
Fast Firewall Implementations for Software and Hardware-based Routers

Lili Qiu George Varghese Subhash Suri ∗

liliq@microsoft.com varghese@cs.ucsd.edu suri@cs.ucsb.edu
Microsoft Research University of California, San Diego University of California, Santa Barbara

Abstract

Routers must perform packet classification at high
speeds to efficiently implement functions such as firewalls
and diffserv. Classification can be based on an arbitrary
number of fields in the packet header. Performing classifi-
cation quickly on an arbitrary number of fields is known to
be difficult, and has poor worst-case complexity.

In this paper, we re-examine two basic mechanisms that
have been dismissed in the literature as being too inef-
ficient: backtracking search and set pruning tries. We
find using real databases that the time for backtracking
search is much better than the worst-case bound; instead of
Ω((logN)k−1), the search time is only roughly twice the op-
timal search time1. Similarly, we find that set pruning tries
(using a DAG optimization) have much better storage costs
than the worst-case bound. We also propose several new
techniques to further improve the two basic mechanisms.
Our major ideas are (i) backtracking search on a small
memory budget, (ii) a novel compression algorithm, (iii)
pipelining the search, (iv) the ability to trade-off smoothly
between backtracking and set pruning. We quantify the per-
formance gain of each technique using real databases. We
show that on real firewall databases our schemes, with the
accompanying optimizations, are close to optimal in time
and storage.

Keywords: Firewall, packet classification, compression,
pipeline, selective push, trade-off.

1. Introduction

Packet classification is a key mechanism that enables dif-
ferentiation in a connectionless network. In packet classifi-
cation routers, the route and resources allocated to a packet
can be determined by the destination address as well as
other header fields of the packet such as the source address

∗The work of Subhash Suri was partially supported by National Science Founda-
tion grants ANI 9813723 and CCR-9901958.

1The height of the multiplane trie is regarded as the optimal search time
throughout the paper, unless otherwise specified.

and TCP/UDP port numbers. More importantly (at least to-
day), many router products allow a firewall capability, such
as Cisco Access Control Lists (ACLs), which allow pack-
ets to be blocked based on the same fields. Edge routers
need ACLs to implement firewalls. However, even large
backbone routers today implement ACLs to trace denial-
of-service and flood attacks. Thus our paper concentrates
on techniques for speeding up packet classification for fire-
walls using properties we have observed in real firewall
databases. 2

The current state of the art in most routers is to ei-
ther use linear search of the filter database or to use hard-
ware, such as ternary CAMs (content addressable memory)
or other ASICs that perform parallel linear search (e.g.,
[4]). Such hardware solutions do not scale to large filter
databases. Other solutions reported in literature that can
be implemented in software (e.g., [9, 5]) are either slow or
take too much storage. With the advent of software based
routers (e.g., [7]), which are typically aimed at the edge
router space where classification is particularly important,
it is necessary to find software techniques for fast firewall
implementations.

There is evidence that the general filter problem is
a hard problem, and requires either O(N k) memory or
Ω((log N)K−1) search time, where N is the number of fil-
ters and K is the number of classified fields [4, 9]. How-
ever recent research [5, 6, 10] indicates that such worst-case
behavior does not arise in real databases. Based on this
observation, these papers introduce clever new techniques
like pruned tuple search [10] and Recursive Flow Classi-
fication [5] that exploit the structure of existing databases.
However, if real databases have regularities that can be ex-
ploited, perhaps even the simplest packet classification al-
gorithms will do quite well.

This question motivates us to re-examine two of the
simplest packet classification mechanisms: backtracking
search and set pruning tries. There is an interesting duality
between these two simple schemes: backtracking search re-

2While we believe our techniques generalize to other filter databases
such as diffserv, it is difficult to test this assertion because there are no
models of diffserv databases that are generally agreed upon.

1

quires the least storage but can have poor worst-case search
times; set pruning tries have minimal search times but have
poor worst-case storage. Earlier researchers have dismissed
backtracking search as being too slow [10], and dismissed
set pruning tries as being suitable only for very small packet
classifiers [2, 10].

However, we find that using real databases the time
for backtracking search is much better than the worst-case
bound. Instead of (log N)k−1, the search time is only a
constant factor (often only a factor of two) worse than the
optimal. Similarly, we find that set pruning tries (using a
DAG optimization) have much better storage costs than the
worst-case bound of N k indicates.

We also propose several novel techniques to further im-
prove the performance of backtracking and set pruning tries.
First, most designers assume that backtracking is infeasi-
ble to implement in hardware because of its high compu-
tational state (large number of registers) and its inability to
be pipelined (without having memory replicated for each
pipeline stage). We show, perhaps surprisingly, that both
these assumptions are false. We introduce a new backtrack-
ing search technique, which reduces the hardware register
cost for doing backtracking in hardware to k + 1, where
k is the number of dimensions. We also show that while
some memory must be replicated at different stages, one can
pipeline real firewall databases with a very small amount of
replicated memory.

Second, we design a novel compression algorithm that
applies to any multiplane trie. Our results indicate that
compression reduces the lookup time by a factor of 2 - 5,
and reduces the storage by a factor of 4 - 12.

Finally, given that backtracking search and set pruning
tries are at two ends of a spectrum between the optimal
storage and the optimal time, it makes sense to study the
tradeoff between these two extremes. As the two schemes
are structurally similar and use multiplane tries as their un-
derlying basis, we show that it is possible to smoothly trade-
off storage for time using a new mechanism called selective
pushing. Our results show that the tradeoff scheme offers
more choices, and can improve the time of backtracking
search with only modest increase in storage.

The paper is organized as follows. We give the prob-
lem definition in Section 2, and review related work in
Section 3. In Section 4 we describe backtracking search
and introduce some simple new optimizations to improve
search time. We then evaluate its performance, and quan-
tify the effects of each of the optimizations using the real
firewall databases. In Section 5 we describe set pruning
search, introduce some optimizations to improve storage,
and present our experimental results. In Section 6 we pro-
pose a novel compression scheme, and evaluate its per-
formance gain both in theory and with experiments. In
Section 7, we examine pipelining the search, and evaluate

its storage cost. In Section 8 we explore a tradeoff between
time and space by starting with backtracking search and us-
ing selective pushing. We conclude in Section 9.

2. Problem Specification

Packet classification is performed using a packet classi-
fier, which is a collection of filters (or rules in firewall ter-
minology). Each filter specifies a class of packet headers
based on some criterion on K fields of the packet header.
Each filter has an associated directive, which specifies how
to forward the packet matching this filter. We say that a
packet P matches a filter F if each field of P matches the
corresponding field of F . This can be either an exact match,
a prefix match, or a range match. Since we can represent a
range using multiple prefixes [10], we assume for the rest of
the paper that each field in a rule is a prefix unless otherwise
specified. 3

Since a packet can match multiple filters in the database,
we associate a cost for each filter to determine an unam-
biguous match. Thus each filter F in the database is asso-
ciated with a non-negative number, cost(F). Our goal is to
find the least cost filter matching a packet’s header. The key
metric is classification speed. It is also important to reduce
the size of the data structure to allow it to fit into high speed
memory. The time to add or delete filters is often ignored in
existing work, but can be important for dynamic filters.

3. Related Work

Many router vendors do a linear search of the filter
database for each packet, which scales poorly with the num-
ber of filters. To improve the lookup time, some ven-
dors cache the result of the search keyed against the whole
header. Caching may work well and have high hit rates [11]
but still requires a fast packet classification scheme to han-
dle the 10− 20% cache misses. A hardware-only algorithm
could employ a ternary CAM (content addressable mem-
ory). However ternary CAMs are still fairly small, inflexi-
ble and consume a lot of power.

[4] describes a scheme optimized for implementation in
hardware. It works well for up to 8000 filters and should
scale further with further hardware improvements. How-
ever, it requires specialized hardware. [10] proposes two so-
lutions for multi-dimensional packet classification: grid-of-
tries and crossproducting. The former scheme decomposes
the multidimensional problem into several 2-dimensional
planes, and uses a data structure, grid-of-tries, to solve the
2-dimensional problem. Crossproducting is more general

3 There can be a large increase in the number of rules during range-to-prefix
conversion. Our new compression algorithm will address this issue as shown in Sec-
tion 6.1.

but either requires O(N k) memory or requires a caching
scheme with non-deterministic performance.

[5] proposes a simple multi-stage classification algo-
rithm, called recursive flow classification (RFC). It has
much better (but still large) storage for real databases than
cross-producting. [9] suggests searching through combi-
nations of field lengths (tuples) and also suggest a heuris-
tic of first doing prefix searches on the individual fields to
prune the set of tuples to be searched. [6] suggests another
heuristic based on geometrically partitioning the classifica-
tion space, which produces fairly good search times and re-
quires less memory than [5].

[3] considers a tradeoff between lookup time and storage
cost. However, their experimental results are only for 2-
dimensional databases, and it is not clear how the algorithm
would perform on real higher-dimensional databases. We
describe a completely different algorithm that trades storage
for lookup time in Section 8 and evaluate its performance on
5-dimensional real databases.

4. Revisiting Backtracking Search

Given that real firewall filter databases contain consider-
able structure, in this section we revisit a simple algorithm:
backtracking search. We start by reviewing the basic mech-
anism, and then show how it can be augmented by simple
optimizations.

4.1. Basic Backtracking Search

A trie is a binary branching tree with each branch la-
beled 0 or 1. The prefix associated with a node u is the
concatenation of all the bits from the root to the node u.
It is straight-forward to extend a single dimensional trie to
multiple dimensions [10]. We first build a trie on the pre-
fixes of the first field, Field1. Each valid prefix in the Field1

trie points to a trie containing Field2 prefixes (that follow
Field1 prefixes in some filter). Similarly for the other di-
mensions.

Throughout the paper, the storage cost is assessed as the
total number of nodes in the trie, and the lookup time is
assessed as the total number of nodes visited during the
search, which corresponds to the total number of memory
references during the search. Since each filter is stored
exactly once, the memory requirement for the structure is
O(NW), where N is the total number of filters, and W is
the maximum number of bits specified in any of the three
dimensions.

Backtracking search is essentially a depth first traversal
of the tree which visits all the nodes satisfying the given
constraints. For example, suppose we search for a header
that matches [D3, S2, P1] in the trie shown in Figure 1. We
first traverse the D trie, and remember all the matches D3,

D2, and D1. Then we traverse the S trie for D3 and remem-
ber S1 and S2. Next we traverse the P trie for S2. After
reaching P1 (assume no match beyond P1), we do our first
backtrack, and start exploring the P trie for S1. Once we
reach P1, we do another backtrack, and start walking the
S trie for D2. Finally, we explore the S trie for D1. In
general, the amount we have to remember can be W ∗ K ,
where W is the average number of matches per dimensions,
and K is the number of dimensions.

Field D

Field S

Field P

D1

D2

D3

S1

S2 S2

S1

S2

P1 P1 P1 P1 P1

Figure 1. Backtracking search on a small memory budget.

The lookup time of backtracking search can be as large
as θ(WK), where K is the number of dimension. The ap-
plication of switch pointers, introduced in [10], can help to
avoid backtracking in the last two dimensions. This reduces
the worst-case lookup time to O(W K−1). Thus in the 2-
dimensional case, the lookup time is O(W).

4.2. Backtracking Search Optimizations

Before we introduce our major optimization ideas, we
start by describing some simple (but new) optimizations for
backtracking search: considering backtracking on a small
memory budget, optimal field ordering, pruning based on
cost, and generalizing switch pointers [10].

Backtracking using limited computation state: Back-
tracking is considered expensive (especially in hardware
where the backtracking state has to be kept in limited regis-
ter memory) because of the potential need to keep state for
all potential backtrack points. We show that for a tree that
does backtracking in multiple dimensions, we only need
state proportional to the number of dimensions (e.g., 6 reg-
isters for the common case of IP 5-tuples).

As described in Section 4.1, using standard backtracking
search we need to keep W ∗ K pieces of state. We now
describe a solution that takes K + 1 pieces of state. The
key modification is that instead of doing depth-first traver-
sal while remembering all past backtracking points, we go
to the first trail we see, and only then return for more ex-
ploration. In other words, we visit more general filters first,
and more specific filters later.

In the previous example, we will explore the D trie until
we reach D1. Since we see a pointer to a S trie here, we
immediately follow it. When we reach S1, we see another
trail to follow to P trie, we start walking P trie until we

reach P1. When we come to the end of that, we have to
do our first backtrack. We start walking the S trie for D1
further till we hit S2. Finally, after walking the P trie for
S2, we once again try to walk the S trie for D1, and fail (no
matches beyond S2 in the S trie). Then we back up and try
to walk the D trie further. Thus the order of filters visited is
(D1, S1, P1), (D1, S2, P1), (D2, S2, P1), (D3, S1, P1),
and (D3, S2, P1). The standard method visits them exactly
in reverse order.

While the standard scheme does not keep a lot of state
in this simple example, it can in the worst-case. In contrast,
the modified backtracking search only takes K + 1 pieces
of state, since we only need to keep track of the current
dimension being explored, the pointers to the roots of the
tries (in all dimensions) on the current search path, and the
bit positions in the header to start the trie search. Since bit
positions only take 5 bits and pointers are less than 27 bits,
we can easily keep the state information in a set of K + 1
32-bit registers.

Optimal Field Ordering: We have observed that the
lookup time in backtracking search is sensitive to the order-
ing of fields in the trie. We evaluated the effect of differ-
ent orderings on the query lookup time using real firewall
databases, and find that using the best ordering improves
the lookup time by 10% to 65%. Moreover, there are about
half the orderings whose lookup times are within 10% dif-
ferent from that of the best ordering. This suggests one way
to find a good ordering is to randomly try a few orderings,
and pick the best one. A further enhancement is to use some
heuristic (e.g. choose the orderings that place the field with
the most prefix containment 4 as the last field) to pre-select
some good orderings, and then randomly try some of the se-
lected orderings. Other heuristics were suggested in [6, 3].

Pruning Based on Cost: The basic idea behind pruned
backtracking is as follows. During the backtracking search,
if we encounter a trie node such that the tree beneath the
node does not contain any lower cost filter than the current
match, then we do not need to search through the trie below
that node. Refer to [8] for more details. (Pruning based on
cost is used in other filter algorithms such as [5, 1].).

Switch Pointers: We further optimize backtracking
search with switch pointers. Switch pointers were intro-
duced in [10] but the technique is limited to 2-dimensional
packet classification. We extend switch pointers to higher-
dimensional packet classification by using it over the last
2 fields, or by avoiding the first backtracking, whichever is
more beneficial. We omit the details for lack of space.

4 Prefix containment is the number of prefixes that are prefixes of a given prefix.
For example, suppose we have the following prefixes 0*, 00*, 001*, and 000*. Then
the prefix containment of 000* is 2, since 0* and 00* are both its prefixes.

Database # Rules # Rules in the prefix format
Database 1 67 127
Database 2 158 418
Database 3 183 531
Database 4 279 949
Database 5 266 1640

Table 1. Firewall databases.

4.3. Performance Evaluation

In this section, we experimentally evaluate backtracking
search to quantify the effects of the various optimizations
described above. We use the total storage and the worst-
case lookup time as our performance metrics. The total
storage is computed as the total number of nodes in the mul-
tiplane trie. The worst-case lookup time is the total number
of memory accesses in the worst-case assuming a 1 bit at a
time traversal of each trie. Finding worst-case backtracking
search times is non-trivial. Refer to [8] for details.

We use a set of 5 industrial firewall databases that
we obtained from various sites for performance evaluation
throughout the paper. For privacy reasons, we are not al-
lowed to disclose the names of the companies, or the ac-
tual databases. Table 1 shows the number of rules in the
databases. The rules in the firewall are specified either as
exact match, or as prefix, or as ranges. In order to use a
multiplane trie for filter classification, we need to convert
all the rules to a prefix format. Rules specified as ranges are
converted using the technique of [10]. Column 3 in Table 1
shows the number of rules after converting to the prefix for-
mat. The conversion leads to a factor of 2 - 6 increase in
the number of rules. Our new compression algorithm, de-
scribed in Section 6.1, will address this issue.

The databases have the following characteristics:
• Prefix containments: In our databases, no prefix con-

tains more than 4 matching prefixes for each dimen-
sion. Most prefixes contain 1, 2, or 3 matching pre-
fixes only. We believe our performance results will be
applicable for other filter databases that have a similar
number of prefix containments.

• Prefix lengths: The most popular source/destination
prefix lengths are 0 (wildcard) and 32. There are also
a number of prefixes with lengths 21, 23, 24, 28, and
30. This is very important for the performance of our
compression algorithm, described in Section 6.1.

• Port ranges: 5% - 10% of the filters have port fields
specified as ≥ 1024 5. Such a range is converted into
6 prefixes using [10], which contributes heavily to the
increase in the prefix rules. This will be addressed by
our compression algorithm, described in Section 6.1.

• IP addresses: The destination and source prefix fields
have roughly half the rules that are wildcarded.

5This is common because of the convention that the well known ports for standard
services such as email etc, use port numbers < 1024.

Database Trie
Depth

Memory Accesses Storage (# nodes)

BB PB SB BB PB SB
1 86 146 119 117 1848 1782 1782
2 102 153 145 143 4914 4914 4914
3 102 169 149 149 3949 3743 3743
4 102 202 170 170 6785 26006 6630
5 102 208 198 196 6555 13724 16493

Table 2. Performance of backtracking search using one 5-
dimensional trie, where BB, PB, and SB stand for basic backtrack-
ing, pruned backtracking, and pruned backtracking with the ex-
tended switch pointer optimization (described in Section 4.2).

4.3.1. Performance Results

Our performance results for backtracking are summarized
in Table 2. Note that our results are based on searching one
bit at a time. A simple extension is to search multiple bits
at a time. Clearly, if we search 4 bits at a a time, then the
memory accesses are reduced to 1

4 of the values reported
here, but the storage could increase by a factor of up to 16.

We compare three algorithms: basic backtracking,
pruned backtracking, and pruned backtracking with the
switch pointer optimization 6. We list the results for the
best ordering in Table 2. (The best ordering for all forms of
backtracking search is the ordering that minimizes memory
accesses.)

As we can see, the three backtracking search algorithms
have small memory requirements. The exact storage re-
quirements are sometimes different because the best order-
ing for the three schemes is not necessarily the same. For all
five databases, even the basic backtracking cost is around
twice the height of the trie or less. This is somewhat sur-
prising, since backtracking is usually regarded as too slow
for packet classification. Thus for real databases with lim-
ited number of prefix containments, we believe backtrack-
ing can be affordable in practice. Using say an 8 bits at
a time trie traversal, backtracking requires around 18 - 26
memory accesses. This is better or as good as any firewall
implementations we know while using much less storage.

5. Revisiting Set Pruning Tries

Set pruning tries were initially proposed in [2] and
briefly examined (and then discarded) in [10]. As with
backtracking search, set pruning tries work using multi-
plane tries. Set pruning tries, however, differ from back-
tracking search tries by fully specifying all search paths so
that no backtracking is necessary. However this is done at
the cost of increasing storage. In the worst-case, set pruning
tries may take up to O(N K) storage.

We first review some standard terminology, and then ex-
plain the process of converting a backtracking search trie to

6Our evaluation is based on the standard backtracking search. The results of
modified backtracking search on a small memory budget are the same for basic back-
tracking, and similar for the other types of backtracking.

its corresponding set pruning trie.
We say that string S ′ is a descendant of string S if S is

a prefix of S ′. We say that filter A is a descendent of filter
B if for all dimensions j = {1, 2, ..., k}, string A(j) is a
descendant of B(j). (Note that A(j) is allowed to be equal
to B(j) and still be a descendant of B(j).)

Converting a backtracking search trie to a set pruning trie
is essentially replacing a general filter with its descendent
filters. In other words, for every filter F , we “push” F down
to all its descendent filters, and then delete F . For instance,
in Figure 2, filter [*, *, *] is pushed down to the places
corresponding to [0*, 0*, *], [0*, 0*, 0*], [0*,1*, *], [1*,
0*, *], and [1*, 1*, *], and [1*, 1*, 1*], all of which are
descendent filters of [*, *, *]. Note that after [*, *, *] is
pushed down, the filter that is stored in the node A changes
from F1 to min(F1, F2); similarly the filter that is stored
in the node B changes from F3 to min(F3, F2). Since [*,
*, *] is replaced with all its descendent filters during the
push-down step, we can simply delete it. As we can see,
the push-down step may potentially lead to memory blow
up. In the worst-case, we may need O(N K) storage for K
dimensional filters.

F1

F2

F3 min(F1,F2)

F2 F2

min(F3,F2)

F2F2

0 1

0

0

1

1

0 1

0

0

1 0 1

1
A B

Figure 2. Backtracking search trie versus set pruning trie.

We now consider two optimizations to reduce storage in
set pruning tries: the use of DAGs, and the use of optimal
field orderings.

Optimizing storage using DAGs: A natural technique
to reduce the memory of set pruning tries is to change the
tree structure of a multiplane set pruning trie to a Directed
Acylic Graph (DAG). This was first suggested in [2]. We
illustrate the idea using a 3-dimensional trie. As shown in
Figure 3, the tries that node A and B (both in the first field)
are pointing to are identical. So instead of keeping several
copies of identical tries, we only need to keep one copy, and
have both nodes point to the same 2-dimensional trie. This
is done at all field boundaries.

With DAGWithout DAG

A

B

F1 F1
F1

0

0

0

0

0

0

0

0

A

B

Figure 3. Set pruning trie with the DAG optimization.

Our results show the DAG optimization helps to reduce

Database # memory accesses Storage (# nodes)
Database 1 86 5541
Database 2 102 51785
Database 3 102 59180
Database 4 102 123951
Database 5 102 165920

Table 3. Performance of set pruning tries (with the DAG opti-
mization) using one 5-dimensional trie.

memory blow up by two orders of magnitude in the com-
plete set pruning trie. We also experimented with using the
DAG optimization at the same bit position within a field,
but found that the additional saving was insignificant, usu-
ally around 5 − 10%.

Optimal field ordering: As in backtracking search, we
also find that field ordering affects storage requirements sig-
nificantly. We evaluated the effect of different orderings us-
ing the real databases, and found that the best ordering cuts
down the storage cost by a factor of 2 - 7. On the other
hand, there are a handful of orderings that give comparable
performance (within 30% difference) to the best ordering.
Therefore we can use similar heuristics as discussed in Sec-
tion 4.2 to choose a good ordering.

5.1. Experimental Evaluation

In this section, we experimentally evaluate the perfor-
mance of set pruning trees using the same 5 industrial fire-
wall databases described in Section 4.3.

We list the results for the best ordering in Table 3. (The
best ordering for a set pruning trie is the ordering that min-
imizes storage.) Again our results are based on searching
one bit at a time. Compared to several forms of backtrack-
ing search as shown in Table 2, set pruning tries provide
an optimal number of memory accesses at the cost of large
storage requirement. In particular, the storage requirement
increases to 3 - 25 times as large as what is minimally re-
quired by the corresponding backtracking search trie. Note
that the databases 2, 3, 4, and 5 all have the same worst-case
lookup time of 102, since this is the maximum number of
nodes we can ever visit without backtracking 7.

6. Compression

We further improve backtracking search and set pruning
tries using a novel form of compression. A standard com-
pression scheme for tries (e.g., [2]) is to remove all single
branching paths so that no node has more than one child).
Figure 4 shows an example: the algorithm compresses the

7We have 32 bits each for source/destination address, and 16 bits each for
source/destination port. In each database there are less than 16 different protocols,
so we use 4 bits to distinguish them. Except the protocol trie, which we search 4 bits
at a time, all the other tries are 1-bit at a time. So the maximum number of nodes we
can visit without backtracking is 102 (including 5 roots in each dimension).

trie on the left into the one on the right by collapsing mul-
tiple nodes into a single node when multiple edges succeed
each other without any branching. For the performance of
this standard compression algorithm, we have the following
theorem.

0

0

0

0

1

1

0 1

0 1 0000

0 1

11

01

Figure 4. A standard compression algorithm: merge a single
branch into one trie node.

Theorem 6.1 Consider a 1-dimensional trie with N leaf
nodes, and only leaf nodes are associated with filters. After
compression, it has 2N − 1 nodes.

6.1. General Compression Algorithm

The standard compression scheme is efficient when there
is no redundancy in the trie nodes. A trie has redundancy
when many trie nodes have the same pointer value: either
pointing to the same node in the next dimensional trie, or
pointing to the same filter. Such redundancy especially
arises when filters specified in ranges are converted into
those specified in prefixes, or when a more general filter is
pushed down to several more specific filters. The standard
compression scheme cannot exploit such redundancy. For
example, it fails to compress anything for the trie shown
in Figure 5(a), since no node in the trie has only a single
branch.

0 branch
=01010

0 branch
<01010 1 branch

=111

1 branch
<111

F2 F4 F3F1

F2

F1

F1
F3

F3 F4

0

0

0

0

0

0

0

1

1

1

1

1

(a) (b)

Figure 5. Our new compression algorithm.

However, a closer examination of the trie in Figure 5(a)
reveals an interesting property: all nodes on the left of path
01010* (and also on the branches starting with 0) point to
filter 1. If we can use range comparison as well as an equal-
ity test, we can compress all the branches starting with 0
by creating one center branch pointing to filter 2 with value
01010, and one side branch pointing to filter 1 with value
< 01010. Similarly, we can compress all the branches start-
ing with 1 by creating one center branch pointing to filter 4
with value 111, and one side branch pointing to filter 3 with
value < 111. This leads to a more compact trie as shown on
Figure 5(b).

To generalize the above example, if a path AB satisfies
the following property, called the Compressible Property:

(i) all nodes on its left point to the same place L (either the
same filter or the same node in the trie), and (ii) all nodes
on its right point to the same place R, then we can com-
press it as follows. Let δ(AB) denote the string labeling
the path from node A to node B. We compress the entire
branches by creating three edges: one center branch with
value δ(AB) pointing to what B used to point to, and one
side branch with value < δ(AB) pointing to L, and another
side branch with value > δ(AB) pointing to R.

To simplify the following discussion, we use the data
structure shown in Figure 6 to represent a compressed node.
We add 3 fields to the original uncompressed trie node:
value, len, and rangeP tr as shown in Figure 6. Since
some of the elements may be empty, in practice we can have
variable size trie nodes which are just large enough to hold
the non-empty elements.

#define MAX CHILD 2 // for binary trie
struct NODE {

struct NODE * Child[MAX CHILD]; // center branch
long value[MAX CHILD];
uchar len[MAX CHILD];
struct NODE * rangeP tr[2*MAX CHILD]; // side branch
... //other data members used in uncompressed trie node

}

Figure 6. Data structure for compressed node.

The way we use the above data structure is as follows. If
the current input is 0, we check to see if it matches value[0]
after taking the appropriate bit mask. If so, we follow the
pointer to Child[0]. Otherwise, we follow its rangeP tr[0]
if it is less than value[0], or rangeP tr[1] if it is larger than
value[0]. Similarly for input 1.

We now examine the details of our general compres-
sion scheme. We need only consider the 1-dimensional
case, since compressing a higher-dimensional trie can be
achieved by compressing one dimension at a time.

A trie node has up to MAX CHILD paths. Each of these
paths can be compressed independently. (This is the same
as the standard compression scheme.) So we only need to
solve the problem of compressing one path. The basic idea
is that at each node we try to decide whether the next im-
mediate step to take can be compressed out. The next step
is compressible if and only if it satisfies the invariant that
all the nodes on the left of the center path (i.e. the path that
will be converted to a center branch) have the same pointer
value, and all the nodes on the right of the center path have
the same pointer value. Below we refer to the invariant as
the compressible invariant. To decide if the compressible
invariant is maintained, we need to look at the characteris-
tics of the node’s Child. In particular, we classify a node
into the following categories:

1. It has only one child, and none of its children are in-
ternal nodes (i.e. nodes whose Child are not empty).

2. It has more than one child, and none of its children are
internal nodes.

3. Exactly one of its children is an internal node;

4. It has more than one child which are internal nodes.

It is clear that we cannot compress the nodes in case 4,
since the compressed path can retain the information of ei-
ther of the paths, but not both. For the other cases, we need
to check further to make sure the compressible invariant
holds. This involves two steps: (i) finding the center path,
and (ii) verifying the invariant. The main issue is the first
step, finding the center path. The second step is straight-
forward once the center path is given. The center path is
easy to identify in cases 1 and 3, since there is only one
path we can possibly take. In case 1, the center path is the
branch between the current node and its non-empty child
node; in case 3, the center path is the branch between the
current node and the child node that is an internal node. In
case 2, there is more than one candidate, and we pick one
that satisfies the compressible invariant. We prove the cor-
rectness of the algorithm, and analyze its performance in
[8]. In particular, we have the following theorem:

Theorem 6.2 For a trie representing N points in the range,
we can compress it to 2N − 1 nodes using the general com-
pression algorithm.

6.2. Experimental results for Compression

In this section, we evaluate our new compression algo-
rithm applied to both backtracking search and set pruning
tries using the same five databases shown in Table 1.

We list the performance results for the best ordering (de-
fined in Section 4.3.1 and Section 5.1). Compared with the
performance results before compression, as shown in Ta-
ble 2 and Table 4, it is evident that compression improves
performance significantly. More specifically, compression
reduces memory accesses and storage cost by a factor of 2 -
5 for backtracking search with and without cost based prun-
ing. (We haven’t implemented compression with switch
pointers, but we expect similar performance gain as with
the other types of backtracking search.) 8 For the set prun-
ing trie, compression cuts down storage by a factor of 4 -
12, and cuts down lookup time by a factor of 1.6 - 4.

It is interesting to note that with compression, the lookup
time of backtracking search is close to that of set pruning
tries, and sometimes even better. This is because the high
compression ratio of the paths in the backtracking search
trie offsets the cost of a small number of backtracks. Refer
to [8] for more details.

8Since the compressed trie nodes are bigger than standard trie nodes, each access
to a trie node should strictly be charged twice the number of memory accesses shown
(to access the value and then follow the pointer). However, since most processors
prefetch a whole cache line, the second access should be essentially zero cost as long
as the node fits in a cache line. We use the same assumption for linear search.

Database # memory accesses Storage (# nodes)
Set Pruning BB PB Linear Search Set Pruning BB PB Linear Search

Database 1 22 30 (21) 28 (21) 67 1510 429 429 67
Database 2 57 51 (34) 39 (34) 158 5778 912 912 158
Database 3 59 49 (36) 43 (45) 183 6914 1261 1666 183
Database 4 64 98 (58) 85 (58) 279 30322 2951 2951 279
Database 5 55 59 (29) 58 (29) 266 13556 2815 2815 266

Table 4. Performance of compressing backtracking search and set pruning tries (with the DAG optimization) using one 5-dimensional trie, where
BB and PB stand for basic backtracking and pruned backtracking (described in Section 4.2). The numbers in the parentheses are the height of
the compressed trie. Sometimes the height is larger than the memory accesses of pruned backtracking, since some nodes can not be reached after
pruning. For linear search, we assume each filter fits in a cache line, and accessing a filter rule takes 1 memory reference.

We also compare the performance of linear search with
backtracking search and set pruning tries in Table 4. As
we would expect, both backtracking search trie and linear
search have low storage cost. On the other hand, the lookup
time of linear search is 2 - 5 times as large as what is re-
quired by backtracking search or set pruning tries. If we
use multi-bit tries, the performance of backtracking search
and set pruning tries can be even better. 9

Furthermore, the lookup time of linear search increases
linearly with the size of databases. In contrast, the lookup
time of set pruning tries is constant, at most the maximum
number of bits in the header fields; the lookup time of back-
tracking search is a constant factor of what is required by the
set pruning tries for databases with limited prefix contain-
ments. Therefore both backtracking search and set pruning
tries have more scalable lookup time than linear search.

A few comments follow. First, although the storage cost
of a compressed node is larger than an uncompressed node
(40% larger in our implementation), the total storage is ac-
tually much smaller after the compression, since compres-
sion cuts down the number of nodes by a factor of 2 - 12.
Second, search on our compressed tries involves both equal-
ity test and range comparison. Without special optimiza-
tion, the CPU time spent per node almost doubles after com-
pression 10. However, the total CPU time is actually less be-
cause compression cuts down the number of nodes visited
by more than 2 times. Moreover, the lookup time is dom-
inated by the number of memory accesses, which is much
less after the compression. Therefore the performance gain
of compression is almost the amount of the reduction in
memory accesses, and the additional CPU overhead with
compression is negligible.

To summarize, we described a new compression algo-
rithm that can reduce the storage cost by a factor of 4 - 12,
and reduce lookup time by a factor of 2 - 5.

9We are working on using multi-bit lookup on the compressed trie. We expect
using k bits at a time, the speedup in the lookup time of backtracking search will be
close to, but smaller than, a factor of k.

10The performance result is based on looking up one header filter 1000000 times
on an otherwise idle UNIX machine. We conducted the experiments for different
header filters and using different databases, and the performance is similar.

7. Pipelining Backtracking

So far all the algorithms in this paper could be imple-
mented in either hardware or software. However, hardware
implementors often wish to use extra hardware gates to im-
prove speed by using parallelism. A natural way to speed
up an algorithm that has sequential dependencies (such as
backtracking) is to use pipelining.

First, we assume the use of our new backtracking scheme
that uses limited computation state; this is crucial because
it reduces the amount of register memory passed between
pipeline stages. However, we also have to worry about the
amount of main memory (especially if each pipeline stage
requires its own memory, and the memory is fast SRAM).
SRAM, which corresponds to cache memory in CPUs, is
expensive and must be minimized for a feasible solution.

A simple way to pipeline the backtracking search is to
store the entire backtracking search trie at every pipelining
stage. During the backtracking search, we pass the node
to be visited after the previous pipelining stage to the next
pipelining stage, so that the search in the next pipelining
stage will start from that node. In this case, the main mem-
ory storage requirement increases linearly with the number
of pipelining stages. However since not all nodes in the
backtracking trie will be visited in every pipelining stage,
a natural enhancement to the previous approach is to have
the pipelining stage i store only the trie nodes that will be
visited in the stage i. Refer to [8] for the details of how
to partition the backtracking trie into different pipelining
stages.

Figure 7 shows the main memory storage requirement
as a function of the total number of pipelining stages for
both uncompressed and compressed tries 11. As we can see,
the storage increases only moderately with the number of
pipelining stages in both cases.

Similarly, we can also apply pipelining to set pruning
tries for improvement in search time. The total storage re-
quirement in this case is equal to the size of the original
set pruning tries, since every node is stored at exactly one
pipelining stage.

11Our evaluation is based on the modified backtracking search on a small register
memory budget. Similar results are observed for the standard backtracking search.

0

10000

20000

30000

40000

50000

60000

70000

0 2 4 6 8 10 12 14 16

St
or

ag
e

(#
 n

od
es

)

pipelining stages

Uncompressed Tries

Database 1
Database 2
Database 3
Database 4
Database 5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2 4 6 8 10 12 14 16

St
or

ag
e

(#
 n

od
es

)

pipelining stages

Compressed Tries

Database 1
Database 2
Database 3
Database 4
Database 5

Figure 7. Storage requirement for pipeline.

8. Trading Storage for Time

In the previous section, we showed that real databases
contain significant structure, and that simple mechanisms
like backtracking search and set pruning tries can perform
much better than the worst case bounds, especially using
several optimization techniques (in particular, generalized
compression) we proposed. These two algorithms are at two
extremes: one has small storage requirement with subopti-
mal lookup times, and the other offers good lookup time at
the expense of a suboptimal memory requirement. Ideally
we would like to have a smooth tradeoff between the two ex-
tremes. That is, if we can afford larger memory, we would
like to have correspondingly better lookup times. Similarly
if the lookup time requirement is relatively large, we would
like to be able to use cheap machines (with less memory)
to do filter search. Such a tunable algorithm would give
designers more choices and flexibility.

Note that, with compression, backtracking search may
sometimes have better lookup time than set pruning tries.
In this case, we can still use the same technique, described
below, to tradeoff memory for lookup time. The only dif-
ference is that compressed set pruning tries are no longer
in the tradeoff region, for they neither yield the best storage
requirement nor the best lookup time.

8.1. Selective Pushing

As we have seen earlier in Section 5, set pruning tries
eliminate all backtracking by “pushing” down all filters to
its descendents. So searching for a filter in a set pruning trie
is simply searching for the longest matching prefix in every
dimension. There is no need to do any backtracking. An im-
portant observation is that eliminating all backtracking can
be potentially storage intensive. If we are willing to afford
a small amount of backtracking, however, we can “push”
down fewer filters, which can reduce storage requirements.
Below we describe a heuristic called selective pushing that
decides which filters to push down.

The basic idea is that we only “push down” the fil-
ters with high worst-case backtracking times, and leave the
other filters intact. The code in Figure 8 shows the skele-
ton of the selective push algorithm. Basically it computes
the search cost for each header class, where a header class is

defined as a set of headers that follow the same path in back-
tracking search. If the search time for the header class (it-
self represented as a filter) exceeds our required time bound,
then we insert the filter into the trie. Note that the header
class filters may be different from the original filters in the
database.

foreach header class (represented as Filter(i))
cost = BacktrackSearch(trie,header);
if (cost > bound)

insertFilter(trie,Filter(i));
annotate the leaf so that search can stop at this leaf

end

Figure 8. Find worst-case search time.

After filter F is inserted, then our search for F will be
exactly the same as in a set pruning trie: we simply search
for the longest prefix match in each dimension, and the leaf
will be the matching filter; no backtracking is necessary.
Therefore we must annotate the leaf of the pushed down
filter to indicate that there is no need for backtracking search
after encountering this leaf.

Pushing down a filter makes search time for that partic-
ular filter O(KW), where K is the number of fields, and
W is the maximum length of any field. However, as a side
effect, adding some more paths to the trie (during the push-
down) may make searching for some other filters longer.
Therefore we need to iteratively push down: we first get rid
of the longest path; if this push-down produces new long
paths, then we need to get rid of these as well. The algo-
rithm stops either when the worst-case lookup time is below
the required time bound (specified as an input), or the mem-
ory grows to the size of a set pruning trie, corresponding to
the state where all filters get pushed down.

Selective pushing can be applied to both uncompressed
and compressed tries. The side effects of applying selec-
tive pushing for the compressed trie are two fold: (i) adding
more branches may increase the search time for other filters,
and (ii) adding more branches may reduce the compression
ratio, which may in turn increase search time for a large
number of filters. Therefore we need to be more conserva-
tive when applying selective pushing to a compressed trie.
Our experiments suggest that a better heuristic in this case
is to push the filters with largest search time in the current
iteration, and do it iteratively.

8.2. Performance Results of Selective Pushing

We evaluate the performance of selective pushing ap-
plied to both uncompressed and compressed tries using the
same 5 databases. For the following evaluation, we use
the best field orderings as defined in Section 4.3 and Sec-
tion 5.1.

For the uncompressed trie, we apply selective pushing

on basic backtracking augmented with cost-based pruning
and extended switch pointers, described in Section 4.2. The
results are shown in Figure 9(a). As we can see, we can
reduce the query lookup time with little increase in storage
when the lookup time is large. For example, for database
1, the lookup time is reduced from 117 to 95 with mod-
erate increase in storage. Further decrease in the lookup
time is achieved at higher cost in storage after we reach the
“knee” of the curve. Similar behavior is observed for the
other databases. Also for all databases, when the lookup
time comes close to the optimal, the storage costs saturate
at those of the corresponding set pruning trie, as we would
expect.

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

85 90 95 100 105 110 115 120

St
or

ag
e

(#
 n

od
es

)

Lookup Time (# memory accesses)

Database 1

0

5000

10000

15000

20000

25000

40 42 44 46 48 50 52

St
or

ag
e

(#
 n

od
es

)

Lookup Time (# memory accesses)

Database 2

(a) an uncompressed trie (b) a compressed trie

Figure 9. Selective pushing applied to both uncompressed and
compressed tries.

For compressed tries, we evaluate the performance of se-
lective pushing on basic backtracking search. (We haven’t
implemented it for other types of backtracking, but we be-
lieve the performance should be similar if not better.) The
results are shown in Figure 9(b). As before, when the
lookup time is large, it drops rapidly at very small cost in
storage. For instance, in database 2, we reduce the lookup
time from 51 to 44 with little extra storage. Further decrease
in lookup time incurs higher cost in storage after we reach
the “knee” of the curve. Similar behavior is observed for
the other databases.

To conclude, in this section we use selective pushing to
smoothly tradeoff storage for lookup time and find it use-
ful to improve backtracking search times by around 10-20%
with only a small increase in storage.

9. Conclusion

This paper has four contributions. First, we showed ex-
perimentally that the performance of simple trie based fil-
ter schemes is much better than worst-case figures predict.
We also improved the basic trie based filter schemes with
a number of optimizations, including a new backtracking
search technique, which requires only D+1 pieces of state,
where D is the number of dimensions. Second, we pro-
posed a novel compression algorithm that further reduces
the lookup time and storage cost. Third, we investigated

pipelining the search, and found the storage cost for pipelin-
ing increases only moderately with the number of pipelin-
ing stages. Finally, we introduced a simple mechanism for
trading memory to improve the search time of backtracking
search.

Despite the fact that the storage numbers for optimized
set pruning tries are reasonable, our final message is that
backtracking (with compression, selective pushing, and
possible hardware support) offers a more reasonable time-
space tradeoff than set pruning tries, and should be seriously
considered by router implementors.

10. Acknowledgments

We would like to thank Geoff Voelker, Pankaj Gupta, and
anonymous reviewers for their helpful comments.

References

[1] M. M. Buddhikot, S. Suri, and M. Waldvogel. Space Decom-
position Techniques for Fast Layer-4 Switching. IFIP Sixth In-
ternational Workshop on Protocols For High-Speed Networks,
Aug. 1999.

[2] D. Decasper, Z. Dittia, G. Parulkar, B. Plattner. Router Plug-
ins: A Software Architecture for Next Generation Routers. In
Proc. of SIGCOMM’98, 1998.

[3] A. Feldmann and S. Muthukrishnan. Tradeoffs for Packet
Clasification. In Proc. INFOCOM’2000, March 2000.

[4] T. V. Lakshman and D. Stidialis. High Speed Policy-based
Packet Forwarding Using Efficient Multi-dimensional Range
Matching. In Proc. of SIGCOMM’98, Sept. 1998.

[5] P. Gupta and N. McKeown. Packet Classification on Multiple
Fields. In Proc. of SIGCOMM’99, Sept. 1999.

[6] P. Gupta and N. McKeown. Packet Classification using Hi-
erarchical Intelligent Cuttings, Proceedings Hot Interconnects
VII, Aug. 1999.

[7] R. Morris, E. Kohler, J. Jannotti, M. F. Kaashoek. The Click
Modular Router. In 17th ACM Symposium on Operating Sys-
tems Principles, Dec. 1999.

[8] L. Qiu, G. Varghese, and S. Suri. Fast Firewall Implementa-
tions for Software and Hardware-based Routers. Microsoft Re-
search Technical Report MSR-2001-61. June 2001.

[9] V. Srinivasan, S. Suri, and G. Varghese. Packet Classification
using Tuple Space Search. In Proc. of SIGCOMM’99, Sept.
1999.

[10] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast
Scalable Level Four Switching. In Proc. of SIGCOMM’98,
Sept. 1998.

[11] J. Xu, M. Singhal, and J. Degroat. A Novel Cache Archi-
tecture to Support Layer-Four Packet Classification at Memory
Access Speeds. In Proc of INFOCOM’2000, March 2000.

