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Abstract

The global nature of energy creates challenges and
opportunities for developing operating system policies
to effectively manage energy consumption in battery-
powered mobile/wireless devices. The proposed cur-
rentcy model creates the framework for the operating sys-
tem to manage energy as a first-class resource. Further-
more, currentcy provides a powerful mechanism to for-
mulate energy goals and to unify resource management
policies across diverse competing applications and span-
ning device components with very different power char-
acteristics.

This paper explores the ability of the currentcy model
to capture more complex interactions and to express
more mature energy goals than previously considered.
We carry out this exploration in ECOSystem, an “energy-
centric” Linux-based operating system. We extend
ECOSystem to address four new goals: 1) reducing
residual battery capacity at the end of the targeted battery
lifetime when it is no longer required (e.g., recharging is
available), 2) dynamic tracking of the energy needs of
competing applications for more effective energy shar-
ing, 3) reducing response time variation caused by lim-
ited energy availability, and 4) energy efficient disk man-
agement. Our results show that the currentcy model
can express complex energy-related goals and behaviors,
leading to more effective, unified management policies
than those that develop from per-device approaches.

1 Introduction

Energy is an increasingly important system resource.
This is most evident in battery-powered mobile com-
puting platforms, from laptops to tiny embedded sen-
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sor nodes, although its significance is becoming recog-
nized in other computing environments as well. While
a number of efforts have explored minimizing the power
consumption of specific system resources (e.g., dynamic
voltage scaling algorithms for the CPU, disk spindown
policies, protocols using wireless power modes), recent
work advocates that the operating system should explic-
itly manage the system-wide role that energy plays [17,
5] and view it as an opportunity and challenge for unify-
ing resource management.

Our recent development of a framework for an energy
centric operating system [22] proposes currentcy as a
unifying abstraction for the management of a broad
variety of system devices that consume energy. This
work demonstrates the use of the currentcy model for
expressing our overall battery lifetime goal and captur-
ing the impact of individual system devices on battery
lifetime. However, just as there is no single performance
metric for all workloads, there is no single energy goal
that satisfies all mobile/wireless scenarios. Thus, for
this work, we set out to determine whether currentcy is
general enough to express additional complex system
behavior. Specifically, this paper makes the following
contributions:

1. For some applications, it is important not just
to achieve a target battery lifetime but to perform more
work during that lifetime. Since characterizing “work”
in general-purpose workloads is difficult, we look at
fully utilizing the available energy within the specified
time. Consider a sensor node running on rechargeable
solar cells. The goal here might be to minimize residual
energy remaining at sunrise after operating through the
night (when it becomes possible to recharge – assuming
reliable weather forecasts) to deliver maximum system
utility. Any residual capacity at the end of the designated
lifetime suggests overly conservative management and
lost opportunities. Experience shows that this situation
can result from a mismatch of the user specifications
and actual demand. Thus, we translate this goal into
the currentcy model and develop a currentcy conserving



energy allocation policy to reclaim unspent energy by
adapting to observed energy consumption patterns.

2. Experience with the ECOSystem prototype also
indicates that there can be subtle interactions between
energy allocation and CPU scheduling policy. Schedul-
ing that is oblivious to energy consumption may not
provide adequate opportunity to spend currentcy alloca-
tions. Returning to our sensor example, suppose there
is an important task that consumes most of its energy in
the wireless network interface, communicating sensor
readings, rather than on processing within the CPU.
Such a task may experience a form of priority inversion.
Thus, we develop a currentcy-based scheduling policy
that recognizes the global relevance of energy consump-
tion anywhere in the system on the scheduling decision.
The result is more robust proportional sharing of energy
regardless of which resources are favored by tasks.

3. Response time variability is disruptive in many
applications. Whenever energy availability is con-
strained – which in ECOSystem means currentcy
allocations are limited – it becomes important to have
a steady rate of consumption. Thus, we develop a
currentcy-based scheduling policy that achieves well-
paced energy consumption, reducing response time
variation.

4. For devices that have nontrivial transition costs
between power states, such as a disk with spindown
capability, there is potential for increased energy ef-
ficiency. We demonstrate how to shape disk access
patterns to amortize the energy costs of spinup/spindown
across multiple requests and thereby reduce the average
energy used per request. We further show the energy and
performance benefits of aggressive prefetching while the
disk is spinning.

In summary, our experimental results show that the
currentcy framework is successful in achieving more ma-
ture energy goals than previously pursued. These in-
clude: reducing residual energy, dynamically balancing
per-task energy supply and demand, lowering response
time variation, correcting energy-related scheduling in-
versions for improved energy sharing, and increased ef-
ficiency for disk accesses.

The rest of this paper is organized as follows. Sec-
tion 2 describes the currentcy model and its implementa-
tion in ECOSystem, a Linux-based prototype, followed
by a discussion of related work. Next, in Section 3,
we outline several methods for manipulating currentcy
to implement energy-related goals. Sections 4 through 8
describe the formulation of several energy goals, beyond
simple battery lifetime, built upon the currentcy manage-

ment framework. We propose and evaluate solutions for
each of these problems. Section 9 concludes this paper.

2 Background and Related Work

2.1 The Currentcy Model

The ECOSystem approach is based upon a unifying
currentcy model. The key feature of this model is the
use of a common unit—currentcy—for energy account-
ing and allocation across a variety of hardware compo-
nents and tasks. Currentcy is an abstraction for explic-
itly representing energy as a resource, precisely specify-
ing energy-related goals, and capturing the interactions
among energy consumers in the system. It is the ba-
sis for characterizing the application power requirements
and gaining access to any of the managed hardware re-
sources. Currentcy is the mechanism for establishing a
particular level of power consumption and for sharing the
available energy among competing tasks.

Originally, the primary goal of ECOSystem was to
achieve a target battery lifetime. Not only is this a well-
defined metric to adopt as a starting point for explicitly
managing energy, but there are also interesting applica-
tion scenarios for which this is an appropriate objective.
Exploiting battery properties that relate lifetime and dis-
charge rate, ECOSystem expresses this goal in terms of
the currentcy model and allocation strategies.

There are two levels to the energy allocation strategy.
The first level allocation determines the amount of cur-
rentcy to collectively allocate among all tasks system-
wide. We divide time into energy-epochs. At the start of
each epoch, ECOSystem allocates a specific total amount
of currentcy. For our original purpose, the overall cur-
rentcy allocation is determined by the discharge rate nec-
essary to achieve the target battery lifetime. By distribut-
ing less than 100% of the currentcy required to drive
a fully active system during an epoch, components are
idled or throttled.

The second level of currentcy allocation is distribution
among competing tasks. When the available currentcy is
limited, it is divided among the competing tasks accord-
ing to user-specified proportions. During each epoch, an
allowance is granted to each task according to its spec-
ified proportional share of currentcy. There are con-
straints on the accumulation of unspent currentcy so that
epochs of low demand do not amass a wealth of currentcy
that could result in very high future power consumption
peaks that would violate our battery assumptions. Con-
sequently, there is a cap on the maximum amount of cur-
rentcy any individual application can save. Thus, the per-
task allocation represents income in each epoch, whereas
the cap represents a limit on the balance accumulated



within the task’s account.
ECOSystem uses a reimplementation of the Resource

Containers [1] abstraction to capture the activity of an
application or task as it consumes energy throughout the
system. Resource containers are the abstraction to which
currentcy allocations are granted and the entities to be
debited for energy consumption. They are also the basis
for proportional sharing of available energy. Resource
Containers address variations in program structure that
typically complicate accounting. For example, an ap-
plication constructed of multiple processes can be rep-
resented by a single Resource Container for the purposes
of energy accounting. We use the terms “task” and “re-
source container” interchangeably.

The energy accounting challenge of tracking energy
use and attributing it to the responsible task is addressed
through a power states model maintained within the
framework. This model allows us to track interactions
among tasks through their use of energy in device access.
For example, tasks may be consuming energy in devices
even when they are inactive in the CPU (or blocked). A
process waiting for completion of a disk request is re-
sponsible for the energy consumption of the disk access.
Ready-to-run processes may also be consuming energy
in other devices (e.g., due to asynchronous I/O) while
competing for the CPU.

The ECOSystem prototype [22] is a modified RedHat
Linux version 2.4.0-test9 running on an IBM ThinkPad
T20 laptop. This platform has a 655MHz PIII pro-
cessor and we assume an active power consumption of
15.55W. The disk is an IBM travelstar that we model in
ECOSystem with costs of 1.65mJ per block access and
6000mJ for both spinup and spindown, and with pro-
gressive costs/timeouts for levels of idle power states.
The wireless network is an Orinoco Silver PC card sup-
porting IEEE 802.11b, it has three power modes: Doze
(0.045W), Receive (0.925W) and Transmit (1.425W).
All other devices contribute to the base power consump-
tion, measured to be 13W for the platform.

ECOSystem supports a simple interface to manually
set the target battery lifetime and to prioritize among
competing tasks. These values are translated into appro-
priate units for use with our currentcy model. The target
battery lifetime is used to determine how much total cur-
rentcy can be allocated in each energy epoch. The task
shares are used to distribute this available currentcy to
the various tasks. To perform the per-epoch currentcy
allocation, we introduce a new kernel thread kenrgd that
wakes up periodically and distributes currentcy appropri-
ately.

Initial experience and experiments with the prototype
show that it can successfully deliver its goal of achieving
a target battery lifetime and proportionally sharing avail-
able energy among competing applications using differ-

ent devices in the system. It has also identified some
drawbacks including a disproportionate impact on per-
formance. This work refines energy goals beyond the
simple battery lifetime metric. The purpose of this paper
is to explore the power of the currentcy model to express
more subtle and sophisticated desired behaviors. This
effort represents a move from developing the framework
and mechanisms toward exploring the policy space.

2.2 Related Work

Attention to the issues of energy and power manage-
ment is gaining momentum within both industry and aca-
demics.

Work by Flinn and Satyanarayanan on energy-aware
adaptation using Odyssey [7] is closely related to our ef-
fort in several ways. Their fundamental technique dif-
fers in that it relies on the cooperation of applications to
change the fidelity of data objects accessed in response
to changes in resource availability. In contrast, our work
focuses on managing global system resources in a uni-
fied manner. Unmodified applications and those that are
not necessarily able to change “fidelity” benefit from our
approach. Overall, we view our efforts as complemen-
tary: the operating system should manage global system
devices in response to application requirements and the
application should adapt its behavior when appropriate
to reduce energy consumption.

Explicit energy management has also been designed
for the Nemesis operating system [13]. This proposal
describes how to extend the Nemesis resource account-
ing mechanisms, based on a calibration of device power
consumption, to account for energy use by applications.
Resource management is similar to Odyssey in that it is
based on collaboration with applications. In Nemesis,
this takes the form of an economic model for providing
feedback to processes that allow them to adapt to short-
ages in energy availability.

Most of the literature on power/energy management
has been dominated by consideration of individual com-
ponents, in isolation, rather than taking a system-wide
approach. Thus, there have been contributions address-
ing CPU frequency/voltage scheduling [6, 8, 14, 15, 20],
disk spindown policies [3, 9, 11], memory page alloca-
tion [2, 12], and wireless networking protocols [10, 16].
The emphasis in much of this work has been on dynam-
ically managing the range of power states offered by the
devices. A recent paper [21] describes techniques involv-
ing buffer management policies and an API allowing ap-
plication cooperation for shaping the disk request pattern
to increase the effectiveness of disk spindown. This body
of work is complementary to our currentcy model, as il-
lustrated by our incorporation of spindown policies, and
will impact the debiting policies for such devices in our



framework.
ECOSystem incorporates several ideas from previous

work. The idea of currentcy borrows from the tickets ab-
straction of lottery scheduling [18, 19] with the value of
a currentcy unit tied to energy. The key insight that dis-
tinguishes our work is that energy normalizes resource
management across the diverse set of devices that con-
sume it. We adopt the resource container abstraction [1]
as our accounting entity in order to allow more complete
accounting of activity and lazy receiver processing [4] in
accounting for packet processing overhead.

3 Overview of Currentcy-based Policies

In our model, currentcy represents available global
system resources. Currentcy allocation and accounting
express and enforce policies to achieve energy-related
goals. Next, we outline the various ways in which cur-
rentcy can be manipulated to implement a particular pol-
icy. The design space is rich, making an exhaustive ex-
ploration that fully utilizes all the mechanisms infeasible.
However, Section 3.2 discusses several goals we want to
achieve within the policy space. Section 3.3 introduces
the applications and metrics used to evaluate our ability
to achieve our goals.

3.1 Policy Building Blocks

1. Overall Currentcy Allocation The first decision
point is the overall allocation of currentcy that deter-
mines how fast or how much energy can be consumed
by the system as a whole. Choices include:

Per-epoch allocation level. We must determine
the per-epoch currentcy availability based on the pri-
mary energy goal. Existing work focuses on achieving
a target battery lifetime. Commonly used models of
battery lifetime assume a constant power consumption,
thus we impose a limit that translates directly into the
currentcy allotment.

Epoch length. This determines the rate and granu-
larity of currentcy allocation. Long epochs provide
larger allocations and the ability to spend them in a
more bursty fashion. Shorter epochs may smooth the
consumption rate but pose problems accumulating
enough for expensive operations. This issue is addressed
in Section 7.

Dynamic adjustment. This concerns whether (and
how) to allow dynamic adjustment of per-epoch alloca-
tion levels. One example is performing adjustments in
allocation based on remaining capacity information from

a Smart Battery to correct for under-utilization of the
resource (i.e., effectively a form of global redistribution
of unused currency) or errors in the cost model.

2. Per-task Currentcy Allocations Given the overall
allocation, the next decision is how to allocate currentcy
among competing tasks.

Determination of per-task share. This may re-
flect an external priority or criticality of the task, the
energy demand of the task, or some combination. In our
prior work, the share is based on a user specification,
scaled to a percentage based on all tasks in the system.

Handling of unused currentcy. When a task fin-
ishes an epoch without using its allocation, what
happens to the residual currentcy? Choices include
forfeiting the remaining allocation at the end of the
epoch, saving it all, saving up to a dynamic or static
cap, or distributing it among other tasks. Techniques to
redistribute unused currentcy are considered in Section 4.

Debt limits. Do we allow a task to perform deficit
spending and what are the rules on paying it back?

Subaccounts. Earmarking portions of a task’s al-
lowance for use with a particular device or by a
particular thread within the resource container may
require richer API support (a topic of future research).

3. Currentcy Accounting On the device side, various
schemes may be appropriate for debiting tasks for access
to devices. This may reflect actual energy costs or there
may be rate structures designed to accomplish some
energy objective. The strategies fall into the following
categories:

Debiting. The straightforward policy is pay-as-
you-go using the actual energy cost of the devices until
currentcy is spent. In another scenario, prices levied
against a task may dynamically vary to accomplish a
subgoal (e.g., an extra “tax” to discourage use or a “sale
price” to encourage use).

Bidding. The task may offer a price it is willing
to support for access to an energy consuming resource.
The bid does not necessarily imply that the task will be
debited that amount for an activity.

Pricing. The price of a resource, which may be
dynamically changing over time, is a way to encode
thresholds in terms of currentcy and may interact with
bids (e.g., in a negotiation protocol). Pricing may be
decoupled from debiting to enforce threshold levels



without skewing accurate accounting for the resource.
Pricing may also encode the power state of a device
(e.g., the price of a disk access is discounted when the
disk is already spinning and no spinup is required).

Examples of creative combinations of debiting, pric-
ing, and bidding policies arise with the disk management
policies in Section 8. We believe that expressing policies
in terms of allocation and accounting operations on cur-
rentcy is a powerful way to unify resource management.

3.2 Currentcy-based Policies

The previous section has given an overview of the
currentcy framework and the policy space that can be
explored. In the introduction, we have articulated several
energy-related goals that capture desirable behavior with
the goal of achieving a target battery lifetime. In this
section, we translate those goals more precisely in terms
of our currentcy framework.

1. Reducing residual energy capacity. We have
argued that, for certain applications, it is important to
minimize residual energy capacity left when the target
battery lifetime has been reached. Too much residual
energy indicates an overly conservative management
of the resource and lost opportunities for improved
performance. We translate this into an allocation that
is currentcy conserving. A currentcy conserving policy
provides service in response to demand for energy as
long as unspent currentcy is available in an epoch.

2. Proportional energy use. Ideally, the energy
consumption of each task will match its assigned
share. The energy consumption can be lower if the
requirements of the task are low enough to be fully
satisfied by the available level of energy. Even when
currentcy allocations are appropriately adjusted to reflect
demand, schedulers that gate access to devices may not
offer opportunities to spend in proportion to allocations
and may interfere with adaptations determining future
allocations. We translate this goal of proportional energy
use into device scheduling that is aware of currentcy
consumption/demand throughout the system.

3. Coordination of multiple devices. Traditional
resource management policies tend to concentrate on
a single component of the system. For example, CPU
scheduling algorithms are typically concerned only with
tasks on the ready-to-run queue and allocation of CPU
cycles. Processes blocked for device use have always
posed subtle complications on CPU scheduling. With
the focus on energy, the complications become more
explicit since blocked processes can still be actively con-
suming energy. Tracking the consumption of currentcy

captures these interactions and allows the information to
be incorporated into the scheduling policies of various
devices in a coherent way.

4. Response time variation. The allocation of en-
ergy in epochs has the potential to cause large variations
in response time and bursty behavior. One of our
goals is to reduce the variation in response times. This
translates into carefully-paced consumption of currentcy.

5. Energy efficiency. Encouraging the most effi-
cient use of a device’s power saving modes allows
performance to be achieved at lower energy costs. This
goal translates here into reducing the average currentcy
cost per disk request by encouraging coalitions of
tasks to share the overheads involved. Creative pricing
strategies can reward such inter-task cooperation.

The challenge of unified global energy management
is to explicitly address the kinds of interactions that are
often hidden in per-device management.

3.3 Applications and Metrics for Evaluation

We intend to show that our currentcy model can be
used to formulate policies to address the above goals.
To evaluate our policies, we use several applications (de-
scribed in Table 1) to create typical workload scenarios
for a battery-constrained laptop user. We envision situa-
tions in which the user may want to have multiple tasks
running concurrently (e.g., doing background jpeg en-
coding of a set of stored images while viewing the al-
ready encoded jpegs in slide show mode or listening to
an MP3 while running through the slides of a PowerPoint
presentation). For each experiment we use different com-
binations of these applications to emphasize specific as-
pects of the policy space. Each application presents a
different set of demands for CPU, network bandwidth,
disk I/O, or interactive “think time”.

Within ECOSystem, we monitor the currentcy avail-
able for allocation each epoch and the currentcy con-
sumed by each application during each epoch. It is
also possible to track consumption by device. We
then present our results in terms of average power
(mW) derived from the amount of currentcy consumed
or allocated per epoch. We also present appropriate
application-specific performance metrics.

In the following five sections (Section 4 through Sec-
tion 8), we illustrate the construction of currentcy-based
policies to address each of the reformulated energy goals.
Our goal in this paper is not to provide an optimal policy,
but to show that policies formulated within the unified
currentcy model offer desirable properties compared to
more traditional (per-device) policies.



Application Description Demands
gqview Image viewer CPU, disk read, think time
ijpeg SPEC2000 image encoding CPU, image from disk or memory

RealPlayer Video player CPU, wireless, disk write
Netscape Web browser CPU, wireless, disk write, think time
x11amp MP3 player CPU, disk read

StarOffice PPT presentation CPU, disk read, think time

Table 1: Applications

4 Low Residual Energy Through Cur-
rentcy Conserving Allocation

Our first goal is to reduce residual energy. The details
of our epoch-based currentcy allocation scheme are mo-
tivated by the overall goal of achieving a target battery
lifetime by approximating a constant power consump-
tion. To prevent large power peaks, our allocation pol-
icy caps the amount of unspent currentcy a task can save
from epoch to epoch. Unspent currentcy that exceeds the
cap is essentially thrown away, even if there is unmet de-
mand by other tasks with insufficient currentcy. If there
are enough instances of tasks that underspend their allo-
cation during an epoch there can be a gradual accumula-
tion of residual energy capacity because of the forfeited
currentcy.

4.1 Currentcy Conserving Allocation

There are a number of ways to deal with the residual
energy problem. One is to adjust the overall allocation
level when the system detects that the battery is not be-
ing drained at the expected rate. If there is a consistent
pattern of underspending by some tasks, the total allo-
cation will grow, slowly at first, and be proportionally
distributed to all tasks. Thus, needy tasks will benefit
from receiving their share of a larger overall allocation.

Another approach is to explicitly redistribute excess
currentcy to other tasks with insufficient currentcy for
their energy demands. As a result of this approach, a
task with a small energy share, determining its per-epoch
allocation, may receive a large amount of excess cur-
rentcy. In this case, the task should have a large cap on
its account balance to hold the extra currentcy. Similarly,
for the tasks that consistently spend only a fraction of
their energy share, the cap can be decreased to free the
currentcy to the needy tasks. Specifically, we propose
a two-step policy that first dynamically adjusts the per-
task cap to reflect each task’s energy needs (captured as
the level of currentcy spent in previous epochs) as well
as its specified share. The new cap is based on an ex-
ponential weighted average of currentcy expenditures in
previous epochs. If the level of currentcy spent in the

most recent epoch is low relative to its history, then a
lower weight factor (αl) is used than otherwise (αh). We
have found that assigning weights that increase the cap
quickly (αh = 0.7) and decrease it slowly (αl = 0.1)
produces desirable behavior.

Second, the system redistributes currentcy amounts
that overflow some task’s cap to other tasks whose lim-
its have not been reached. Specifically, our allocation
algorithm behaves as follows: a) Every epoch, all con-
tainers receive currentcy proportionally unless their caps
are reached. b) No currentcy is thrown away unless all
containers reach their caps. c) Any currentcy overflow
from a container is redistributed to other containers with
unfilled capacity. For instance, for a total of n contain-
ers, if k (where k < n) containers reach their caps,
the currentcy not allocated to the k containers is redis-
tributed to the other n−k containers, proportional to their
shares. The first step of our our allocation algorithm is
to sort containers so that for any i (for 1 < i < n),
containeri will not reach its cap unless containeri−1

reaches its cap first. The rest of the algorithm simply
walks through the container list and does the following
for each containeri, such that 0 < i < n:

1. Calculate the entitled currentcy according to its en-
ergy share: CurEntitledi = CurAvail∗CurSharei∑

n−1

j=i
CurSharej

where CurAvail was initialized to be the total over-
all currentcy available in this epoch.

2. Calculate the allocated currentcy as the smaller of
its entitled currentcy and the amount required to
reach its cap: CurAllocatedi = min(CurCapi −

CurUnusedi, CurEntitledi).

CurUnusedi is the leftover currentcy in the con-
tainer at the beginning of the epoch and CurCapi−
CurUnusedi is the maximum amount of new cur-
rentcy can be added to the container.

3. Calculate the available currentcy for the rest of con-
tainers, gathering excess currentcy from the con-
tainers at the top of the sorted list: CurAvail =

CurAvail − CurAllocatedi.
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Figure 1: Average Power Consumptions and Total Allocations for the Original and the Currencty Conserving Alloca-
tion Schemes

The overall consumption should more closely match
the overall allocation with this redistribution (at the risk
of upsetting proportionality, considered in Section 5),
thus reducing the residual energy. We refer to this algo-
rithm as the Currentcy Conserving (CC) allocation pol-
icy.

4.2 Evaluation

As a qualitative argument, we note that without an ex-
plicit energy-related abstraction similar to currentcy, it
is difficult to articulate precisely what residual energy
means or identify means to enforce a target battery life-
time. Monitoring the state of the battery as a separate
device-specific resource offers little in the way of control
over the resource. Thus, there is no “traditional” baseline
policy with which it makes sense to compare. We com-
pare against the original currentcy allocation [22] with its
battery-level feedback mechanism that adaptively adjusts
overall allocation levels. In that original policy, residual
energy accumulates if a task does not spend all of its cur-
rentcy and has exceeded its currentcy cap causing that
unspent currentcy to be lost. We show that the original
approach is less effective in reclaiming residual energy
than explicit currentcy conservation.

To evaluate the benefits of currentcy conservation we
use a workload consisting of the gqview image viewer
and ijpeg. Gqview is set to autobrowse mode where it
continuously loads each of 12 images in a directory with
a 10 second pause between each image. The images are
copies of a high fidelity 0.5MB jpeg file, differing only
in that each image has a unique number. The compu-
tationally intensive ijpeg is run in a loop to continuously
execute the SPEC command line, encoding and decoding
an image from the reference data set residing in mem-
ory (SPEC command line options: -GO.findoptcomp
vigo.ppm).

For this experiment, we set the target battery lifetime

at 90 minutes, and set desired shares of 66.6% for gqview
and 33.3% for ijpeg. These allocation settings corre-
spond to an overall average power of 12000mW with
8000mW and 4000mW for gqview and ijpeg, respec-
tively. This represents an overly generous allocation to
gqview which needs less than an average of 7000mW
(c.f., Figure 3a). Ijpeg, on the other hand, can easily con-
sume up to 15.55W in the absence of other constraints.

Figure 1 shows our results. These plots show how the
total allocation (presented in mW) changes over the life-
time of the battery. They also show the average power
consumption of our two applications for the three man-
aged devices. The per-epoch measurements have been
smoothed using a centered moving average over a win-
dow of twenty-one data points.

From these data, we make several observations. First,
for the original allocation policy (Figure 1a) we see that
the total power available for allocation (the top curve)
increases dramatically near the end of the target battery
lifetime. There is approximately 6.7% of the original
battery capacity remaining at the end. The simple re-
distribution approach that returns gqview’s unused cur-
rentcy (beyond the task’s cap) to the overall energy re-
source initially spreads the excess over a large number
of epochs, but as the target battery lifetime approaches
there is less time over which to spread the excess. Intu-
itively, each epoch consumes only a fraction of the total
excess and thus available energy continues to grow. In
addition, gqview still receives its share of the increasing
overall allocation that it does not need.

The second observation we make based from Fig-
ure 1a is that as time progresses, gqview’s average power
consumption (the middle line exhibiting some degree of
scatter) decreases over time despite the increase in to-
tal availability. This is because the increase in available
currentcy enables ijpeg (the bottom solid line that steps
up toward the end of the lifetime) to consume more and
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more CPU time with the baseline CPU scheduling, un-
dermining gqview’s ability to execute when it needs to
in order to consume its currentcy.

Figure 1b shows the average power consumption of
gqview and ijpeg when using the currentcy conserving
allocation. We see that there is no significant change
in the available allocation as we near the end of the tar-
get lifetime. Little residual energy capacity remains (less
than 1%). By exploiting information in tasks’ currentcy
budgets, the currentcy conserving allocation policy suc-
cessfully utilizes the available energy as compared to the
approach that reacts to observed excess battery capacity.
Formal analysis of these policies, using control systems
theory, reveals that the original policy is unstable while
the currentcy-conserving policy is stable.

There are variations in the power consumption of both
applications due to gqview’s execution variation that are
not captured in the smoothed plots. To provide a better
understanding of the simultaneous execution of ijpeg and
gqview, Figure 2 presents the power consumption in each
epoch over a 100 second time interval. This figure shows
that when gqview is idle (i.e., during “think” time with
zero power consumption) ijpeg can consume maximum
CPU power. However, when gqview is active, ijpeg is
limited to its 4000mW allocation. There is a brief delay
in this transition that occurs while ijpeg’s currentcy cap
is adjusted. We observe that the power consumption of
both gqview and ijpeg can exceed their allocation share
because of currentcy accumulating up to their caps.

5 Proportional Energy Use in CPU
Scheduling

Even when allocations are appropriately proportional
and consistent with actual demand, the ability to spend
proportionally depends on policies that control access to
resources, such as the schedulers for the CPU, network

bandwidth, and disk. In addition, there are interactions
between scheduling and allocation since the ability to ac-
tually spend currentcy affects future caps in our alloca-
tion algorithms. In this section, we explore the role of
the CPU scheduler in delivering the opportunity for pro-
portional energy consumption and the role of currentcy
in unifying these decisions. The goal is to achieve en-
ergy use proportional to the specified currentcy share of
each task, unless the task’s needs are satisfied at a lower
energy consumption.

5.1 Energy Centric Scheduler

The base case for our explorations is the default Linux
process scheduler, amended with the condition that the
resource container of a process to be dispatched must
contain available currentcy; otherwise, it is not consid-
ered ready to run again until the next epoch (when it re-
ceives a new infusion of currentcy). The amount of avail-
able currentcy in the task’s energy budget is not a factor
that influences the scheduling decision in any more sub-
stantial way than the ability to pay or not.

One might expect that by adapting a proportional
scheduler to tasks’ shares, better proportional energy use
can be achieved. We consider stride scheduling [19] as
representative of a local, CPU-only scheduler using each
task’s (static) share to determine its stride value.

Finally, we propose an energy-centric scheduler (EC
scheduler) that accounts for the task’s energy consump-
tion (globally – regardless of where in the system the cur-
rentcy has been spent). The next process to be selected
is one whose resource container has the lowest amount
of currentcy spent relative to its specified share. This can
be viewed as a bidding algorithm with the lowest bidder
winning. As in traditional stride scheduling, an adjust-
ment is made to “catch up” with the current pass when a
process temporarily leaves the ready queue (e.g., blocked
on synchronization or a synchronous I/O operation) and
then rejoins.

To ensure that a process that is intermittently ready
and blocked has sufficient opportunities to spend its cur-
rentcy, we can weigh the basis against which the energy
consumed this epoch is compared by a factor defined to
be the task’s share divided by the amount of currentcy
actually spent in the last epoch. This factor produces a
dynamic share used to replace the fixed share value in the
calculation of the task’s stride. This biases allocation in
favor of interactive tasks and helps them consume more
of their share of currentcy whenever they are actively
competing for the processor. This approach resembles
compensation tickets from lottery scheduling and frac-
tional quanta from stride scheduling [19], both of which
give an advantage toward earlier scheduling of the next
quantum to a task that voluntarily relinquished part of its



last quantum. The dynamic share is an adaptation that
differs in two respects: it is based on a task’s system-
wide energy consumption and it applies over a longer
period (spanning multiple quanta occurring during the
current and previous epochs).

Our EC scheduler also incorporates one final feature
called self-pacing (described in Section 7) with the goal
of smoothing response times. Thus, there are three as-
pects of the EC scheduler that can be mixed in vari-
ous combinations: the consumption-based stride, with or
without dynamic shares, and with or without self-pacing.
In this section, we consider the energy-centric scheduling
with dynamic shares and without self-pacing.

5.2 Evaluation

Given a particular amount of currentcy per epoch,
we investigate proportionally sharing this fixed allotment
among competing tasks when some of the currentcy must
be spent outside of the CPU. We analyze the effects of
CPU scheduling using the default round-robin sched-
uler minimally modified to check for currentcy, the static
energy-based stride scheduler, and our energy-centric
scheduler with dynamic shares. We want to show that
the energy-centric scheduler can achieve energy use that
is proportional to the specified currentcy share of each
task, allowing a lower consumption when it is enough to
satisfy a task’s performance needs. Thus, the first step
is to determine whether there is a level of power con-
sumption such that using more power does not produce
significantly improved performance.

For the experiment presented, we simultaneously run
gqview and ijpeg with equal shares of a varying to-
tal allocation. First, we execute each application alone
across the range of total allocation levels to see how
the performance metric associated with that benchmark
behaves. For gqview, configured with a think time
of 10 seconds, the delay to completely display the
given image decreases with increasing allocations of cur-
rentcy (mapped into average power for presentation) un-
til around 6500mW where it levels out at approximately
6.3s. We pit gqview against ijpeg, our CPU-bound
benchmark that is always ready to run and whose perfor-
mance metric, the delay to compress an image file, con-
tinues to decline until the maximum power consumption
of the processor is reached (e.g., 15.55W). By setting the
shares to be equal for the two competing applications,
we are giving some benefit to the round robin and stride
schedulers. In addition, the power needed by gqview for
the disk (i.e., approximately 700mW) represents a rela-
tively small level of consumption diverted to another de-
vice, making it more challenging for our energy-centric
scheduler to distinguish itself.

Figure 3 shows our results. Figures 3a and 3c give the
power consumed by gqview and ijpeg as the allocation
increases for each of the three scheduling policies. There
are two additional lines on the plot for gqview show-
ing the proportional allocation and the maximum power
based on performance. Note that the bars representing
the energy-centric scheduler show that gqview receives
its appropriate energy share up until the point where it
approaches its maximum power requirement. The Linux
default scheduler and the energy-based stride scheduler
both favor ijpeg at the expense of gqview. In the case of
the default Linux scheduler, this is because ijpeg is al-
ways competing with gqview for the CPU and its round-
robin algorithm gives each 50% and, for gqview, that is
only when it is active (not during its think time or disk
access). The static energy-based stride scheduler experi-
ences similar problems when gqview and ijpeg are com-
peting for the CPU (with equal share values). Gqview is
unnecessarily penalized for voluntarily reducing its en-
ergy consumption during idle periods.

Our energy-centric scheduler extends the stride sched-
uler in two important ways. First, it selects the next task
having the lowest amount of currentcy spent relative to
its share, and second it dynamically computes a task’s
stride by including information about past consumption.
This allows it to compensate for currentcy consumption
of the other device as well as for periods of complete in-
activity as in gqview’s think time.

From Figures 3b and 3d, we see that with the energy-
centric scheduler, gqview’s delay approaches its perfor-
mance of 6.3s when running without competition once
it is given enough power. Neither the Linux scheduler
or the stride scheduler deliver gqview that level of per-
formance. Meanwhile, the performance level of ijpeg is
appropriate to its allocation level. It benefits from redis-
tributed currentcy once gqview’s consumption levels out,
exceeding its expected performance (of running alone at
that allocation level) for each scheduling choice.

6 Coordinated Scheduling of Multiple De-
vices: Network Bandwidth and CPU

Currentcy is a unifying abstraction and proportional
energy use extends to all other devices on a platform.
Currently, ECOSystem only explicitly manages the CPU,
NIC, and disk subsystem. The resource managers of var-
ious devices must cooperate toward a common goal such
as proportional energy use. Otherwise, a bottleneck de-
vice with some other policy objective can disrupt cur-
rentcy flow in general.

Given ECOSystem’s currentcy model, tracking per-
device consumption is straightforward for operations ini-
tiated via system calls. One particularly interesting chal-
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Figure 3: CPU Scheduling and Proportional Sharing of Energy

lenge to achieving proportional energy use is managing
the wireless network bandwidth, especially for incom-
ing packets. The tricky issue for incoming traffic is that
by the time a packet has been received and management
actions can be applied, the energy to receive it has al-
ready been consumed in the wireless card. This makes it
difficult to selectively receive packets destined for tasks
with available currentcy as opposed to tasks without cur-
rentcy.

We modified the Linux network packet processing
code to implement a work conserving proportional band-
width allocation policy. Our scheme identifies flows
whose associated tasks have consumed bandwidth be-
yond their currentcy-determined share and reduces their
allocated bandwidth. Assuming other tasks can consume
released bandwidth, this bandwidth reduction continues
until all connections consume bandwidth in proportion
to their task’s energy share. This is accomplished by ex-
plicitly reducing the advertised window to reduce a task’s
available bandwidth.

To create a stressful condition for evaluation where
the network is the bottleneck, we set the wireless eth-
ernet card to 1Mbps. We execute RealPlayer, Netscape,
and ijpeg with shares of 9000:3000:3000. Ijpeg serves
as a CPU intensive application that does not compete
for bandwidth but is capable of consuming 100% of the
CPU. Realplayer plays a video clip rated at 550Kbs.

Netscape continuously reloads a web page with five im-
ages with zero think time. When executing without en-
ergy constraints, RealPlayer consumes about 10643mW
to execute without pauses in video playback, while
Netscape consumes 3115mW, running unconstrained.
Both RealPlayer and Netscape can consume all of the
network bandwidth available.

In all of our network experiments we use the currentcy
conserving energy allocation policy and constrain the
total power consumption to 15000mW. Since network
bandwidth is the bottleneck resource for RealPlayer and
Netscape and none of the applications’ energy needs are
satisfied, the goal is to achieve proportional overall en-
ergy use after satisfying the constraints of proportional
network bandwidth and network energy consumption.
Table 2 presents results for three of the scheduler design
points: 1) Our energy-centric CPU scheduler with the
default TCP implementation, 2) the default Linux CPU
scheduler with an energy-centric network scheduler, and
3) our combined energy-centric CPU and network sched-
ulers. We omit the case where neither the CPU or net-
work scheduler are energy-aware.

Our results show that the conventional network sched-
uler fails to provide either proportional network band-
width or energy consumption. This is because Netscape
is allowed to consume an unfair portion of network band-
width. Netscape is able to take more than 50% of the



Application Allocation CPU Network Disk Total Network
(mW) Power (mW) Power (mW) Power (mW) Power (mW) Bandwidth (B/s)

Energy-Centric CPU Scheduler, Energy Oblivious Network

RealPlayer 9000 2875 219 259 3354 3066
Netscape 3000 956 569 615 2142 7294

ijpeg 3000 8960 23 0 8983 0

Default Linux CPU Scheduler, Energy-Centric Network

RealPlayer 9000 5902 700 680 7282 8032
Netscape 3000 841 113 229 1182 2701

ijpeg 3000 6611 18 0 6629 0

Energy-Centric CPU Scheduler, Energy-Centric Network

RealPlayer 9000 8695 621 704 10020 8353
Netscape 3000 789 155 226 1170 2680

ijpeg 3000 3778 10 0 3788 0

Table 2: Proportional Sharing: CPU and Network

bandwidth because it can open multiple connections.
This reduces RealPlayer’s ability to execute and pro-
duces an excess in currentcy that is reallocated to ijpeg.
This results in ijpeg getting more of the CPU and con-
suming a much larger energy share than its intended al-
location while the needs of the other applications are
not satisfied (currentcy redistributed to ijpeg would be
considered acceptable if the other applications had their
needs appropriately met).

When we use an energy-centric network scheduler,
but the default Linux CPU scheduler, we see that band-
width and network power are consumed by RealPlayer
and Netscape closer to the specified ratio of 3 to 1. How-
ever, RealPlayer still suffers from competition for the
CPU with ijpeg which results in ijpeg significantly ex-
ceeding its energy share.

The most satisfying results are obtained by using
energy-centric schedulers for both the CPU and net-
work. Both network bandwidth and network energy are
consumed proportionally by RealPlayer and Netscape.
RealPlayer’s share of the CPU is also protected from
ijpeg by the energy-centric CPU scheduler. Netscape is
throttled after receiving its share of network bandwidth
(its bottleneck device) and can not consume the rest of
its currentcy allocation. In this case, RealPlayer gets
enough currentcy to meet its needs and execute without
pausing.

7 Low Variance in Response Time
Through Pacing Currentcy Expendi-
tures

Given a case in which power consumption must be
constrained, our epoch-based allocation has the potential

to produce bursty behavior if tasks consume currentcy
as quickly as they can at the beginning of an epoch and
then go idle after consuming their budget. One approach
to smoothing consumption rates (and as a side-effect, re-
sponse times), is to shorten the epoch.

Another approach to managing the rate of consump-
tion is self-pacing in our EC scheduler. The idea is to
delay a task if its consumption of currentcy is ahead
of schedule during an epoch. Progress is defined as
the amount of currentcy spent thus far in the current
epoch divided by the task’s budget for the epoch. If this
progress is greater than the ratio of elapsed time in this
epoch over epoch length, then the task is delayed and the
processor may go idle for a short interval of time. This
approach exploits the ability of currentcy to reflect an
application’s rate of progress. This approach to stretch-
ing execution is appropriate for a non-Dynamic Voltage
Scaled processor. If available, DVS would be a preferred
alternative to consider.

To compare these two approaches, we first look at the
overhead of the first approach because it increases with
the shortened epoch length and could become a perfor-
mance bottleneck. However, experiments show the over-
head for currentcy allocation is very small. Even if we
perform allocation every 10ms (a timer interrupt occurs
every 10ms, while the CPU scheduling quantum is 60ms
in our system), the overhead is only 206µs for 18 re-
source containers and 40µs for 3 containers.

To explore the effects on response time of our two
approaches for reducing bursty performance, we run
Netscape and continuously load our department’s web
page. This page contains a banner image and some sim-
ple text. The autoload is implemented using a javascript
and this also allows us to measure the page load latency.
This latency is composed of several http requests, dis-



Power Consumption (mW) Delay (seconds)
Scheduling CPU Disk Network Total Min Max Average Std. Dev
Unthrottled 1047 1013 136 2197 0.27 0.68 0.43 0.11

Epoch 351 812 48 1212 1.0 33.8 3. 8 5.8
Self-Pacing 313 842 43 1199 3.3 5.6 4.0 0.6

Table 3: Response Time Variation

playing the content and updating the disk cache. We set
the think time between successive page loads at 2 sec-
onds. Executing without any throttling requires about
2197mW.

We evaluate both an epoch-based approach that uses
0.01 second epochs, and the self-pacing approach with
10 second epochs. We allocate currentcy equivalent to
an average of 1200mW to Netscape and measure 54 con-
secutive page loads for the self-paced test and 41 page
loads for the epoch based approach. Differences are ap-
parent in Table 3 when we examine the delay for a page
load. Although the average delay is similar for the two
policies, the self-paced scheduler has much lower varia-
tion in the delay. This can translate into a user perceived
difference in performance as the self-pacing policy can
provide a visibly smoother display of the web page. We
note that similar visible differences occur when execut-
ing other applications, such as RealPlayer, Acrobat, and
StarOffice.

8 Energy Efficient Disk I/O Through Cost-
sharing

Encouraging more energy efficient use of devices is
an important function of an energy centric operating sys-
tem. Currentcy provides a means for passing along the
savings to tasks that cooperate through their usage pat-
terns. The disk presents unique challenges and oppor-
tunities for currentcy-based policies since it has non-
uniform power consumption. The cost of spinning up
the disk is much greater than keeping it spinning for a
short duration. In this section, we consider techniques
for more efficient disk access, focusing on sharing the
spinup/spindown power costs. This introduces opportu-
nities to work with debiting, bidding and pricing in the
context of our currentcy model. The policy space for
these approaches is very large, and many solutions may
require an API for application involvement. For exam-
ple, recent work [21] describes cooperative disk I/O op-
erations that applications can use to facilitate such be-
havior. In this paper, we have limited our studies to tech-
niques for managing disk access using pricing and bid-
ding that can be implemented solely within the operating
system without application involvement.

8.1 Shaping Access Patterns by Pricing and
Bidding

Intuitively, we want to amortize spinups across mul-
tiple disk operations, which benefits from encourag-
ing more bursty behavior. The key to more effectively
manipulating the spinup/spindown behavior is shaping
the disk access patterns to take advantage of this cost-
sharing benefit within the debiting policy.

Pricing disk accesses can be used to reward a task for
performing disk accesses in bursts. One approach we
investigate sets the entry price of a disk access that re-
quires a spinup cost much higher than the actual cost.
When the access is actually permitted, we then debit the
actual cost. This forces the task to accumulate enough
currentcy to ensure that it can execute for a reasonable
amount of time following the first access in hopes of gen-
erating more disk accesses while the disk is spinning.

We augment this pricing policy with the ability of
tasks to bid on disk accesses. Tasks can indicate they
are willing to contribute certain amounts toward the price
of spinning up the disk. This is a natural place for API
extensions. However, the OS can apply this technique
transparently by checking the task’s budget for suffi-
cient surplus, analogous to a credit check. One goal of
this technique is to enable multiple tasks to pool their
currentcy and cooperatively use the disk in an energy-
efficient manner.

Traditional techniques of skewing access patterns are
amenable to currentcy-based variations. These include
exploiting block caching and delaying writes while the
disk is not spinning, piggybacking prefetching upon re-
quests that spin up the disk on demand, and managing
the buffer allocation. Thus, we explore a buffer allo-
cation policy tied to the average disk access cost. Sub-
ject to limitations on the number of buffers systemwide,
this policy attempts to reduce the costs (via effective
prefetching, delayed writes) and make them uniform
across tasks (which can tend to synchronize tasks into
producing batches of disk activity).

We trigger prefetching operations and flushing of de-
layed writes that cause spinups using a bidding function
based on the fraction of consumed buffers. Investigat-
ing the range of potentially useful bidding functions is
clearly beyond the scope of this paper. We provide re-



sults for one bidding function that sets a bid offer to zero
if less than 80% of the prefetch buffers are consumed oth-
erwise to a weighted linear value (bid = entry price ∗
(percent buffers consumed− 80)/(100− 80)). This
corresponds to a function where value is greatly in-
creased as the task nears a demand fetch. The disk flush
daemon performs a large number of writes once it starts
flushing pages to a spinning disk, writing back all dirty
pages that have been idle for a more than 5 seconds. By
contrast, the default Linux page flush policy is to check
every 5 seconds for dirty pages that have not been ac-
cessed for 30 seconds and write those to disk.

8.2 Experiments on Disk Access Scheduling
and Buffer Allocation

In this section, we show how the currentcy model
enables policies based on pricing and bidding. First,
we explore techniques to coschedule disk accesses for
two applications with the goal of reducing overall disk
power consumption. We present preliminary results on
prefetching in our coordinated buffer management sys-
tem.

Accesses In our first experiment we execute ijpeg
and gqview concurrently, and each application demand
fetches data from the disk. Ijpeg performs image com-
pression on a set of ppm format image files. Each file
is a copy of the same SPEC input (command line op-
tions: -GO.compress vigo.ppm) that is 2,359,355 bytes.
When running unconstrained, ijpeg requires about 2.452
seconds to process each file and start to read the next.
Gqview displays the same set of image files using au-
tobrowse mode with a 50 second think time. We set
the total power allocation to 1500mW and the two tasks
each get an equal share of 750mW. These severe con-
straints are used to accentuate the disk’s impact on per-
formance. The entry price for initiating a disk access is
set to 24000mJ (twice the combined cost of spinup and
spindown). We use an immediate disk spindown.

Without pricing/bidding, the total average disk power
consumption is 911mW, with 403mW and 508mW for
ijpeg and gqview, respectively. Our currentcy-based pol-
icy formulated in terms of pricing/bidding reduces this
value to 655mW (313mW ijpeg and 342 gqview) by en-
gineering more task cooperation in disk spinup sessions.
Furthermore, the performance of each application im-
proves, particularly ijpeg which requires only 57 sec-
onds to process the file compared to 74 without pric-
ing/bidding.

The next experiment is designed to show the bene-
fits of bidding for energy efficient disk prefetching. We
set the total allocation at 1500mW and execute ijpeg
(same input as above) with 300mW concurrently with

the MP3 player, x11amp, which receives 1200mW al-
location. X11amp reads a 3MB file, and is amenable
to prefetching because of its sequential access pattern.
We use the combined pricing/bidding approach where
there is a high entry price for a disk spinup and x11amp
contributes by bidding based on its prefetch buffer con-
sumption. The average total disk power consumption is
357mW compared to 565mW without pricing/bidding.
Ijpeg’s average disk power consumption reduces from
365mW to 229mW and its performance improves from
90 seconds per file to 66 seconds. X11amp’s disk power
consumption reduces from 200mW to 128mW, and it
does not incur any pauses in either policy.

Buffer Allocation It is also effective to balance the
buffer allocation among prefetching-friendly tasks to fa-
cilitate more globally synchronized disk activity. To
show the benefit of cooperation, we compare local
and global prefetching behavior for two applications
(x11amp and StarOffice) that exhibit sequential access
patterns, since the unified buffer cache in Linux can eas-
ily detect these sequences and initiate prefetching. The
spindown timeout is set to 1 second. X11amp reads a
3MB file, while StarOffice reads an 11MB presentation
with 14 slides and executes in auto-transition mode with
approximately 20 seconds between slides.

When prefetching is performed locally using the de-
fault Linux buffer allocation of 32 buffers for each task,
the spinup and spindown costs are incurred for each task.
The disk power consumption for x11amp is 186mW and
StarOffice consumes 219mW for a combined 405mW.

In contrast, a global prefetching policy synchronizes
the prefetching operations of the two tasks by allocat-
ing prefetch buffers according to a task’s average disk
access cost, which is determined by the task’s buffer
consumption rate. In this experiment, x11amp requires
256 prefetch buffers and StarOffice uses 1000. This
significantly reduces the total disk power consumption
to 280mW, with 65mW for X11amp and 215mW for
StarOffice. StarOffice receives very little benefit since
it is dominated by the cost to actually read the data,
whereas X11amp leverages StarOffice’s relatively large
number of disk accesses.

9 Conclusion

Energy management is an increasingly important as-
pect of system design. Our previously proposed cur-
rentcy model provides the framework for the operating
system to manage energy as a first-class resource. This
paper demonstrates that the currentcy model can be used
to specify energy management policies that span multi-
ple devices and diverse applications.



Using our ECOSystem prototype, we implement sev-
eral currentcy-based policies, including: currentcy con-
serving scheduling algorithms that reduce residual bat-
tery capacity, proportional energy sharing, self-pacing to
smooth response time variation, and energy efficient disk
management. Our results show that the currentcy model
is a powerful framework for expressing energy manage-
ment policies and that our currentcy-based policies, by
being able to capture aspects of global energy use, pro-
vide more coherency to system-wide energy manage-
ment.
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