because the

link sender and receiver are synchronous� The receiver removes packets as fast as the sender

inputs packets� However� there is no common clock for the entire network� node processing is

still asynchronous�

We can model this using an asynchronous model like IOA if we only consider executions in

which there are no more than Lmax packets on each link in each state� In our bounded model

we assume that any stored packet is delivered in constant time� For example� suppose the

minimum packet size is �� bytes� nodes transmit at
�� Mbit�sec and links are up to
� miles

long� Then Lmax � �� and �assuming speed of light limitations� any stored packet is delivered

in �� usec� Both numbers are constants that depend only on the maximum length of a link�

� Counter Flushing on Rings

To illustrate counter �ushing� we �rst show how counter �ushing can be used in rings� Our

protocol is a message passing version of a shared memory protocol presented in
Dij��a�� We

have a leader node � called the root� Nodes � � � �n �
 are arranged in a ring topology such

that there is a directed link �i� i �
� for i � �� � � �n �
� Assume that addition on process

indices is always implicitly modn so that n�
 �
 � ��

We wish to do mutual exclusion on this ring topology� In a ring� without the need for

stabilization� this can easily be done by sending a special Token packet round the ring� Each

node i would then have a �ag which would be set to true when a token arrives at i� and is set

to false when node i sends its token to node i�
� As long as we start in a state where there is

exactly one token� this protocol will maintain a mutual exclusion property� no more than one

node can have its token �ag set to true in any state�

However� in a stabilizing setting� the token protocol can deadlock� Clearly� we can start the

token protocol in a state that does not contain a token� A simple way to avoid deadlock is to

have nodes retransmit packets� But this introduces the possibility of a node receiving duplicates

�

during each cycle� Thus we change the state of each node i �and each packet� to have a counter

instead of a �ag� A node with counter value c can identify a packet numbered c as being a

duplicate� This is analogous to the use of sequence numbers in network protocols
Tan����

However� counters cause new complications� In the initial state� the counter values may be

arbitrary� Let cmax be the maximum number of counters that can be stored in the network in

the initial state� Because of the initially bounded model� cmax � jEjLmax� jV j� We will show

that if the size of the counter space is greater than cmax� then the protocol stabilizes in time

proportional to the network diameter� The underlying constant is small� typically equal to ��

We will prove that every execution reaches a state in which the root has a fresh value that

is not present in the network� then we show that any execution starting with a �fresh� value

will reach a legal state� The fresh value propagates through the network ��ushing� old values

much like cleaning �uid moving through a messy drain�

63

1

20

7
T(6)

63

1

20

T(6)

1

20

Leader

8

T(20)T(7)

8
T(8)

8

T(20)

T(8)

8

8

8

T(8)

A B

CD

9

Figure �� Progress to Stabilization in a Token Ring with Counters� Starting with an arbitrary

state �A� we reach a state in which the root has a fresh value �B�� The fresh value �i�e�� ��

moves round the ring �C� until we reach a legal state �D�

In Figure � the lower left hand corner �con�guration D� describes a good global state of

our protocol� There are four nodes which we call North� East� South and West and all packets

travel clockwise around the ring� North is the root� Each node other than North has a counter

value of � and there is a token carrying the value � in transit from West to North�

Each node periodically retransmits its counter value in a token packet downstream� Thus

mere receipt of a token packet is not enough for a node to assume it has the token� Instead�

when any node i receives a token from its upstream neighbor� node i does the following� If i

is not the root and the counter value in the token �say c� is di�erent from the counter stored

at node i �i�e�� ci�� then node i assumes it has received a valid token and sets ci equal to c� if

�

c � ci and i is not the root� i ignores the received token� If i is the root� however� a di�erent

rule is used� if the counter c in the token is equal to the root�s local counter� then the root

assumes it has received a valid token� and increments its counter value modMax� if c �� ci�

then the root ignores the received token�

Consider legal con�guration D of Figure �� In this state all token packets on links have

a counter value �� and the counter values at all nodes except North is also �� The counter

value at North is � �� �� In that case� we say that North has the token� Eventually North will

transmit a token packet containing �� When this packet reaches East� East sets its counter

value to �� This process continues with the token moving clockwise until West receives the

token and transmits it to North� North chooses a new value �
�� and the cycle continues�

In legal states the ring can be partitioned into two bands� The �rst band starts with the

root and continues up to �but not including� the �rst counter value �either in a token packet

or at a node� whose counter value is di�erent from that of North� The remainder of the ring

�including links and nodes� is a second band containing a counter value di�erent from North�

The valid token is at the end of the �rst band�

The protocol stabilizes to legal states regardless of initial values of node and packet counters�

Assume cmax �the number of distinct counter values stored in nodes and links in the initial

state� is less than the counter size Max� For example� with a
��� node ring transmitting

at
�� Mbp�s and assuming
� mile links� cmax � �
� ���� If we use a �� bit counter� then

Max � ��� � cmax for even the largest size rings that occur in practice� The stabilization

argument is illustrated in Figure �� We provide a formal argument in Section �� For now we

sketch an informal argument that illustrates the three essential features of the counter �ushing

argument �increment liveness� freshness� and �ushing��

�� In any execution� North will eventually increment its counter� Suppose not�

Then North�s value will move around the ring until North gets a token with a counter value

equal to its own�

�� In any execution� North will reach a �fresh	 counter value not equal to

the counter values of any other process� �see Figure �� con�guration B�� In the initial

state there are at most �say� cmax distinct counter values� Thus there is some counter value

say f not present in the initial state� Since North keeps incrementing its counter� North will

eventually reach f � in the interim no other process can set their counter value to f since only

North �produces� new counter values�

� Any state in which North has a fresh counter value f is eventually followed

by a state in which all processes have counter value f � �see Figure �� con�gurations

C�D�� The value f moves clockwise around the ring ��ushing� any other counter values� while

�

North remains at f �

De�ne a round trip delay to be equal to �N time units �i�e�� the time it takes for a packet to

travel around the ring with a unit delay at each node and link�� The worst�case stabilization

time of this protocol is equal to � round trip delays�

First consider a modi�cation to the protocol in which the root chooses a new counter value

randomly instead of incrementing the old value� Assume that Max� cmax �i�e�� counter size is

much greater than the maximum number of stored packets� With very high probability �i�e��

� cmax�Max� roughly ���� for our ring example�� the root picks a �fresh� value after its �rst

opportunity to change its counter� The protocol stabilizes within � round trip delays times

with high probability� We call this randomized counter �ushing�

However� simple deterministic incrementing also guarantees a worst case stabilization time

of � ring round trip delays� Here is the intuition� Consider an execution with initial state sI
and some state sF that occurs
 round trip delay later� Let the counter value of the root in

sI and sF be c�I� and c�F � respectively� In one round trip delay� there is enough time for

information from the root to ��ow� through the entire ring� Thus all node counters in state

sF must have been �produced� by the root since the execution began� More formally� in sF �

all counter values are in the range
c�I� � � �c�F ��� If c�F � is fresh� we are done �see stabilization

argument above�
 round trip delay later� Otherwise� the next root increment will cause a fresh

value because c�F ��
 ��
c�I� � � �c�F ��� �This last fact follows because the root will increment

at most once for every packet received� and can receive at most cmax � Max packets in the

interval
sI � sF ��� But the next increment will happen after at most one round trip delay��

The formal code for our stabilizing token passing protocol is in Figure �� Our protocol is a

message passing version of the shared memory protocol
Dij��a�� One of our contributions is to

prove that the stabilization time is equal to � ring delays� using our model of time complexity��

which we believe is realistic� But our main contribution is abstracting the mechanism and

applying it to other examples� as we show below� A formal proof of correctness and stabilization

is deferred to Section ��

We note that token passing protocols are widely used in Local Area Networks in order to

regulate access to the network� Existing token passing protocols recover from lost tokens using

global timers that are refreshed whenever a token is seen� In the IBM token ring
Tan����

the monitor �i�e�� root� uses a timer that is set to the longest possible delay it can take for a

token to traverse the ring� When this timer expires� the monitor reinitializes the ring� Thus the

�A more careful accounting shows that � round trip delays su	ce for stabilization� We prefer to use � round

trip delays because of the simplicity of the proofs�
�There are no time complexity results in �Dij
�a�

�

recovery time of the IBM token ring protocol is proportional to the worst�case delay around the

ring� The recovery time of a token passing protocol based on counter �ushing �see
Cos��� for

details� is proportional to the actual delay around the ring� which can be an order of magnitude

faster than the worst�case delay�

��� Further Applications of Counter Flushing on Rings

Counter �ushing on rings can be applied to two more interesting settings� request�response

protocols� and alternating bit protocols between two nodes�

Request�Response Protocols� Suppose a leader node wishes to periodically send a Request

packet to a set of network nodes� The responders must each send back a Response packet before

the sender sends its next request� In order to properly match responses to requests� the sender

numbers
Var��� each request with a counter� Responders only accept Request packets with

a number di�erent from the last Request accepted� After accepting a Request the responder

sends back a Response with the same number as the Request� The sender retransmits the

current Request till it receives each matching Response with the same number� After all

matching Response packets arrive� the sender increments its counter and starts a new phase�

The protocol will work correctly if Max � cmax and the links are FIFO �or guarantee the

��ushing� property in some other way��

Data Link Protocols� The token passing protocol in Figure � can be adapted to send

packets reliably between a sender and receiver by having each token packet carry a piggybacked

data packet� It is important to compare this with the elegant stabilizing Data Link protocol

of Afek and Brown
AB���� They use bounded length counters of size greater than �� but such

that the sequence of counter values used is aperiodic� A trivial corollary is that for a pair

of nodes connected by a pair of unidirectional links� it su�ces to use a counter whose size is

larger than
 plus the maximum number of outstanding packets� They also suggest the use of

a random sequence instead of an aperiodic sequence�

However� Afek and Brown�s result is con�ned to Data Link protocols between a pair of

nodes and to rings� The paradigm has not been extended to trees or general networks as we do

below� Also the randomized equivalent of Afek�Brown�s protocol uses randomized sequences

instead of the Random�Increment function� the expected stabilization time of their protocol is

shown to be O�cmax� round trip delays for large values of Max� while our stabilization time is

only approximately � round trip delays�

A token packet is encoded as a tuple �Token� c� where c is an integer in the range 	��Max

The state of each node i consists of an integer counti in the range 	��Max�

The root has an additional
ag token expected��

Assume there are n nodes numbered from 	 to n � ��

All addition and subtraction of process indices is mod n�

All addition and subtraction of counters is mod Max�

Finished�i� �� boolean function used by action routines below ��

Always true for all nodes other than node 	

Finished�	� is true if and only if token expected� � false

Root Start �� Node 	 is considered the root or leader of ring ��

Preconditions�

Finished�	� � true

E�ects�

count� � count� � � �� increment root counter ��

token expected� � true

Receiven�����Token� c� �� node 	 receives token from node n� � ��

E�ects�

If c � count� then �� token counter matches node counter ��

token expected� � false �� node 	 treats this packet like an ack��

Receivei���i�Token� c�� i �� 	 �� node i receives token from clockwise neighbor node i����

E�ects�

If c �� counti then �� token counter di�ers from node counter ��

counti � c ��set value to counter in token packet��

Sendi�i���Token� c�� �� node i sends token to clockwise neighbor node i � ���

Preconditions�

c � counti �� counter of token matches node counter ��

For any node� a Sendi�i�� action will occur in � unit of time

starting from any state�

Figure �� Code for node processes in a token ring

�

� Counter Flushing on Trees

In the last section� we described counter �ushing on a ring topology using a mutual exclusion

protocol that is essentially sequential� By contrast� in this section� we describe a broadcast

protocol on a tree which exhibits considerable parallelism� In this problem� we have a root

node � that wishes to broadcast a sequence of values to every node in the network� Correct

executions of the protocol can be partitioned into an in�nite number of cycles� in cycle M

the root must send the packet corresponding to M exactly once to all network nodes� Cycle

M begins after cycle M �
 ends� In order to detect when the current broadcast cycle has

terminated the root needs to obtain feedback from the other nodes� Thus the problem is often

called Propagation of Information with Feedback �PIF��

We model the sequence of values that the root wishes to broadcast by having the root have

access to a function f that computes the next value to be sent as a function of the previous

value sent� In a more general setting� the values could be supplied by some external application�

We assume a leader�root node � and a spanning tree rooted at node �� such that each node

i has a parent variable parent�i� that points to its parent in the tree� Without stabilization� it is

easy to solve this problem using the protocols due to Segall and Chang
Seg��� Cha���� When

the root �nishes broadcasting a previous value� it chooses a a new value using the function f �

It then sends a token packet containing the new value to all its children� other nodes accept

new values only from their parents� upon which they send the value to their children� When a

leaf of the tree gets a new value� it sends an ack up to its parent� Nodes other than the root

send an ack up to their parents when they have received acks from all children� When the root

receives an ack from all children� the root starts a new cycle by choosing a new value� Clearly

this protocol can deadlock if initialized in a state where the root is expecting acks from its

children� but the children do not send any further acks�

To make the protocol stabilizing� we tag each packet sent �and each value stored� with a

counter� When sending a new value� the root chooses a new counter value� Node i accepts

a new value only when it is tagged with a di�erent counter value from the counter stored at

node i� Node i accepts an ack only when the counter in the ack is identical to node i�s counter�

Adding counters and checks also allows us to periodically retransmit Token packets to avoid

deadlock�

The code is given in Figure �� For simplicity� we do not encode �Acks� separately but just

have children send �Token� c� v� packets to their parents as acks� where c and v are the counter

and value respectively at the sending node at the instant the packet was sent�

Figure � shows a legal state of the protocol where a new value x is being broadcast to

replace the previous value v� The new counter tag for x is
� while the counter tag for v was

�

We assume all counters are integers in the range 	��Max and all values are drawn from some domain V �

A token packet is encoded as a tuple �Token� c� v� where c is a counter and v is a value�

The state of each node i consists of�

a counter counti� a boolean
ag token expectedi
j� for each neighbor j of i and a value �eld vi�

We assume that each node i has a function parent�i� that points to i�s parent in the tree�

We assume the root is node 	 and all addition of counters are done mod Max�

Finished�i� �� boolean function used by action routines below ��

�� set to true when not expecting tokens from any children ��

Return true if i is a leaf� or if i is not a leaf and for all children k of i� token expectedi
k� � false

Root Start �� Root starts a new cycle of broadcasting values ��

Preconditions�

Finished�	� � true

E�ects�

v� � f�vr � �� compute new value to be broadcast��

count� � count� � � ��choose new counter value mod Max��

For all children k of root

token expected�
k� � true �� set to true when expecting a correctly numbered token��

Sendi�j�Token� c� v�� �� node i sends token to node j ��

Preconditions�

c � counti �� counter of token matches node counter ��

v � vi �� value equal to store value ��

j �� parent�i� or �j � parent�i� and Finished�i�� �� send to children� and to parent if �nished ��

Receivej�i�Token� c� v� �� node i receives token from node j ��

E�ects�

If j � parent�i� and c �� counti then �� new counter from parent ��

vi � v �� set stored value equal to value in token packet��

counti � c ��set local counter to counter in token packet��

For all children k of i

token expectedi
k� � true �� set to true when expecting a token ��

Else if c � counti

token expectedi
j� � false �� treat as a valid ack from child j��

Any action that is continuously enabled for � unit of time occurs in � unit of time�

Figure �� Code for Stabilizing Propagation of Information with Feedback

�

�� The new value x has reached the right child of the root and is in transit to the rightmost

leaf node� When this leaf node gets a packet containing �x�
�� it will accept the new value

because
� ��
�� It will then send an ack containing the counter
� to its parent� the parent

will accept this as a valid ack�

v,12

v,12 v,12 v,12

x,13

x,13

Figure �� Using counter �ushing to make Broadcast on a Tree Stabilizing� A new value x is being broadcast to

replace the previous value v� A black dot indicates that a node is waiting for an ack on that link�

Suppose the counter size is greater thanMax � nLmax� Then the counter �ushing argument

guarantees that this protocol will enter a legal state in �h � � time �h is the tree height�

regardless of the initial state� Once it stabilizes� the protocol correctly broadcasts subsequent

values generated at the root� We defer a formal proof of correctness to Section ��

The reader may feel that because the PIF protocol works on a tree that it is possible to

avoid the use of counters completely� however� it is easy to construct counterexample executions

where if the counter is not used �or its size is less than Max�� then the system stays in an

incorrect state forever� Note that Max must once again be larger than the maximum number

of outstanding counters in the initial state� which is nLmax where n is the number of tree

nodes�

Another fairly general method for constructing stabilizing protocols is the method of local

checking as described in
APV�
� and
Var���� However the PIF protocol of Figure � is not

locally checkable and so the earlier technique is not applicable� In a good state of the PIF pro�

tocol there can be at most two values present in the tree� the value currently being propagated

and the old value that is still present in the lower limbs of the tree� Thus in a good local state

it is possible to have a parent have counter c and the child have counter c� �� c� But in that

case we can construct a bad global state in which each child of the root has a di�erent counter

value but each pair of neighbors appears to be in a good state locally� Thus the protocol of

Figure � is not locally checkable�

Independently� Gouda
Gou��� used the concept of observers to unify tree and ring stabi�

lizing systems� The paper� however� uses a di�erent proof from ours�

�

Applications of Counter Flushing on Trees� Propagation of Information with feedback

is a speci�c example of a centralized total algorithm
Tel���� A centralized total algorithm is

an algorithm where each process in the network must take some decision before the initiator

takes a decision event� Tel
Tel��� shows that many protocols such as PIF� Finn�s Resynch

Protocol
Fin���� and distributed in�mum� are all examples of Total algorithms� Tel also shows

that PIF can be used to solve any total algorithm� Thus the stabilizing PIF protocol described

in Figure � appears to be important because it appears to o�er a stabilizing solution to many

problems that require total solutions� We note that another interesting application of the sta�

bilizing PIF protocol is for topology update� For example in the Autonet network
MAM�����

topology distribution is done over a tree�

� Counter Flushing in General Graphs with a Spanning Tree

We broaden the scope of counter �ushing to consider general graphs� However� we continue

to assume that we have a root r that is the root of a BFS spanning tree� Besides links from

parents to children we now also have cross links that are not part of the tree� So far we only

seen how to use counter �ushing to �ush tree links� We now extend the paradigm so that the

use of a fresh counter value at the root will �ush all links� both tree and cross links�

The basic idea is simple� As before a node i only accepts a new counter value c from its

parent� and waits till it gets tokens from its children �numbered with c� before it sends a token

up to its parent� However� in addition� i sends a token packet on any cross links it is part of�

and waits to get a token �numbered with c� on every link before it sends a token to its parent�

The only di�culty is deciding how to reply to token packets received on cross links� Before

we see what the problems are� we introduce an application for this general counter �ushing

paradigm� Suppose we have an underlying protocol P and suppose that the root may peri�

odically get a request to reset protocol P � We stipulate that at the point the reset procedure

terminates� the state of the underlying protocol P is reset to some successor of a legal initial

state of P � To do so� at some point during the reset procedure i� each node i must locally reset

its Protocol P state ii� De�ne the reset interval of a node to be the interval from the time a

node is locally reset until the reset procedure terminates� Then for any pair of neighbors i� j

the sequence of packets received by node j in j�s reset interval must be a proper pre�x of the

sequence of packets sent by node i during i�s reset interval�

In Figure �� node i has received the counter value ��� corresponding to the current reset

�this can be described roughly as calculating a bound on the minimum of a set of values stored at network

nodes and links

�

i j

Old Protocol
Message M

Token(5)

Figure �� Reason for delaying responses to token packets received on cross links�

and has sent a token packet containing � to j� Node j has not received information on the

current reset and has an �old� protocol packet in transit from its parent� Suppose node i�s

token packet reaches node j �rst and node j sends back a token immediately �but without

changing its counter value or initializing protocol P �� Then node j can subsequently receive

the �old� protocol packet and send another �old� protocol packet to node i� Thus we could

have a packet sent before node j was reset being received by node i after node i has reset� an

error�

It may appear that a simple solution is for node j to reset itself locally �and accept the

new counter value� when it receives the token packet on the cross link from node i� But that

causes the entire counter �ushing paradigm to break down� This is because if a node accepts

counters on cross links to its neighbors then in the initial con�guration we could have a cycle

of nodes each having di�erent values which results in a form of livelock� where the counters

move around in the cycle� This problem can occur for instance in the protocol proposed by

Katz and Perry
KP���� Katz and Perry resolve this livelock problem by having each token

packet carry a counter and a list of visited nodes� a token packet is dropped when it visits a

node in the visited list� While this solution works� it increases message and time complexity�

The livelock problem disappears if nodes only accept counter values from their parents as

we have done in the last subsection� To solve the problem we referred to in Figure �� we do

two things� First� we can tag all protocol P packets with the counter at the sending node� we

discard a protocol P packet with a counter that does not match the receiver�s counter� While

this solution eliminates the problem in Figure � because the �old� packet will have a di�erent

counter value from that of node i� it introduces another problem� Suppose node i sends a

protocol P packet to j after node i resets� but the packet is received before j resets� Then if

we simply check the packet tag� the packet will be dropped at j� One might consider bu�ering

the packet at j if the counter tag in the packet is �greater� than the counter at j� however�

de�ning one counter to be greater than another is fraught with complications if the counters

are of bounded size�

�

Instead we have each node j delay responding until the local counter at node j is equal to

the counter of the token packet received� Thus in Figure � when j receives the token packet

from i numbered �� node j does not send a token numbered � back to node i� until node j has

also received a token packet numbered � from its parent� In the meanwhile� node i will keep

retransmitting a token packet numbered � to j� Node j will ignore these packets until it� too�

has the same counter value of �� It will then send a token packet back to i with number ��

We also do not allow protocol P to send packets at node i if node i is waiting for a token

packet on one of its links� This implies that �in good executions� any packet sent by i after

i has locally reset is sent after j is at the same counter value as i� thus this packet will be

accepted by j�

The formal code for this protocol is described in Figure �� Once again� we defer the proof of

correctness and stabilization to Section �� We will show there that the reset protocol stabilizes

in three round trip delays�

��� Comparison with Other Reset Protocols

To construct a full��edged reset protocol� we need to augment the protocol described so far to

allow any node to make a reset request� This is done as follows� Each node has a reset request

bit that is set when the node gets a reset request� or when it has received a Request packet

from its children� When a node�s request bit is on� it periodically sends a Request packet to its

parent� When the root gets a Request packet� the root treats it like a Request Reset action�

On doing a local reset a node clears its request bit� each node i also ignores reset requests and

Request packets while Finished�i� � false�

The resulting reset protocol is similar to a stabilizing reset protocol due to Arora and

Gouda
AG��� but has some important di�erences� First� the protocol
AG��� is based on a

shared memory model and thus only requires node counters of size �� In a message passing

model� where each link can store Lmax counter values� we believe that larger counter values�

as in our protocol� are necessary� A second di�erence between our protocol and the one in

Arora�Gouda is the use of �delayed acks� and �ushing of cross links� This is unnecessary in

AG���� because protocol P is modi�ed so that a node does not read the state of its neighbors

unless they have the same counter value� This is possible in a shared memory model but not

in a message passing model�

There is also the stabilizing reset protocols of
APV�
� which is in turn based on the non�

stabilizing reset protocol of
AAG���� However� this protocol takesO�n� time to stabilize which

is slower than our reset protocol or the Arora�Gouda protocol�
AKM���� suggests making

�

A token packet is encoded as a tuple �Token� c� where c is an integer in the range 	��Max

The state of each node i consists of�

an integer counti in the range 	��Max� and a
ag token expectedi
j� for each neighbor j of i�

token expectedi
j� is always false if j � parenti

We assume parent�i� points to i�s parent� the root is node 	� and addition of counters is mod Max�

Finished�i� �� boolean function used by action routines below ��

��set to true when not expecting tokens from any non�parent links ��

Return true if for all neighbors token expectedi
k� � false

Root Start �� root receives request to reset Protocol P ��

E�ects�

if Finished�	� then �� ignore request if �nishing current reset ��

count� � count� � � ��choose new counter value mod Max��

Local Reset�	� �� locally reset Protocol P ��

For all neighbors k of root� token expected�
k� � true �� expect an ack from all neighbors��

Sendi�j�Token� c�� �� node i sends token to node j ��

Preconditions� �� retransmit periodically regardless of ack bit ��

c � counti �� counter of token matches node counter ��

j �� parent�i� or �j � parent�i� and Finished�i�� �� send to children� and to parent if �nished ��

Receivej�i�Token� c� �� node i receives token from node j ��

E�ects�

If j � parenti and c �� counti then �� new counter from parent��

counti � c �� set value to counter in token packet��

Local Reset�i� �� locally reset Protocol P ��

For all neighbors k �� j of i �� don�t expect ack from parent ��

token expectedi
k� � true �� set to true when expecting a token packet ��

Else if counti � c then

token expectedi
j� � false �� treat as a valid ack from neighbor j��

Reset Finished� �� root reports �nishing of reset ��

Preconditions�

Finished�	�

Protocol P packets are only sent at node i when Finished�i� is true and are tagged with counti�

A protocol P packet M received at node i is relayed to the application i� the tag of M is equal to counti�

Any action that is continuously enabled for � unit of time occurs in � unit of time�

Figure �� Simple Reset Protocol using Counter Flushing

�

this protocol faster by running it over a spanning tree� but in that case much of the complexity

of that protocol is not needed� The fast and lean reset protocol of
IL��� does a reset in

constant space� We believe that a �� bit counter is adequate for most networks� and hence

the requirement for logarithmic space in our protocol is not a problem for practical protocols�

Our reset protocol is also much simpler�

� General Proofs

In this section� we present our proofs of stabilization and correctness for the three protocols

�Token Ring� PIF� and Reset� described in Figures �� �� and � respectively� The three protocols

seem very di�erent� work on di�erent topologies� and have di�erent objectives� Despite this�

we will describe a uniform stabilization proof that will apply to all three protocols�

We describe the legal states of all three protocols as uniformly as possible� However� we

are sometimes forced to distinguish between the Ring System �Figure �� and what we call the

Tree Systems �the PIF and reset protocols� Figures � and ��� There is also a small price to be

paid for uniformity of proof� we added an extra Root Start action to the Ring System that

is strictly not needed� we also used the Root Start action name in the Reset Protocol �to

denote the action that initiates a Reset� instead of a more mnemonic name�

Our proof is structured in four subsections� in Section ��
 we de�ne some useful termi�

nology� in Section ��� we describe the legal states of all three protocols� we prove that all

three protocols stabilize quickly to the legal states and legal executions in Section ���� �nally�

in Section ��� we show that all three protocols exhibit the desired properties �that we have

intuitively described before� in legal executions�

��� De�nitions

We have already de�ned the parent of a node for tree systems� For a ring� we de�ne the parent

of node i to be node i�
� We de�ne the parent path of a node i to be the sequence of nodes

i�� i�� i�� � � � � il such that i� � �� il � i� and the parent of im is equal to im�� for m �
� � � � � l�

We de�ne the links in a parent path i�� i�� � � � � il to be the links �i�� i��� � � ��il��� il�� Notice

that the links in the parent path are the links directed �downwards� from the root� and do not

include any �upward� or �cross� links�

We de�ne the counter at a node i to be counti� We will often use root counter to denote

count�� the counter at the root node �� We say that the counter in packet m is c if m is of the

form �Token� c� ��� We say that packet m� is behind packet m in link �i� j� in some state s if

��

4
2 3

7

8

3
Node 1

Node 1

4
2

(3)

7

9

8

6

11

Node 2
Node 2

RING TREE

Node 0(root) Node 0(root)

Figure �� Examples of parent paths and upstream counters in a Ring and Tree� The numbers at nodes represent

node counters and the numbers attached to a link represent the counter in a �Token� �
 packet stored on that link�

m and m� are both stored in s�Qi�j and m is closer to the head of Qi�j � Recall from Figure �

that Qi�j models the queue of packets that represent undelivered packets on link �i� j��

In order to describe the legal states we need to de�ne the notion of counters upstream from

a node or packet m� Intuitively� these are counters stored on the parent path that leads to m�

Let s be any state of the tree or ring systems� Formally� we de�ne the counters upstream

from node m in state s to be the set of counters in all nodes �including m� and links in the

parent path of m in state s� If a packet m is stored on link �i� j� in state s� then the counters

upstream from packet m is the union of the set of counters in packets behind m in link �i� j��

together with the set of counters upstream from node i in state s� We will often refer to the

counters upstream from m without reference to state s if it is clear by context what state s is�

Figure � gives examples of these de�nitions for a ring system �left� and tree system �right��

Notice �rst that the ring system has a sequence of unidirectional links oriented clockwise in

the picture� However� the tree system has a pair of unidirectional links between every pair of

neighbors� In the case of the reset protocol� the tree system may include cross links �shown

dashed� between neighbors such that neither is the parent of the other� The �gure on the left

shows a state of the ring system� and the �gure on the right shows a state of the tree system�

The numbers at nodes and links represent node and packet counters� Thus in both states� link

���
� has two stored packets� the �rst with counter � and a second packet behind the �rst with

counter �� In both states� node � has node counter ��

The parent path of node � is the sequence ��
� � in both pictures� The links in the parent

path of node � are ���
� and �
� �� in both pictures� In the state on the left of Figure �� the

�

counters upstream from node � is the set f�� �� �� �� �g� In the state on the right� the counters

upstream from node � is the set f�� �� �� �� �� �g� Notice that the set does not contain

 as the

packet containing

 is not in the parent path of node �� In both states the counters upstream

from the packet containing counter � is the set f�� �g�

��� Legal State De�nitions

Before we describe the legal states� we �rst describe a one�band property that holds in legal

states� The one band property is a useful stepping stone in proving stabilization results�

Intuitively� the system satis�es the one�band property if there is a continuous region starting

at the root and consisting of nodes and packets with counters equal to the root counter� There

are also some additional predicates�

The one�band predicate is illustrated in State C of Figure � for a ring system� Notice that

there is a band of counters starting from the root extending to East and a token packet on

the link from East to South� all of which have counter equal to �� Notice that the remaining

counters in the ring are not equal to �� which is what we would expect in a legal state� Thus

State C satis�es the one�band predicate but not the legal state predicate� both of which are

de�ned below� Notice that the counters below the band can be arbitrary� Figure � illustrates

a legal state for the PIF protocol� Notice a single band of values equal to
� starting from

the root and extending to the right child of the root� Even if the other node counters were

arbitrary� this would su�ce to satisfy the one�band predicate� We proceed formally�

De�nition ��� We say that a state satis�es the one band property if the following �ve predi�

cates hold in that state�

� O�� If there is packet or node m with counter equal to the root counter� then all counters

upstream of m are equal to the root counter�

� O�� If Finished��� is true� then all counters are equal to the root counter�

� O
� �Tree Systems only� If a packet m is on link �i� j� with counter equal to the root

counter and j is the parent of i� then Finished�i� is true and counti � count��

� O�� �Tree Systems only� If token expectedi
j� � false and counti � count� and i is the

parent of j� then Finished�j� � true�

� O
� �Tree Systems only� If token expectedi
j� � false and counti � count�� then all

counters in link �j� i� and countj are equal to the root counter�

��

The following lemma states that once the one band property begins to hold in any execution

of any system� it continues to hold�

Lemma ��� The one band predicate is a stable property for all three systems�

Proof� Easily checked by checking all possible transitions from such a state� Details can be

found in
Var���� �

We can now de�ne legal states to to be those in which the one band property holds and all

counters not equal to the root counter are one less than the root counter� For tree systems�

we also require that if a node counter is not equal to the root counter� then it is not expecting

any acknowledgements� For PIF systems� we also require a value correspondence property� In

the following de�nition recall that addition and subtraction of all counters is always implicitly

modMax�

De�nition ��� We say that a state s of any of our three systems is a legal state if�

� L�� s satis�es the one band property

� L�� Any counter that is not equal to the root counter c is equal to c�
�

� L
� �Tree Systems only� If counti is not equal to count�� then Finished�i� � true�

� L�� �PIF systems only� For all j� k where j and k can either be packets or nodes� if the

counter associated with j is equal to the counter associated with k� then the two associated

values are the same�

We will refer to L� as the value correspondence property� The ring and reset systems

trivially satisfy value correspondence in all states�

Lemma ��� The legal state predicate is a stable property for all three systems�

��

Proof� Easily checked by checking all possible transitions from such a state� Details can be

found in
Var���� �

��� Stabilization Proof

De�ne a home state for all systems to be a state in which all counters in nodes and packets

are equal and Finished�i� � true for all nodes i� The following lemmas are easy to check using

the de�nitions�

Lemma ��
 Any home state that satis�es value correspondence is a legal state�

Lemma ��� Any state that satis�es the one band property and has Finished��� � true is a

home state�

Formally� de�ne a fresh state for all systems to be a state in which all counters in packets

and nodes other than the root are not equal to the root counter and Finished��� � false� The

following lemma is easy to check from the de�nitions�

Lemma ��
 Any fresh state satis�es the one band property�

Let the height h of the system be the maximum length of a parent path� Clearly h � n�

for the ring� Let R� the round trip delay of a system� be �h�� for the ring and �h� � for the

tree systems� Intuitively� R represents the maximum time for information sent by the root to

causally �ow to all nodes in the system and then �ow back to the root�

The following and subsequent lemmas are stated in terms of time complexity results� They

can be translated to liveness results �which do not require the time complexity assumptions

we made in our model� and only require standard fairness assumptions� by replacing �within

time X� by �eventually�

Lemma ��� Within R time of any state sI � either the root counter will change or the protocol

will enter a home state�

��

Proof� Let sF be a state after sI such that R units of time have elapsed from sI to sF and

such that count� has not changed in the interval
sI � sF �� We will show that sF is a home

state� Let hi be the length of the parent path of node i in all three systems� It is easy to

show by induction that within time �hi of sI each node with height hi will set counti � c and

counti will remain unchanged till state sF � Intuitively this is because any packet on a link is

delivered within
 time unit� each node accepts any value sent to it by its parent� and each

node retransmits a new counter value to its children in
 unit of time�

Thus in time �h� all nodes will have their counter values equal to c and will remain with

this value to the end of the interval� For the ring system� in time �h� �� the root will receive

a packet with counter equal to c and the system will enter a home state�

For a tree system� the argument is slightly longer� In time �h � �� each node will receive

a token packet numbered c on all its �cross� links and thus will set the token expected �ag to

false for such links� Thus by time �h��� all leaves l will have Finished�l� � true� all nodes and

token packets will have counter value c� and token expectedi
j� � false for all �cross� links �i� j��

Let h�i be the maximum length of a path from a leaf in the subtree rooted at node i to node i�

Then it is easy to see� by a similar induction on the height� that within time �h� � � �h�i all

nodes i will have Finished�i� � true and this will remain true till sF � Thus within time �h���

Finished��� � true� Thus sF must be a home state� �

Lemma ��� A home state will occur within R time of a fresh state�

Proof� Consider an execution fragment beginning with a fresh state sI � Now within R time

either the root counter will not increment �Case
� or it will �Case ��� Consider Case
� In

that case the root counter does not increment within R time and so we must reach a home

state by Lemma ���� So consider Case �� Suppose the root counter increments for the �rst

time in some state sF that occurs within R time after sI � We know from Lemma ��� that

sI satis�es the one band property as a fresh state� We know from Lemma ��
 that all states

after sI satisfy the one band property� Thus we know that states sF and sF�� satisfy the one

band property� We see from the code of all three systems that we cannot increment the root

counter unless Finished��� � true� Thus Finished� � true in sF��� But by Lemma ���� state

sF�� must be a home state because sF�� is fresh and has Finished��� � true� Thus sF�� is a

home state that occurs within R time of sI and we are done� �

We say that the root counter wraps around in an execution fragment sI � � � �sF if we have

sJ �count� � sI �count� �
 for some J in
I� F ��

��

Lemma ��� Any execution fragment in which the root counter wraps around must contain a

fresh state�

Proof� In state sI there are at most cmax counters� Since Max� the modulus of the counter

space� is strictly greater than cmax� there must be some counter value f that is not present in

any node or packet in the �rst state sI � Since the root counter wraps around in the interval

sI � sF � and the root counter only changes by incrementing �mod Max �� there must be some

intermediate state in the interval
sI � sF � in which the root counter is equal to f � Let sJ be

the �rst such state� It is easy to see that since the value f was not present in state sI it is not

present in any state in the interval
sI � sJ���� This is because� in all our systems� only the root

produces new counters� Thus in state sJ only the root changes its counter value to f and sets

Finished��� to false �because the action that takes us to state sJ must be a RootStart action��

Thus sJ is a fresh state� �

Recall we de�ned the parent of a node i for the ring system to be node i�
� We de�ne

the parent link of a node i to be a link �j� i� such that j is the parent of i� We de�ne a node

or packet m to be causally connected �to the root� in an execution fragment E that ends with

state s if either�

� m is the root

� m is a node and there is some state that occurs before s in which node m receives a

causally connected packet on its parent link�

� m is a packet which was sent by some node i in some some state that occurs before s in

which node i was causally connected�

Lemma ��� Consider any execution fragment sI � � � � sF � Suppose node or packet i is causally

connected at the end of this execution fragment� Then the counter associated with i is contained

in the sequence sI �count�� sI���count�� � � � � sF �count��

Proof� We use induction on execution fragment length� The lemma is obviously true in

the initial state of an execution fragment because only the root is causally connected and

the Lemma is clearly true for root� So consider any action that extends the last state of the

fragment from say sJ to sJ���

If this action is the receipt of a packet m by node i� and m is not received on a par�

ent link then the counter of i will not change and so the Lemma remains true if it was true

��

in state sJ � If however� it is received on a parent link� and the packet was causally con�

nected� then after the receipt� node i is causally connected and changes its counter to the

counter c associated with m� But since m was causally connected� by inductive hypothesis c �

sI �count� sI���count� � � � � sJ �count� Thus sJ���counti � c � sI �count� sI���count� � � � � sJ���count�

A similar argument holds for the sending of a packet i by a causally connected node� The only

other event is Root Start after which the Lemma clearly holds for the root and trivially

holds for all other nodes whose counters remain unchanged� �

Lemma ���� In any execution fragment� every node and packet will be causally connected

within R time of the start of the fragment�

Proof� Let hi be the length of the parent path of node i in all three systems� It is easy to

show by induction that within time �hi each node with height hi will be causally connected�

This follows because once a node becomes causally connected� it sends a message to each child

which arrives at most � time units later causing the child to be causally connected� Thus all

nodes will be causally connected by time �h in say state sJ � Let sF be �rst state after sJ

in which all packets stored in links in sJ are delivered� Also� since all packets in links in sF

must have been sent after sJ � all packets in sF are also causally connected� The lemma follows

because �h � R �
 for all three systems� and because packet delivery takes at most
 time

unit� �

Lemma ���� If an execution fragment contains a state s which is causally connected� then

state s and all subsequent states satisfy value correspondence�

Proof� We use induction on execution length using the following inductive hypothesis� For all

causally connected j� k where j and k can either be packets or nodes� if the counter associated

with j is equal to the counter associated with k� then the two associated values are the same�

Once all nodes and packets are causally connected the lemma follows from the hypothesis� The

basis is true in the initial state as the root is causally connected� For the inductive step� if the

action that extends the last state is the sending of a packet k by causally connected node i�

if the counter of k is equal to some other j then the counter of i is equal to k� and thus the

value of k is equal to the value of i which is equal to the value of k� A similar argument can

be made for the reception of a causally connected message by a node i� �

Lemma ���� Within �R time of the start sI of any execution fragment E� we will reach a

fresh state or a home state that satis�es value correspondence�

��

Proof� Let sF be �rst state after sJ in which all packets and nodes are causally connected�

From Lemma ��
�� sF occurs within R time of sI � By Lemma ��

� state sF and all subsequent

states in the execution fragment satisfy value correspondence� If the root counter has wrapped

around in
sI � sF � we are done by Lemma ���� So assume the root counter has not wrapped

around� Let c � sF �count�� Thus c�
 is not in the sequence sI �count� sI���count� � � � � sF �count�

But by Lemma ��� all nodes and packets in states after sJ have counters in the sequence

sI �count� sI���count� � � � � sF �count� Thus we know that as soon as the root counter �rst incre�

ments to c �
 we are in a fresh state� But we know that such a state must occur within R

time of sF by Lemma ��� or we will reach a home state� Since sF occurs within R time of sI

the Lemma follows� �

Lemma ���
 A home state that satis�es value correspondence occurs within �R time of any

state�

Proof� By Lemma ��
�� within �R time we reach a home state or a fresh state that satis�es

value correspondence� By Lemma ���� within R time of a fresh state we reach a home state�

Thus within �R time we reach a home state that satis�es value correspondence� �

So far we have not de�ned the legal executions of any of the three systems� By Theorem ��
��

we know that all three systems stabilize to a home state in �R time� and by Lemma ���� we

know that such a home state is a legal state� Thus it makes sense to de�ne the legal execu�

tions of all three systems as the executions that begin with a home state that satis�es value

correspondence� An immediate corollary to this de�nition and Lemma ��
� is�

Theorem ���� The token ring� PIF� and Reset systems all stabilize in �R time�

��� Correctness after Stabilization

We see from Theorem ��
� that all three systems stabilize to legal executions in �R time� We

now wish to show that each legal execution will result in correct behavior for all three systems�

Notice that by Lemma ��
�� we can partition a legal execution into fragments that start and

end with a home state that satis�es value correspondence� We start by understanding the

structure of such fragments�

De�ne a fresh counter interval to be an execution fragment� E such that�

�an execution fragment is a portion of an execution that begins and ends with a state

��

� The �rst state in E is a home state that satis�es value correspondence�

� The �rst action in E is a Root Start event�

� The second state �i�e�� the state following the Root Start event� is fresh�

� The last state in E is the �rst state in E �other than than the �rst state� in which

Finished��� � true�

The value of interval E is de�ned to be the value of count� in the second �fresh� state in

E� For any execution s�� a�� s�� � � � we can denote an execution fragment by its �rst and last

state indices
I� F � where sI is the initial state and sF is the �nal state�

For a fresh counter interval
I� F � with value c we make the following de�nitions�

� Let I�j� be the index of the �rst state in
I� F � such that countj � c�

� Let L�j� k� be the index of the �rst state after I�j� which follows the sending of a packet

from j to k�

� For tree systems� let F �j� k� be the index of the �rst state such that countj � c and

token expectedj
k� � false�

� Let F �j� be the index of the �rst state such that countj � c and Finished�j� � true�

We now prove some simple and useful facts relating these de�nitions that are key to cor�

rectness�

Lemma ���
 For any fresh counter interval
I� F �� every node j and every neighbor k of j�

� The states I�j�� L�j� k�� F �j� k� and F �j� exist�

� L�j� k� � I�k� if j is the parent of k� �i�e�� a node	s counter value cannot change until

its parent sends it the new counter value��

� In the interval
I�j�� F �� countj � c �i�e�� the value of a node	s counter remains unchanged

from the time it is initiated till the end of the interval��

� I�k� � F �j� k� 	 F �j� �i�e�� a node cannot �nish until each of its neighbors is initiated��

� F � F ��� is a home state�

��

Proof� We use the fact that any home state that satis�es value correspondence is a legal

state� Since legal states are stable �Lemma ����� every state in the interval
sI � sF � is a legal

state and satis�es the predicates O�� O�� O
� O�� and O
�

� We know that Finished��� � true in sI and sF � Thus we know �from O� and O�

applied repeatedly in sF � that all node counters must be equal to the root counter and

Finished�j� � true for all nodes j� We also know that the �rst action causes the root

counter to increment to c� Thus I�j� � I �
� if j is the root� Also for all nodes j other

than the root� countj is not equal to c� But in sF � countj is equal to c� Thus there must

be some �rst state I�j� in the interval
sI � sF � in which j �rst changes to c� It is is easy

to see that L�j� k� must exist because j will eventually send a packet to neighbor k after

I�j� in any execution� Also in state I�j�� since j changes its counter value� it is easy to

see from the code that token expectedi
j� is true� But in state sF � token expectedi
j� is

false� Thus there must be some intermediate state F �j� k� in which token expectedi
j� �rst

becomes false� Similarly� there must be a �rst state F �j� in which F �j� k� �rst becomes

true for all neighbors k of j�

� In the state preceding I�j�� we conclude from O� that countk is not equal to c� and

there are no counters equal to c in link �j� k�� Since L�j� k� is the �rst state after I�j�

in which j sends a packet numbered c on link �j� k�� there can be no packets numbered

c in the interval
I�j�� L�j� k��� Since countk was not equal to c in I�j� and can only

change its counter value by receiving a packet numbered c from its parent j� it follows

that L�j� k� � I�k��

� It is easy to see that the root cannot change its counter after sI�� because the root �see

code� cannot increment unless Finished��� � true and sF is the �rst state after sI�� in

which Finished��� � true� If a node j other than the root changes its counter value after

I�j� to some value other than c� it means it received a counter not equal to c on its

parent link� By O�� this implies that the root counter is not equal to c� a contradiction�

� The state s that precedes F �j� k� must be �see code� the receipt of a packet with counter

equal to countj � c on link �k� j�� Thus byO�� countk � c in state s� Thus I�k� � F �j� k��

Also F �j� � Max F �j� k� over all neighbors k of j� So F �j� k� 	 F �j��

� This follows immediately from O� in state sF �

�

Armed with this theorem� we now show correctness separately for all three systems� Re�

call that any legal execution can be partitioned into fresh counter intervals� Thus to show

��

correctness� we need only show correctness for a fresh counter interval�

Token Ring Correctness�

Theorem ���� In any legal execution� at most one node has the token in any state and every

node will receive the token in�nitely often�

Proof� We say that a node j has the token starting from any state s in which node j changes

its counter value up to the �rst state after s in which node j sends a packet to j�
� Since it is

su�cient to show correctness for a fresh counter interval within a legal execution� consider one

such interval� It follows from Lemma ��
� that I�j�� L�j� j�
� � I�j�
� for j � �� � � �n�
�

Thus
I�j�� L�j� j�
�� is disjoint for all j� Thus at most one node has the token in any state�

Similarly� we know from Lemma ��
� that I�j� exists for all j and so every node j receives

the token during a fresh counter interval� It follows from Lemma ��
� and the fact that the

Root Start event is always enabled in a home state� that the token system has an in�nite

number of fresh counter intervals� Thus every node receives the token in�nitely often� �

PIF correctness�

Theorem ���� In any legal execution of the PIF system�

� In any state s� vj is either equal to v� or the previous value of v��

� If the value of some node is not equal to v� in state s� there is a later state in which all

node values are equal to v��

� Once a node j	s value is equal to v�� its value cannot change until we reach a state in

which all node values are equal to v��

Proof� First� it is easy to see that the Root Start event is enabled in a home state and will

cause the value of the root counter to change� Thus every legal execution will have an in�nite

number of home states�

The �rst part follows from L� in the de�nition of a legal state and the fact that the counter

associated with the previous value of v� must be count� �
�

The second part of the theorem follows because we know from Lemma ��
� that a home

state will occur in �R time after state s� in this home state countj � count� for all nodes j�

Thus by value correspondence �L��� vj � v� for all j�

�

The third part of the theorem follows from value correspondence and the third statement

in Lemma ��
� which says that a node counter cannot change again until after the next home

state� Thus by the code� its value will also remain unchanged in this interval� �

Reset Protocol Correctness� The following theorem shows that the reset protocol behaves

correctly in a legal execution�

Theorem ���� In every legal execution of the reset system�

� Once the protocol is in a home state� it remains in a home state until the next reset

request� and no node will perform a local reset in this interval�

� Consider any reset request that occurs when the reset protocol is in a home state� Then

the reset protocol will enter a home state in O�R� time after this reset request and in this

home state� the underlying protocol P is in a legal state�

Proof� The �rst part follows easily from the code and the de�nitions of a home state and a

fresh counter interval� Notice that when the reset protocol is in a home state� it is impossible

for a node j to receive a �Token� c� packet with c �� countj � thus �from the code� j will never

perform a local reset� We now turn to the second part of the theorem�

We know that any reset request that begins in a home state will result in the root picking

a fresh counter value� say c� which begins a fresh counter interval� We know from Lemma ��
�

that within O�R� time� this fresh counter interval will end� Thus from Lemma ��
� if this

interval is denoted by
I� F � then there is a state I�j� for each node j at which the node is

initiated into the current reset computation� From the code it is easy to see that in this state�

protocol P is locally reset and since countj remains at c this means that there are no further

local resets of Protocol P at node j�

To show that Protocol P is properly reset at the end of the fresh counter interval� we have

to show that for any two neighbors j� k� the sequence of packets received by k from j during

the interval
I�k�� F � is a pre�x of the sequence of packets sent by j during
I�j�� F �� Let us

call the interval
I�j�� F � the reset interval at node j�

So consider any packet m sent by j during the interval
I�j�� F �� From the protocol code�

we know that j does not send any packet during the interval
I�j�� F �j��� So we can assume

that m is sent after F �j�� Thus m will be tagged with c� the value of this fresh counter interval�

Now by state F � we know from the properties of link automata� that either m will be delivered

by state sF or is stored on link �j� k� in state sF � If m is delivered� m must have been delivered

��

after F �j� �since it was sent after F �j�� and hence by Lemma ��
� it is delivered in the interval

I�k�� F �� but in this interval� countk � c and so m is accepted� On the other hand� if �in state

F � m is stored on link �j� k�� we know �because the link is FIFO� that all packets sent after m

are not delivered� Thus� applying this argument to all packets sent by j to k during
I�j�� F ��

we see that� if m is received and accepted� then all packets sent before m in
I�j�� F � are

received and accepted by k� but if m is not received� then all packets sent after m in
I�j�� F �

are not received�

All that remains is to show that any Protocol P packet m received and accepted by k in

I�k�� F � was sent by j in
I�j�� F �� But if m was accepted it must have tag c� Thus m must

have been sent in
I�j�� F �� this is because� by de�nition� any protocol P packets sent by j in

I� I�j��
� must have a counter value c� �� c� Recall that I�j� is the �rst state in
I� F � that

has countj � c� �

� Conclusions

Counter �ushing is a simple paradigm that has a fairly wide range of applications� and can

be used over di�erent topologies� Besides the examples discussed in this paper �token passing�

broadcast� and reset�� counter �ushing can be used to design stabilizing protocols for deadlock

detection and snapshot protocols
Var���� The token ring protocol we described in this paper

has been used
Cos��� to design a stabilizing version of the FDDI protocol� The modi�ed FDDI

protocol
Cos��� recovers from multiple tokens in less than ��� ms� while the existing FDDI

MAC might never recover� it modi�ed FDDI recovers from lost tokens more quickly than FDDI

������� ms versus ������
 ms��

Our paper exploits a connection between seemingly disparate protocols such as Dijkstra�s

token ring protocol� Afek and Brown�s Data Link protocol� and reset protocols� At one level�

they can all be regarded as repeated versions of a centralized total algorithm
Tel��� in which

cooperation is needed from all nodes to reach a decision� at another level� the Data Link

and Reset problems can be regarded as synchronization problems whose correctness can be

formalized in terms of a mating relation
AE��� Spi��� Var���� The uni�ed approach allows us

to describe a general proof that applies to three rather di�erent systems�

Counter �ushing� as described in this paper� has three aspects� First� we establish the

presence of a non�existent counter based on bounding the space of counters� second� we argue

a liveness property that guarantees that deterministic incrementing �randomized choosing also

works trivially� will lead to a unique counter in a very short time� third� we show a �ushing

condition to show that a non�existent counter �ushes out all bad values� Thus� while the

��

elegant papers in
Dol��� AK��� do use randomization to choose a non�existent counter� they

do not need the other two conditions�

Local Checking and Correction is another general paradigm that has been used before

�
APV�
� Var��� AGV���� to design and explain e�cient stabilizing protocols� On a theoretical

level� there are some problems for which counter �ushing is applicable but local checking is not

�e�g�� protocols that are not locally checkable like token passing on a ring� and some problems

for which local checking is applicable but counter �ushing is not �e�g�� synchronizers�� There

are also a number of problems where they are both applicable �e�g�� resets� token passing on

a tree�� We believe that while they are both practical methods� counter �ushing is simpler to

implement� Local checking
APV�
� Var��� requires a careful enumeration of predicates and

the addition of periodic local snapshots and resets�

We have already generalized counter �ushing to window washing
CV���� We have also
applied it to design a real token passing protocol in
Cos���� Our goal is to design elegant

theoretical techniques that can help design simple� e�ective� and practical protocols�

References

AAG��� Yehuda Afek� Baruch Awerbuch� and Eli Gafni� Applying static network protocols to dy�

namic networks� In Proc� ��th IEEE Symp� on Foundations of Computer Science� October

�����

AB��� Y Afek and GM Brown� Self�stabilization over unreliable communicationmedia� Distributed

Computing� �������� �����

AE��� Baruch Awerbuch and Shimon Even� A formal approach to a communication�network

protocol� broadcast as a case study� Technical Report TR����� Electrical Engineering

Department� Technion�I�I�T�� Haifa� December �����

AG��� A Arora and MG Gouda� Distributed reset� IEEE Transactions on Computers� ����	���

�	��� �����

AGV��� A Arora� MG Gouda� and G Varghese� Constraint satisfaction as a basis for designing

nonmasking fault�tolerance� In ICDCS�� Proceedings of the ��th International Conference

on Distributed Computing Systems� pages �������� �����

AK��� S Aggarwal and S Kutten� Time optimal self�stabilizing spanning tree algorithm� In

FSTTCS�� Proceedings of the ��th Conference on Foundations of Software Technology

and Theoretical Computer Science� Springer	Verlag LNCS
���� pages �		���	� �����

AKM���� Baruch Awerbuch� Shay Kutten� Yishay Mansour� Boaz Patt�Shamir� and George Varghese�

Time optimal self�stabilizing synchronization� In Proc� �
th ACM Symp� on Theory of

Computing� October �����

��

APV��� Baruch Awerbuch� Boaz Patt�Shamir� and George Varghese� Self�stabilization by local

checking and correction� In Proc� ��nd IEEE Symp� on Foundations of Computer Science�

October �����

Cha��� Ernest J� H� Chang� Echo algorithms� Depth parallel operations on general graphs� IEEE

Trans� on Software Eng�� ����������	�� July �����

Cos��� A Costello� Self�stabilization by counter
ushing and window washing �M�S� thesis�� Tech�

nical Report ��	� Washington University� �����

CV��� A Costello and G Varghese� Self�stabilization by window washing� In PODC�� Proceedings

of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing� pages

������ �����

Dij��a� Edsger W� Dijkstra� Self stabilization in spite of distributed control� Communications of

the Association of the Computing Machinery� ����������� �����

Dij��b� EW Dijkstra� Self stabilizing systems in spite of distributed control� Communications of

the Association of the Computing Machinery� ����������� �����

DIM��� S Dolev� A Israeli� and S Moran� Resource bounds for self stabilizing message driven

protocols� In PODC�� Proceedings of the Tenth Annual ACM Symposium on Principles of

Distributed Computing� pages �������� �����

DIM��� S Dolev� A Israeli� and S Moran� Self�stabilization of dynamic systems assuming only

read�write atomicity� Distributed Computing� ������� �����

Dol��� S Dolev� Optimal time self�stabilization in uniform dynamic systems� In �th IASTED

International Conference on Parallel and Distributed Computing and Systems� pages ���

��� �����

Fin��� Steven G� Finn� Resynch procedures and a fail�safe network protocol� IEEE Trans� on

Commun�� COM���������	����� June �����

Gou��� MG Gouda� Stabilizing observers� Information Processing Letters� �������	�� �����

IL��� G Itkis and L Levin� Fast and lean self�stabilizing asynchronous protocols� In FOCS��

Proceedings of the �
th Annual IEEE Symposium on Foundations of Computer Science�

pages �������� �����

KP��� S Katz and KJ Perry� Self�stabilizing extensions for message�passing systems� Distributed

Computing� �������� �����

LSP��� L� Lamport� R� Shostak� and M� Pease� The Byzantine generals problem� ACM Transactions

on Programming Languages and Systems� ����������	�� July �����

LT��� Nancy A� Lynch and Mark R� Tuttle� An introduction to input�output automata� CWI

Quarterly� ������������� �����

��

MAM��	� M�Schroeder� A�Birrell� M�Burrows� H�Murray� R�Needham� T�Rodehe�er�

E�Sattenthwaite� and C�Thacker� Autonet� a high�speed� self�con�guring local area net�

work using point�to�point links� Technical Report ��� Digital Systems Research Center�

April ���	�

Per��� Radia Perlman� Fault tolerant broadcast of routing information� Computer Networks�

December �����

Per��� Radia Perlman� Network Layer Protocols With Byzantine Robustness� PhD thesis� MIT�

Laboratory for Computer Science� August �����

Ros��� E� C� Rosen� Vulnerabilities of network control protocols� An example� Computer Com	

munications Review� July �����

Sch��� M Schneider� Self�stabilization� ACM Computing Surveys� ��������� �����

Seg��� Adrian Segall� Distributed network protocols� IEEE Trans� on Info� Theory� IT����������

��� January �����

Spi��� John M� Spinelli� Reliable communication� PhD thesis� MIT� Lab� for Information and

Decision Systems� December �����

Tan��� A� Tannenbaum� Computer Networks� Prentice Hall� �����

Tel��� Gerhard Tel� The Structure of Distributed Algorithms� PhD thesis� University of Utrecht�

also published by Camridge University Press� �����

Var��� G Varghese� Self�stabilization by local checking and correction �PhD thesis�� Technical

Report MIT�LCS�TR����� MIT� �����

Var��� G Varghese� Self�stabilization by counter
ushing� In PODC�� Proceedings of the Thirteenth

Annual ACM Symposium on Principles of Distributed Computing� pages �������� �����

Var��� George Varghese� Self�stabilization by counter
ushing�

�http���dworkin�wustl�edu�varghese�PAPERS�� August �����

��

