
On the Difficulty of Scalably Detecting Network Attacks

Kirill Levchenko
UC San Diego

klevchen@cs.ucsd.edu

Ramamohan Paturi
UC San Diego

paturi@cs.ucsd.edu

George Varghese
UC San Diego

varghese@cs.ucsd.edu

ABSTRACT
Most network intrusion tools (e.g., Bro) use per-flow state to
reassemble TCP connections and fragments in order to de-
tect network attacks (e.g., SYN Flooding or Connection Hi-
jacking) and preliminary reconnaissance (e.g., Port Scans).
On the other hand, if network intrusion detection is to be
implemented at high speeds at network vantage points, some
form of aggregation is necessary. While many security ana-
lysts believe that such per-flow state is required for many of
these problems, there is no clear proof that this is the case.
In fact, a number of problems (such as detecting large traf-
fic footprints or counting identifiers) have scalable solutions.
In this paper, we initiate the study of identifying when and
how a security attack detection problem can have a scalable
solution. We use tools from Communication Complexity to
prove that the common formulations of many well-known in-
trusion detection problems (detecting SYN Flooding, Port
Scans, Connection Hijacking, and content matching across
fragments) require per-flow state. Our theory exposes as-
sumptions that need to be changed to provide scalable so-
lutions to these problems; we conclude with some systems
techniques to circumvent these lower bounds.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General—
security and protection; F.2 [Analysis of Algorithms and
Problem Complexity]: Miscellaneous

General Terms
Security, Theory

Keywords
Network Intrusion Detection, Communication Complexity

1. INTRODUCTION
As the story is commonly told, the Internet began as a

collection of mutually-trusting networks. While the trust

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04,October 25–29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

implicit in the original design remained after the phenome-
nal success of the Internet, the trustworthiness of the hosts
did not. Thus, today we are faced with the problem of
extracting utility from an Internet seemingly populated by
hostile agents.

The first approach to this problem is to secure Internet
hosts using anti-virus software and personal firewalls. Since
it is often hard to ensure that all hosts are running the lat-
est versions of such software and many attempts are from
insiders, a second approach has been to secure campus and
enterprise networks against attacks using firewalls and Net-
work Intrusion Detection Systems (NIDS).

Intrusion Detection Devices. While firewalls have their
place, they only check for allowed header patterns; many
catastrophic attacks such as worms have tunneled through
firewalls using the headers of legitimate traffic (e.g., HTTP)
that must be allowed in. Thus, despite a number of technical
issues, almost every major enterprise buys NIDS devices,
and the market is growing: Table 1 offers a sampling of
vendors offering network security products.

Taking this approach a step further, perhaps intrusion de-
tection devices could be deployed deeper inside the network,
say, at the ISP level, to provide security for all hosts con-
necting through the service provider.1 This vantage point
provides cost savings compared to deployment closer to the
end-hosts, due both to the smaller number of devices that
need to be deployed and to the reduced administrative over-
head required to manage these systems. A second well-
known reason to deploy a NIDS deeper within the Internet
is to provide more discriminating blocking when source ad-
dresses are being spoofed. For example, in response to a
TCP SYN Flood attack, a NIDS may rate-limit traffic to
the targeted. However, while this mitigates the effects of
the attack, it also disrupts service for legitimate users: by
placing the NIDS deeper inside the network, and as close
to the attacker as possible, fewer legitimate users are af-
fected.

Per-Flow State and Its Effect on Speed. Current in-
trusion detection and prevention systems from vendors such
as NetScreen [21], Cisco [5], and Checkpoint [4] seek to de-
tect a wide class of network intrusions (e.g., denial-of-service
attacks, worms, port scans) within enterprise or campus net-
works. Two big challenges for the next generation of IDS
devices are (i) to provide real-time or wire-speed intrusion

1Of the NIDS vendors we surveyed, only one—
Fortinet [10]—actually markets its NIDS to service
providers.

Detection Claim
Vendor SYN Flooding Port Scans Conn. Hijacking Content Matching

Checkpoint [4] • • • •
Cisco [5] • • • •
ForeScount [9] • •
Fortinet [10] •
Juniper [14] • •
Mazu Networks [18] • • •
NetScreen [21] • •
Network Associates [20] • • •
TippingPoint [26] •

Table 1: Vendors offering network intrusion detection systems, or components
thereof. For each vendor, we indicate which of the four attacks considered in
this paper their products claim to detect. A blank entry indicates that we
could not find a specific claim to detect the attack in the literature provided
on the vendor’s web site, though the product may detect the attack.

detection so as not to miss attacks at high speeds and (ii)
to reduce false positives.

Running a NIDS device at the edge of a network or even
deeper inside the network requires that the NIDS operate
at higher link speeds. Such vantage points also expose the
detection system to a larger number of flows, and in this
setting, it becomes infeasible to maintain per-flow or per-
host state, that is, to track each active “conversation” taking
place across the instrumented link. But this is precisely the
information used by most NIDS to detect large classes of
attacks. For example to detect Port Scans, Snort 2.0 [25], a
popular open source NIDS, maintains a per-target 65536-bit
vector to track the ports probed by a suspected attacker, and
of the vendors in Table 1, several (e.g., Cisco [5] and Network
Associates [20]) mention maintaining per-flow state in their
product literature.

Now, it is well known that high speed implementations
of other tasks in the forwarding path of network devices
(such as routers) have relied on the use of small memory
footprints to fit into cache or on-chip SRAM. For example,
Internet lookups in routers use prefix aggregation to store
around 150,000 prefixes for the entire Internet. Similarly,
DiffServ uses class aggregation to avoid per-flow state in
core routers. This is fundamentally because the number of
connections/flows at network vantage points can easily scale
into the millions, and this does not scale with the increases
in the size of high speed memory. Thus, in the wire-speed
implementation community the notion of per-flow state has
been anathema for a long time.

While the requirement for small amounts of control mem-
ory may seem like an irrational prejudice in a world of plen-
tiful memory, it does have a technical basis. Roughly, this is
because while fairly fast DRAM memories (e.g., DDR) are
available, the highest speed memories (on-chip and off-chip
SRAM) are still limited and growing slowly. In particular,
programmability is often required for security implementa-
tions because attack technology is constantly evolving, and
most programmable chips such as FPGAs have even smaller
amounts of memory (say 1 Mbit) compared to custom chips.
In particular, these chips cannot hold the state for the mil-
lions (or even hundreds of thousands) of concurrent connec-
tions that traverse a fairly large enterprise network.

The current state-of-the-art is to use load-splitters to al-

low several slower NIDS devices to protect a single high-
speed link. However such installations are expensive and
inhibit the detection of attacks split between several devices.

Is Per-Flow State Necessary? Given these constraints,
we may ask whether per-flow state is truly necessary for
common network intrusion detection tasks, or whether there
is hope for finding clever, memory-efficient algorithms. Con-
sider, for example, the following four detection problems:

1. Estimate the number of distinct destinations to
within 1%.

2. Determine if any WWW site was accessed more
than three times.

3. Estimate the number of DNS queries to within 1%.

4. Detect a TCP SYN Flooding attack.

Of the four, which require per-flow or per-host state in a
NIDS? It turns out that the first problem has an efficient,
but non-trivial solution [1, 8] which does not require per-host
state. On the other hand, the second problem does require
state proportional to the number of WWW sites, which can
be shown using the technique in Section 4. The third prob-
lem, estimating the number of DNS queries is quite easy
and can be solved exactly: we need only count the number
of UDP packets to port 53. Finally, detecting a TCP SYN
Flooding attack requires per-flow state under some condi-
tions and does not under others; we consider it in Section 3.

In this paper, we formalize the study of which attack de-
tection tasks require per-flow or per-destination state. Like
all “impossibility” results, they are best regarded by prac-
titioners as labor-saving devices: by precisely stating the
problems and assumptions under which per-flow state is re-
quired, a designer can either choose to use memory tech-
nology that allows the appropriate amount of memory with
corresponding speed tradeoffs, or change the assumptions
to invalidate the lower bounds and hence make low-memory
implementations possible.

Toward this end, we consider four common network intru-
sion detection tasks we presented in Table 1: detecting TCP
SYN Flooding, detecting Port Scans, detecting attempts
to hijack a TCP connection, and matching a payload split
across two fragments (evasion attack). For each, we prove a

Internet NIDS

ingress

egress

Figure 1: Our setting is a Network Intru-
sion Detection System (NIDS) on a router
connecting a network to the Internet. We
say a detector is an ingress detector if
it only uses traffic entering the protected
network. A detector is an egress detector
if it also uses traffic leaving the protected
network.

lower bound on detection and then comment on its practical
implications.

We continue with some definitions in Section 2 which we
will need for formalizing our arguments, and a description of
the Set Disjointness problem of Communication Complexity,
a powerful tool we will use to establish our lower bounds.
The following sections will consider in turn each of the four
NIDS tasks listed above. We will begin each section with
a description of the problem, followed by the lower bound.
Thus, Section 3 covers TCP SYN Flooding, Section 4 covers
Port Scans, Section 5 covers TCP Connection Hijacking, and
Section 6 covers Evasion by fragmentation.

Our results and their implications are summarized in Ta-
ble 2, on the next page.

2. THEORETICAL TOOLS
In this section, we introduce the main theoretical tools

we use to prove lower bounds on attack detection. In Sec-
tion 2.1 we describe our setting and introduce a simple Tur-
ing Machine model. The reader who is used to implementa-
tions using today’s computers and chip sets should not be
alarmed: space lower bounds in the Turing Machine model
apply to RAM based and other more commonly used com-
putation models. Next, in Section 2.2 we intuitively describe
our main tool for lower bounds: the classical Set Disjoint-
ness problem from Communication Complexity. In the rest
of the paper, the game will be to recast seemingly different
attacks as versions of the Set Disjointness problem.

2.1 Setting and Model
Our setting is a detection system monitoring traffic on a

network router connecting a network to the Internet (see
Fig. 1). We classify detection schemes as ingress or egress
based on whether the detector uses only traffic entering the
protected network (ingress) or traffic entering and leaving
the network (egress). We make this distinction because a
NIDS may only have access to incoming traffic due to asym-
metric routing, and because this distinction becomes crucial
for some problems.

We model the detection system as a Turing Machine with
a work tape and a sequentially accessed read-only input
tape. The input consists of a packet sequence, a finite se-
quence over some problem-specific alphabet P . We take the
space complexity of an algorithm to be the maximum space
(in bits) used over all finite-length packet sequences.2 We al-
low the Machine to make probabilistic choices (e.g., to take
random samples), and require only that it fail with some
fixed probability less than a half.

Finally, as a notational convenience, denote the set {1, . . . , n}
by [n].

2.2 Set Disjointness as a Tool
The Set Disjointness problem is a fundamental problem in

Communication Complexity that addresses the difficulty (in
terms of bits exchanged) of knowing whether two sets at two
ends of a link have an element in common. This construction
was used by Alon, Matias, and Szegedy [1] to prove a lower
bound on the space required by any device that wishes to
determine the number of occurrences of the most frequent
element (e.g., the element could be the content of a packet)
in a data stream.

The earlier result of Alon et al. used Set Disjointness to
prove that certain database streaming queries require large
amounts of memory. By contrast, in this paper we will use
the Set Disjointness problem to prove that many formula-
tions of attack detection problems also require large amounts
of memory in the worst case.

More precisely, the Set Disjointness problem is as follows.
Consider two parties, Alice and Bob, each with a set of
numbers between 1 and n. Alice does not know Bob’s set of
numbers, and Bob does not know Alice’s. They would like
to find out if there is some number that they both have by
communicating as few bits of information as possible. We
allow them unlimited computational resources and measure
only the number of bits they send to each other. One strat-
egy might be for Alice to just say “yes” or “no” n times,
once for every number starting at 1. Then Bob will know
whether they have any number in common, and tell Alice,
“yes” or “no.” However this requires n + 1 bits to be com-
municated, and we may well ask if we can do better. It
turns out the answer is “no,” and we will use this fact as a
basis for proving asymptotic lower bounds on the amount of
space required to detect attacks.

3. TCP SYN FLOODING
We now begin our study of attack scalability with TCP

SYN Flooding attacks.
A TCP SYN Flood [2] is a denial-of-service attack that

exploits the way a TCP connection [23] is established be-
tween a sender U and a receiver V . TCP’s mating dance
begins with U sending a so-called SYN packet, and V re-
sponding with a so-called SYN+ACK response. Unfortunately,
after sending the SYN+ACK response, V allocates resources to
remember the pending connection for a pre-specified amount
of time, roughly a minute, waiting for sender U to establish
the connection with an ACK packet.

A TCP SYN Flood occurs when a malicious host repeat-
edly sends SYN packets, typically with forged source ad-

2Another reasonable model might be to measure space in
words, where the word size is logarithmic in the length of
the input.

Detection Problem Scalable Comment
SYN Flooding (§3) ingress No Egress detection relies on

— egress Yes trust of protected network.

Port Scans (§4) ingress No Scalable egress detection is possible

— egress Yes∗ by estimating the no. of distinct items.

Conn. Hijacking (§5) ingress No No scalable detection possible if attacker

— egress No is outside the protected network.

Evasion (§6) ingress No Workaround exists for IP fragmentation,
— egress No but not for TCP segmentation.

Table 2: A summary of our results and their practical implications. “Ingress”
refers to detection using only traffic entering the network, “egress” to detection
using traffic entering and leaving the network. “Scalable” means that there
is a detection scheme that does not use per-flow state. See the appropriate
section for discussion. ∗Additional empirical evidence is needed to test the
effectiveness of this approach.

dresses, causing the listening host to allocate many half-open
connections. Because of the generous timeout and the small
number of connections allowed to be in the half-open state,
it is easy for an attacker to deplete a server’s connection
resources, preventing service to legitimate clients. Several
modern implementations address or mitigate this problem
by using techniques such as SYN-cookies or by simply allo-
cating more resources. Nevertheless, this attack is still used
and is useful to detect.

At the link level, this attack may be characterized as a
packet sequence containing a SYN packet from U to V with-
out a subsequent ACK packet. However instead of considering
this attack, we consider a slightly different problem: detect-
ing unclosed connections. That is, connections consisting of
a an opening SYN packet without a closing FIN packet. De-
tecting unclosed connections (versus half-open connections)
requires us to also consider RST packets, as these cause the
connection to close as well. However since this only makes
the problem harder, it does not affect our lower bound.

3.1 Ingress SYN Flood Detection
In this section, we consider the problem of detecting un-

closed connections using only traffic entering the protected
network. At first glance, it may seem sufficient to count
the number of SYN packets and the number of FIN packets,
declaring the packet stream to contain a unclosed session if
there are more of the former that the latter. Indeed, this
is the approach advocated by [27]. However an attacker
can circumvent this strategy by sending FIN packets ahead
of the SYN packets, or sending FIN packets with a different
address. Without matching FIN packets to preceding SYN

packets, there is no efficient way to determine if there are
unclosed sessions, as we show next.

Abstract Problem Formulation. To apply our lower
bound technique to this problem, define the packet set P to
be [m]×{SYN, FIN}: the set of tuples consisting of a session
identifier and a packet type field, either SYN or FIN. Call
a packet (x, SYN) in a packet sequence matched if (x, FIN)
occurs in the remainder of the sequence. Call a packet un-
matched if it is not matched. Intuitively, unmatched SYN

packets correspond to unclosed connections.

Example: To model TCP SYN Flooding, the session iden-
tifier x in the abstract formulation would be the TCP 4-tuple

consisting of the source address, source port, destination ad-
dress, and destination port.

Let synmatch be the problem of detecting a packet se-
quence containing one or more unmatched SYN packets. In
practice, detecting one unmatched SYN packet in the whole
stream may be too strict. Let us allow the algorithm to fail
if there are some—but not too many—unmatched SYN pack-
ets. Formally, we guarantee (to any algorithm for detecting
unmatched SYN packets) that the input contains either no
unmatched SYN packets or that the unmatched SYN packets
constitute at least an α fraction of the whole packet se-
quence. Call this variant α-synmatch. We are now ready
to prove a lower bound on ingress detection.

Lower Bound. Any algorithm for synmatch must use
Ω(m) space. Any algorithm for α-synmatch where αm ≥ 1
must use Ω(1/α) space.

Proof of Lower Bound. We will prove the first statement;
see the Appendix for the proof of the second. As promised,
the proof is by reduction from disj, the Set Disjointness
problem of Communication Complexity; see the Appendix
for a formal description of this problem and its lower bounds.
We will show that two parties, Alice and Bob, can decide if
two sets, X ⊆ [n] and Y ⊆ [n], held by Alice and Bob re-
spectively, are disjoint using only S bits of communication,
where S is the space used by the synmatch detection algo-
rithm. The lower bound on the communication complexity
of Set Disjointness will imply S = Ω(m).

The reduction work as follows. Alice forms the packet
sequence

(x1, SYN), (x2, SYN), . . . , (x|X|, SYN),

where x1, x2, . . . , x|X| are the elements of X. She runs the
synmatch detection algorithm (with parameter m set to n)
on this sequence, and suspends it immediately after reading
the last element. She then sends its state to Bob. Bob forms
the packet sequence

(ȳ1, FIN), (ȳ2, FIN), . . . , (ȳ|Ȳ |, FIN),

where ȳ1, ȳ2, . . . , ȳ|Ȳ | are the elements of Ȳ = [n] \ Y . He
then resumes the algorithm using the state received from
Alice, providing the remainder of his sequence as the rest
of the input. To the algorithm, the input appears as a con-
catenation of their two sequences.

We observe that if X and Y are disjoint, then for all x ∈ X
there will be a matching x ∈ Ȳ , so there will be a closed con-
nection consisting of (x, SYN) and (x, FIN) in the aggregate
sequence seen by the algorithm. Conversely, if X and Y in-
tersect, say at some element c, then there will be a packet
(c, SYN) without a matching (c, FIN) packet. Thus, X and Y
intersect if and only if the aggregate packet sequence seen by
the algorithm contains an unmatched SYN. Using the result
of the algorithm, Bob can determine if X and Y are disjoint.

Note that the only communication between Alice and Bob
are the S bits of the state of the algorithm. Since the com-
munication complexity is Ω(n) and m = n, it follows that
S = Ω(m).

We have shown that any detection system must effectively
maintain per-flow state in order to detect an unmatched SYN

packet.

Practical Implications. The lower bound means that we
can detect a TCP SYN Flood using traffic entering the net-
work only if it is a sizable fraction of all the (SYN and FIN)
traffic. Effectively, the best we can do is to pick random SYN

packets in the packet stream and watch if they are followed
by a matching ACK; see [7] for this type of approach. Note
that even this scheme is vulnerable to evasion as described
by Paxson in [22]: an attacker can set the IP TTL field of
the ACK so that the packet is seen by the NIDS, but not by
the victim.

In practice, a detection scheme may keep per-flow state,
but only within a reasonable round-trip time (RTT), say 1
second. That is, if an incoming SYN is not followed by a
matching ACK within a second, we may reasonably assume
the ACK will never come. However a simple back-of-the-
envelope calculation shows that even this relaxation requires
considerable memory, because a 1 Gbit/sec link may see up
to 3 million SYN packets per second.

3.2 Egress SYN Flood Detection
If the attacker cannot inject packets into the traffic leav-

ing the protected network, we can detect a TCP SYN Flood
by considering the difference between the number of SYN

packets entering the network and the number of FIN (or
SYN+ACK packets leaving the network [16, 27]. Since the at-
tacker cannot tamper directly with this packet sequence, we
can expect a large number of incoming SYN packets without
corresponding FIN packets to be a reasonable indicator of an
attack. Implicit in this detection scheme, however, is trust
of hosts with access to this packet stream. A cooperating
host on the inside (e.g., a zombie) could spoil this scheme by
sending spoofed FIN packets through the NIDS. The NIDS
would be deceived into thinking the SYN packets resulted in
successful connections (see Fig. 2). Note, however, that this
scenario is somewhat unusual, as a compromised host on the
inside could attack the victim directly.

The above scenario illustrates an important point about
egress detection, and that is that an egress detection sys-
tem relies on the credibility the packet stream leaving the
network ; it is up to the administrator and the users of the
scalable NIDS to decide whether this trust is justified.

4. PORT SCANS
We continue our study of the state required for detecting

attacks by considering Port Scans. Though not an attack in
itself, a Port Scan is usually a precursor to one. It consists

Internet NIDS

dst: V
SYN

B V
src: V
FIN

A

Figure 2: A SYN Flooding scenario in
which the NIDS is fooled by an attacker
A with control over a compromised host
B on the inside. The NIDS considers a
TCP SYN Flood to be in progress if there
are significantly more SYN packets entering
the network than FIN packets leaving the
network. The attacker sends SYN packets
to V , and at the same time, a compro-
mised host B inside the network sends
spoofed FIN packets through the NIDS,
fooling it into ignoring the attack.

of an attacker identifying the open ports on a machine to de-
termine which services are available. (With this knowledge,
the attacker can attempt to exploit a vulnerability in one of
these services) To determine if a port is open, an attacker
sends a packet to the target host attempting to connect to
the desired port. If the target host is listening on that port,
it will respond by opening a connection. The exact details of
how a host responds to a connection attempt will be exam-
ined in Section 4.2, when we consider egress detection. Let
us start by seeing whether we can detect this phenomenon
scalably based only on traffic entering the network.

4.1 Ingress Port Scan Detection

Abstract Problem Formulation. For this problem, de-
fine P = [m] × [m] to be the set of tuples consisting of a
source address and destination address. Call a set {(x, i1),
(x, i2), . . . , (x, ik)} a scan of size k, if the i1, i2, . . . , ik ∈ [m]
are distinct and x ∈ [m]. Let k-scan be the problem of
determining if a packet sequence contains a scan of size k.
Note that this corresponds to the scenario where a scan-
ner probes a set of hosts (typically on the same port, and
sometimes called a horizontal scan).

Sometimes a Port Scan is taken to be a scan probing a
range or ports/services on a single machine, which could be
looked on as a vertical scan. Our formal definition captures
both these scenarios as well as more complex scans that
can scan a number of hosts and a number of ports. The
key abstraction is that one one host is sending the packets.
After proving a lower bound for this variant, we will consider
distributed Port Scans.

Example: To model a general scan in the abstract formula-

tion, x could represent the IP source address of the scanner,
and i1, i2 etc., could represent the combination of the IP
address and port that is scanned at each point in the se-
quence.

Lower Bound. Any algorithm for k-scan must use Ω(m/k5)
space.

Proof of Lower Bound. We will give the proof for the the
case k = 2. The proof of the general case uses a different
reduction; it is given in the Appendix.

As before, this proof is by reduction from disj, the Set
Disjointness problem of Communication Complexity, to 2-
scan. Let Alice have a set X ⊆ [n] and Bob have a set
Y ⊆ [n]. Alice forms the packet sequence

(x1, 1), (x2, 1), . . . , (x|X|, 1),

where x1, x2, . . . , x|X| are the elements of X. She runs the
2-scan detection algorithm (with parameter m set to n) on
this sequence and suspends it when it reaches the last ele-
ment, but before it terminates. She then sends the state of
the algorithm to Bob, who resumes the algorithm providing
the following sequence as the remainder of the input:

(y1, 2), (y2, 2), . . . , (y|Y |, 2),

where y1, y2, . . . , y|Y | are the elements of Y .
If X and Y are disjoint, then the input sequence to the

algorithm will not contain a scan, and conversely, if X and
Y intersect, say at an element c, then the input sequence
will contain a scan consisting of (c, 1) and (c, 2). Thus, Bob
can determine if X and Y are disjoint using the output of
the 2-scan detection algorithm. Since Alice sent Bob S
bits (the size of the state of the algorithm), it follows that
S = Ω(m).

Practical Implications. The lower bound implies that
ingress detection of a Port Scan for any constant k does
indeed require per-flow state. The reduction hinges on the
difficulty of determining whether, among many hosts each
probing exactly one target, there is one who probes two or
more (k or more in the general case).

Nevertheless, an increase in the number of distinct targets
probed (not necessarily from the same host) may in some
cases be a reasonable indicator of suspicious activity. In fact,
this is exactly how a distributed Port Scan would appear to
the NIDS. It turns out that this quantity can be estimated
efficiently; see, for example [8], who also propose using it as
an indicator of a Port Scan. However this approach has sev-
eral problems. First, the estimator is not accurate enough
to detect a scan hidden in a large traffic stream, as would be
found inside the network. Second, an increase in the num-
ber of distinct hosts accessed may have a benign explanation
(a route change is one example). It is doubtful, therefore,
that an increase in the estimate of the number of distinct
destinations is a viable indicator of a Port Scan.

4.2 Egress Port Scan Detection
The TCP specification [23] requires a host to send a RST

packet in response to a connection attempt on a port without
a listening process. Similarly, a packet sent to a UDP port
may generate an ICMP “port unreachable” response [24].3

3Unfortunately, some firewalls might block such packets for
security reasons.

In view of this, an increase in the number of distinct desti-
nation addresses generating such responses may be a better
indicator of a Port Scan, as it implicitly excludes packets ad-
dressed to existing services. However “noise” (e.g., due to
mistyped addresses) or poor detector sensitivity could still
hinder detection; therefore, it remains to be verified experi-
mentally whether this is an accurate detector.

Note, however, that unlike TCP SYN Flooding, an in-
sider cannot fool the NIDS, because he cannot prevent the
victim’s RST packets from reaching the NIDS.

5. TCP CONNECTION HIJACKING
The Transmission Control Protocol provides the abstrac-

tion of a reliable communication channel for two processes
on (usually district) network hosts, say U and V . One of the
mechanisms used by TCP to ensure this is the segment se-
quence number, which identifies where a packet payload be-
longs within the interprocess data stream. The same mecha-
nism also provides some protection against an attacker wish-
ing to inject packets into an existing connection, because the
sequence number must be within the window accepted by V .

An attacker A wishing to do so must be able to correctly
number the forged packets to V . Without knowing any of
the sequence numbers used by U , the attacker—after nar-
rowing down the possibilities—may attempt to guess the
correct sequence number, injecting packets with incorrect
sequence numbers into the stream. To an observer seeing
traffic to V , this will appear as a TCP session containing
packets whose sequence numbers are not strictly increasing.
Can we efficiently detect this attack signature at the NIDS?

5.1 Ingress Connection Hijacking Detection

Abstract Problem Formulation. In this section, we con-
sider the problem of detecting a session with sequence num-
bers that are not increasing. Formally, let P = [m] × [`]
be the set of tuples consisting of a session identifier and a
sequence number. Define a session to be the subsequence
of packets with the same session identifier. Call a packet
out-of-order if it is not the first packet in the session and
if the sequence number of the preceding packet in the ses-
sion is greater than its own. Note, however, that packet
reordering and retransmission occurs in the normal opera-
tion of the network. To exclude this benign phenomenon, it
would be more correct to consider an out-of-order packet as
anomalous if its segment sequence number differs substan-
tially from that of its session predecessor. Let k-seqmatch
be the problem of determining if the packet stream contains
a session with k or more out-of-order packets, or whether
there are no out-of-order packets in any session. That is,
we guarantee (to any detection algorithm) that if a session
contains any out-of-order packets, it contains at least k such.

Example: To model TCP Connection Hijacking, in the ab-
stract formulation the session identifier would represent the
TCP 4-tuple connection identifier, and the sequence num-
ber would represent the TCP sequence numbers in a received
packet.

Given this formulation, we have:

Lower Bound. Any algorithm for k-seqmatch must use
Ω(m/k) space.

Proof of Lower Bound. See the Appendix.

Practical Implications. The lower bound tells us that
detecting attempts to guess sequence numbers based solely
on the stream of sequence numbers entering the network
requires per-flow state. In fact, any scheme that relies on
somehow relating two packets in a session will require per-
flow state. For example, suppose we could tell if two packets
came from the same host, even if the source addresses were
forged (for example, by means of OS fingerprinting [11]).
Could we efficiently detect a Connection Hijacking then?
No, because it requires comparing two packets in the same
session, and therefore requires per-flow state.

5.2 Egress Connection Hijacking Detection
The TCP specification [23] defines the appropriate re-

sponse to a segment sequence number outside the receiver’s
window to be an acknowledgment of the last valid packet
payload. Although responses from V provide no indication
(to the NIDS) of how far the sequence number fell outside its
window, an excessive number of ACK packets may be an indi-
cator to U—the real sender—that an attack is taking place.
That is, if U notices that that the number of ACK packets
from V is significantly greater than the number of packets
sent by U , then U has reason to suspect that someone is
injecting packets into the session.

6. EVASION BY FRAGMENTATION
A number of intrusion detection systems attempt to detect

an attack by attempting to find a substring (e.g., of a known
worm payload) in a packet. Fragmentation, the mechanism
by which the Internet Protocol splits a large packet into sev-
eral smaller ones, allows the attacker to conceal the payload
in several fragments; an analogous mechanism, called seg-
mentation, is used by TCP to divide the interprocess data
stream into discrete packets. With the substring sought by
the intrusion detection system spread across several pack-
ets in the packet sequence, space-efficient detection becomes
impossible. In this section, we prove a lower bound on de-
termining if a packet split into two fragments contains some
string.

6.1 Evasion Detection

Abstract Problem Formulation. Define P = [m] ×
{1ST, 2ND}×{Q, R} to be the set of tuples containing a packet
identifier, a marker indicating whether the fragment is the
first or second fragment in a two-fragment packet, and one
of two parts of a string for which the intruder hopes to avoid
evasion. We say that a packet stream contains the string QR

if there are two packets (c, 1ST, Q) and (c, 2ND, R), occurring
in this order, for some c ∈ [m]. Call the problem of detecting
such a packet stream evasion.

Example: To model evasion via IP fragmentation, the packet
identifier in the abstract formulation would represent the
combination of the packet identifier and source IP address.
For TCP segmentation, the packet identifier would repre-
sent the TCP connection 4-tuple. For IP fragmentation, 1ST
would represent a fragment with offset 0, while 2ND would
a represent a fragment with the “more fragments” bit being
zero. For TCP segmentation, the first and second mark-
ers represents the byte sequence numbers and the payload
lengths, from which these markers can be inferred. The
string QR can be any malicious payload the NIDS is trying
to detect, such as a known virus signature.

Lower Bound. Any algorithm for evasion must use Ω(m)
space.

Proof of Lower Bound. See the Appendix.

Practical Implications. The lower bound means that
any algorithm attempting to detect a particular string in
the reconstructed interprocess data stream must maintain
per-flow state. Effectively, any NIDS must have traffic nor-
malizer component, as described in [12], to reassemble frag-
mented packets.

Fortunately, there is a workaround for IP fragmentation,
implemented in some NIDS, and that is to simply drop very
small fragments, as there are so few legitimate reasons to
see them on the Internet. The NIDS can now detect if a
fragment contains a sufficiently large substring of a harm-
ful payload. TCP segments, however, can be quite small,
allowing the attacker to spread the payload across several
packets far apart in the packet stream, making detection
without per-flow state impossible.

7. CONCLUSION
Table 2 summarizes our results on detecting TCP SYN

Flooding, Port Scans, TCP Connection Hijacking, and Eva-
sion by fragmentation, as well as their implications for the
intrusion system designer. Our results indicate that com-
mon stream processing problems are created equal, and there-
fore the coarse characterization that they all require per-flow
state is not accurate.

For Port Scans and TCP SYN Flooding, the practical
implication of our results is that while scalable ingress de-
tection (as stated) is impossible, egress detection is possible
under certain, reasonable assumptions. For example, for
Port Scans, we must assume that failed scans produce a
measurable response (e.g., RST packets) that are not pro-
duced normally, so that the signal-to-noise ratio is sufficient
for detection. In fact, a general form of the latter approach
is to recognize an attacker as someone trying to access non-
existent hosts or services by using a network telescope [19] or
a honey pot [6]; at least one vendor—NetScreen [21]—has al-
ready incorporated the latter into their product. More than
any other, the Port Scan problem illustrates that a phe-
nomenon may have several manifestations, and while scal-
ably detecting one might be hard, scalably detecting another
may be feasible.

The results for detecting Evasion attacks and TCP Hi-
jacking are more grim (no solution without keeping state
for either ingress or egress detection), confirming the in-
tuition of IDS designers. Despite this, we emphasize that
these results are under worst case conditions! In practice,
the packet stream may be disposed much more favorably to-
ward the NIDS designer. However the fact that worst case
conditions can arise, means that the designer must decide
how the NIDS should fail when they do arise.

Furthermore, there may be some information available to
the NIDS not captured by our model. For example, Jin,
Wang, and Shin [13] use the TTL field to determine if the
source address hash been spoofed: a sure sign of illicit ac-
tivity.

We began by observing that economic and logistical forces
may drive the network intrusion system deeper and deeper
into the network. The technical implications of this new set-
ting place an increased demand on the system to perform
quickly and efficiently, demands that current NIDS state of

the art would be hard-pressed to meet. Clearly, NIDS de-
signs must change. As a step in this direction, we have
shown the hardness of detecting a number of common at-
tack classes, bringing to light the fundamental obstacles that
must be overcome. More than a vindication of the use of per-
flow state in existing NIDS, we hope that our results guide
the NIDS algorithm designer in fruitful directions, some of
which we have tried to point out throughout our analysis.
We believe that a new breed of fast, scalable IDS systems
with low false positive rates will be born of a new fellowship
between algorithmic, network, and security research.

8. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. “The Space

Complexity of Approximating the Frequency
Moments.” STOC 1996, pp. 20–29.

[2] CERT. “CERT Advisory CA-1996-21 TCP SYN
Flooding and IP Spoofing Attacks.” 1996.

[3] CERT. “CERT Advisory CA-1997-28 IP
Denial-of-Service Attacks.” 1997.

[4] Check Point Software Technologies, Ltd.
http://www.checkpoint.com/

[5] Cisco Systems. http://www.cisco.com/

[6] F. Cohen. “A Mathematical Structure of Simple
Defense Network Deceptions.” Computers & Security
19 (2000), pp. 520–528.

[7] C. Estan, G. Varghese. “New Directions in Traffic
Measurement and Accounting: Focusing on the
Elephants, Ignoring the Mice.” ACM Transactions on
Computer Systems 21 (3), pp. 270–313.

[8] C. Estan, G. Varghese, M. Fisk. “Bitmap Algorithms
for Counting Active Flows on High Speed Links.”
Internet Measurement Conference, 2003.

[9] ForeScout Technologies. http://www.forescout.com/

[10] Fortinet, Inc.. http://www.fortinet.com/

[11] Fyodor. “Remote OS detection via TCP/IP Stack
FingerPrinting.”
http://www.insecure.org/nmap/nmap-

fingerprinting-article.html

[12] M. Handley, V. Paxson. “Network Intrusion
Detection: Evasion, Traffic Normalization, and
End-to-End Protocol Semantics.” 10th USENIX
Security Symposium, pp. 115–131.

[13] C. Jin, H. Wang, and K. Shin. “Hop-Count Filtering:
An Effective Defense Against Spoofed DDoS Traffic.”
ACM Conference on Computer and Communication
Security (CCS). October 2003.

[14] Juniper Networks. http://www.juniper.net/

[15] B. Kalyanasundaram and G. Schnitger. “The
Probabilistic Communication Complexity of Set
Intersection.” SIAM Journal on Discrete Mathematics
5 (4), pp. 545–557, 1992.

[16] R. Kompella, S. Singh, G. Varghese. “On Scalable
Attack Detection in the Network.” ACM SIGCOMM
Internet Measurement Conference, 2004.

[17] E. Kushilevitz and N. Nisan. Communication
Complexity, Cambridge University Press, 1997.

[18] Mazu Networks. http://www.mazunetworks.com/

[19] D. Moore, G. Voelker, and S. Savage. “Inferring
Internet Denial-of-Service Activity.” 10th USENIX
Security Symposium, pp. 9–22.

[20] Network Associates, Inc. http://www.nai.com/

[21] NetScreen Technologies, Inc.
http://www.netscreen.com/

[22] V. Paxson. “Bro: A System for Detecting Network
Intruders in Real-Time.” 7th USENIX Security
Symposium, pp. 31–52.

[23] J. Postel. “Transmission Control Protocol.” RFC 793.

[24] J. Postel. “Internet Control Message Protocol.” RFC
792.

[25] Snort. http://www.snort.org/

[26] TippingPoint Technologies.
http://www.tippingpoint.com/

[27] H. Wang, D. Zhang, and K. Shin. “Detecting SYN
Flooding Attacks.” IEEE INFOCOM, 2002.

APPENDIX

Appendix
The Set Disjointness Problem
The Communication Complexity (see [17]) Set Disjointness
problem, disj, goes as follows. Two parties with unlimited
computational resources, canonically, Alice and Bob, each
have a set X ⊆ [n] and Y ⊆ [n], respectively. They would
like to determine whether and X and Y are disjoint or in-
tersect, while exchanging as few bits as possible.

Trivially, Alice can send Bob n bits, where the ith bit is
1 if i∈X and 0 otherwise. Bob can then determine whether
X∩Y = ∅, and communicate this to Alice. We may ask if
they can do better by communicating fewer than Θ(n) bits.
It turns out the answer is “no,” even if we allow Alice and
Bob a randomized protocol that errs with a fixed probability
less than a half. See [17] for the deterministic lower bound,
and [15] for the probabilistic one.

The fact that this problem remains hard even under ran-
domization makes it a powerful source of reductions. It
was first used in the stream setting by Alon, Matias, and
Szegedy [1], whose technique we use here.

The Multi-Party Set Disjointness Problem of
Alon et al.

For the proof of the scan lower bound, we rely on another
problem in Communication Complexity. In [1], Alon, Ma-
tias, and Szegedy introduce a multi-party Set Disjointness
problem, which we call mdis, involving σ players, each hold-
ing a subset of [n] of cardinality τ . The subsets X1, X2, . . . , Xσ

are either pair-wise disjoint, or intersect at exactly one ele-
ment, i.e., for any i6=j,

Xi∩Xj =

σ\
r=1

Xr = {c}.

Alon, Matias, and Szegedy showed that for a fixed failure
probability less than a half, and τ≥σ4, the communication
complexity of this problem is Ω(τ/σ3).

Omitted Proofs

Lower Bound (see §3). Any algorithm for synmatch
must use Ω(m) space. Any algorithm for α-synmatch where
αm ≥ 1 must use Ω(1/α) space.

Proof. The first half of the claim was proven in Sec-
tion 3.1; it remains to prove the lower bound for the relaxed

variant. In fact, the proof is the same, with the excep-
tion that Alice and Bob must use the correct instance of
α-synmatch.

Let Alice and Bob have sets X ⊆ [n] and Y ⊆ [n], respec-
tively. Set α to 1/2n and set m arbitrarily to satisfy αm ≥ 1.
Following the protocol given in the proof of the first claim,
we note that each element of the packet sequence seen by
the algorithm is at least an α fraction of the total input
size. This allows Alice and Bob to use their instance of the
α-synmatch detection algorithm as a drop-in replacement
for the synmatch detection algorithm used in the proof of
the first claim.

Lower Bound (see §4). Any algorithm for k-scan must
use Ω(m/k5) space.

Proof. We reduce mdis, the multi-party Set Disjointness
problem of Alon, Matias, and Szegedy (see appendix 7) to
k-scan. Set σ = k, and let τ be such that n = (2τ −1)σ +1
as required. We will demonstrate a protocol for mdis using
an algorithm for deciding k-scan.

The ith player having input set Xi, forms the following
input sequence to the k-scan algorithm (with parameter
m = n):

(xi1, i), (xi2, i), . . . , (xiτ , i),

where xi1, xi2, . . . , xiτ are the elements of Xi. The first
player provides his sequence to the algorithm, suspends it
after reading the last tuple, and sends the S bits of state to
the second player. The second player resumes the algorithm
providing his sequence as the continuation of the input, sus-
pends it before reading the last tuple, and sends the state
to the next. This continues until the last player receives the
state and finishes the computation by providing his sequence
as the remainder of the input.

If the sets X1, X2, . . . , Xσ intersect at one element, say c,
then the scan (c, 1), (c, 2), . . . , (c, k) will occur in the packet
sequence. Conversely, if the sets are pair-wise disjoint, no
element c ∈ [n] will occur more than once in the packet se-
quence. This allows the last player to determine whether
the sets are disjoint using the output of the k-scan algo-
rithm. The number of bits exchanged is S(σ − 1), since
the state of the algorithm was communicated σ − 1 times.
From the Ω(τ/σ3) complexity of mdis [1], it follows that
σ = Ω(m/k5).

Lower Bound (see §5). Any algorithm for k-seqmatch
must use Ω(m/k) space.

Proof. We establish the lower bound by reduction from
disj. As usual, let X ⊆ [n] be the set held by Alice and let
Y ⊆ [n] be the set held by Bob. Alice forms the sequence

(x1, k + 1), (x2, k + 1), . . . , (x|X|, k + 1),

where x1, x2, . . . , x|X| are the elements of X. She runs the
k-seqmatch detection algorithm (with parameter m set to
n) on this sequence, suspending it immediately after reading
the last element, and then sends its state to Bob. Bob forms
the sequence

(y1, 1), (y2, 1), . . . , (y|Y |, 1),

where y1, y2, . . . , y|Y | are the elements of Y . Bob runs the
algorithm, providing the above sequence as input, suspend-
ing it immediately after reading the last element. He then

sends the state of the k-seqmatch algorithm back to Alice,
who resumes it on the sequence

(x1, k + 2), (x2, k + 2), . . . , (x|X|, k + 2),

again suspending it immediately after reading the last ele-
ment, and then sends the state to Bob. Bob resumes th! e
simulation on the sequence

(y1, 2), (y2, 2), . . . , (y|Y |, 2).

They do this k times altogether, with Bob finishing the exe-
cution of the algorithm and determining its output. If X and
Y are disjoint, then the aggregate packet sequence provided
to the algorithm as input contains sessions whose sequence
numbers are strictly increasing. However if X and Y in-
tersect, say at an element c, then the packet sequence will
contain the session

(c, k + 1), (c, 1), (c, k + 2), (c, 2), . . . ,
(c, k + k), (c, k),

which contains exactly k out-of-order packets. Thus, Bob
can use the result of the k-seqmatch to determine if X and
Y are disjoint. Since Alice and Bob exchanged the state of
the algorithm 2k − 1 times, we have S(2k − 1) = Ω(n), so
S = Ω(m/k).

Lower Bound (see §6). Any algorithm for evasion must
use Ω(m) space.

Proof. The proof is by reduction from disj. As before,
Alice and Bob have sets X ⊆ [n] and Y ⊆ [n], respectively.
Let X̄ = [n]\X and let Ȳ = [n]\Y . Alice forms a packet
sequence of the form

(x1, 1ST, Q), (x2, 1ST, Q), . . . , (x|X|, 1ST, Q),
(x̄1, 1ST, R), (x̄2, 1ST, R), . . . , (x̄|X̄|, 1ST, R),

where x1, x2, . . . , x|X| are the elements of X and x̄1, x̄2, . . . , x̄|X̄|
are the elements of X̄. She runs the evasion detection al-
gorithm (with parameter m set to n), suspending it imme-
diately after reading the last element. She then sends the
state of the algorithm to Bob. Bob forms a packet sequence
of the form

(y1, 2ND, R), (y2, 2ND, R), . . . , (y|Y |, 2ND, R),
(ȳ1, 2ND, Q), (ȳ2, 2ND, Q), . . . , (ȳ|Ȳ |, 2ND, Q),

where y1, y2, . . . , y|Y | are the elements of Y and ȳ1, ȳ2, . . . , ȳ|Ȳ |
are the elements of Ȳ . He then resumes the algorithm and
provides the remainder of his sequence as input.

If X and Y intersect, then there will be a pair of pack-
ets (x, 1ST, Q) and (y, 2ND, R), occurring in this order, in the
sequence. Conversely, if X and Y do not intersect, there
will not be such a pair of packets in the packet sequence.
Using the result of the evasion detection algorithm, Bob
can determine if X and Y are disjoint. It follows that
S = Ω(m).

