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Abstract

Currently, Internet hosting centers and content distribution networks leverage statistical multiplexing to meet the
performance requirements of a number of competing hosted network services. Developing efficient resource allocation
mechanisms for such services requires an understanding of both the short-term and long-term behavior of client access
patterns to these competing services. At the same time, streaming media services are becoming increasingly popular, pre-
senting new challenges for designers of shared hosting services. These new challenges result from fundamentally new char-
acteristics of streaming media relative to traditional web objects, principally different client access patterns and significantly
larger computational and bandwidth overhead associated with a streaming request. To understand the characteristics of
these new workloads we use two long-term traces of streaming media services to develop MediSyn, a publicly available
streaming media workload generator. In summary, this paper makes the following contributions: (i) we propose a frame-
work for modeling long-term behavior of network services by capturing the process of file introduction, non-stationary
popularity of media accesses, file duration, encoding bit rate, and session duration. (ii) We propose a variety of practical
models based on the study of the two workloads. (iii) We develop an open-source synthetic streaming service workload
generator to demonstrate the capability of our framework to capture the models.
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1. Introduction

Two recent trends in network services motivate
this work, a move toward shared service hosting cen-
ters and the growing popularity of streaming media.
Traditionally, service providers over-provision their
sites to address highly bursty client access patterns.
These access patterns can vary by an order of magni-
tude on an average day [10] and by three orders of
magnitude in the case of flash crowds. In fact,
services are often most valuable exactly when the
unexpected takes place. Consider the example of a
news service when an important event takes place;
load on CNN reportedly doubled every seven min-
utes shortly after 9 AM on September 11, 2001 [7].

Thus, we are pursuing a vision where large-scale
hosting infrastructures simultaneously provide
‘‘resource-on-demand’’ capabilities to competing
Internet services [19,8]. The idea is that the system
can use statistical multiplexing and efficient resource
allocation to dynamically satisfy the requirements
of services subject to highly bursty access patterns.
For instance, surplus resources resulting from
‘‘troughs’’ in accesses to one service may be reallo-
cated to satisfy the requirements of a second service
experiencing a peak. Further, Service Level Agree-
ments (SLAs) may specify that, under resource
constraints, one service should preferentially receive
resources over other services.

A second emerging trend is the growing popular-
ity of streaming media services. Streaming media
takes the form of video and audio clips from news,
sports, entertainment, and educational sites. Stream-
ing media is also gaining momentum in enterprise
intranets for training purposes and company broad-
casts. These workloads differ from traditional web
workloads in many respects, presenting a number
of challenges to system designers and media service
providers [13,18]. For instance, transmitting media
files requires more computing power, bandwidth
and storage and is more sensitive to network jitter
than web objects. Further, media access lasts for a
much longer period of time and allows for user inter-
action (pause, fast forward, rewind, etc.).

The long-term goal of our work is to study
resource provisioning and resource allocation at
the confluence of the above two trends: network ser-
vice hosting infrastructures for next-generation
streaming workloads. A key obstacle to carrying
out such a study is the lack of understanding of
changing client access patterns over a long period
of time. For both hosting centers and content distri-
bution networks (CDNs), we require such an under-
standing to determine, for example, how to place
objects at individual sites (potentially spread across
the network) and how to allocate resources to indi-
vidual streams and to individual clients.

Thus, we use long-term traces from two stream-
ing media services to construct an open-source
media workload generator called MediSyn. For
MediSyn, we develop a number of novel models to
capture a broad range of characteristics for network
services. We also demonstrate how these models
generalize to capture the characteristics of tradi-
tional web services. Overall, this paper makes the
following contributions:

• A primary contribution of our work is its focus on
the long-term behavior of network services.
Among the features of our synthetic generator is
the ability to reflect the dynamics and evolution
of content at media sites and the change of access
rate to this content over time. Existing workload
generators assume that there is a set of active
objects fixed at the beginning of the ‘‘trace’’.
Similarly, existing techniques assume that object
popularity remains the same over the entire dura-
tion of the experiment. While these are reasonable
assumptions for experiments designed to last for
minutes, we are interested in long-term provision-
ing and resource allocation, as well as the resource
allocation for simultaneous competing services
(consider a CDN simultaneously hosting hun-
dreds of individual services).

• It was observed [2,12] that the popularity distri-
bution in media workloads collected over signifi-
cant period of time (more than 6 months) does
not follow a Zipf-like distribution. We showed
that a special version of Zipf–Mandelbrot law
can be used to capture the popularity distribution
in such workloads. The traditional Zipf-like dis-
tribution is a special case of the Zipf–Mandelbrot
distribution.

• We designed a set of new models to capture a
number of characteristics critical to streaming
media services, including file duration, file access
prefix duration, non-stationary file popularity,
new file introduction process and diurnal access
patterns.

The rest of this paper is organized as follows.
Section 2 outlines the workload properties that
MediSyn attempts to capture and presents the
workload generation process adopted by MediSyn.



Table 1
Summary for two media logs used to develop property models in
MediSyn

HPC HPL

Log duration 29 months 21 months
Number of files 2999 412
Number of sessions 666,074 14,489

338 W. Tang et al. / Computer Networks 51 (2007) 336–356
Section 3 outlines the real-world workloads used tin
our study and introduces the models used in Medi-
Syn and discusses their specifics. We review previous
related work in Section 5. Finally, we conclude with
a summary and future work in Section 6.

2. Media workload properties and their generation

in MediSyn

Accurate workload characterization is critical for
successful generation of realistic workloads. A syn-
thetic media workload generator can produce traces
with targeted, controllable parameters and desired
distributions for performance experiments studying
effective streaming media delivery architectures and
strategies. For such experiments, the generated
workload must not only mimic the highly dynamic
resource-utilization patterns found on today’s media
systems but also provide flexible means to generate
more intensive, bursty and diverse workloads for
future media systems. Challenges to designing a use-
ful analytical workload generator include:

• identifying essential properties of workloads tar-
geted by synthetic workload generators, and those
that most affect the behavior of hosting centers,

• designing appropriate mathematical models that
closely reproduce the identified workload proper-
ties from real traces.

In this section, we highlight the main properties
of streaming media workloads modeled in MediSyn
and how these properties are composed together
during workload generation process in MediSyn.

We partition media workload properties in two

groups: static and temporal properties.

• Static properties provide the characteristics of the
underlying media fileset, reflect the aggregate,
quantitative properties of client accesses (inde-
pendent of the access time), and present the prop-
erties of individual file accesses. Static properties
include:
– file duration that represents the advertised

duration of the file (in seconds),
– file encoding bit rate that reflects the rate (in

bits/s) used for file encoding and that defines
bandwidth requirements for the file transfer,

– file access popularity that defines the number of
accesses to a file within a certain period of time,

– file access prefix that represents the elapsed
time of the requested media file when the play
ended (a play is ended prematurely when the
client hits the stop button).

• Temporal properties reflect the dynamics and evo-

lution of accesses to media content over time,
and determine the ordering and the timing of ses-
sion arrivals. The temporal properties of media
workloads include:
– new file introduction process that reflects at

what rate the new content is introduced at
the media site (and hence, when it appears in
media workload),

– file life span that defines the file popularity
changes over a daily time scale within a certain
period of time,

– diurnal access pattern that specify how the
number of accesses to a site varies during a
given period of time, e.g., a day.
MediSyn’s goal is to generate a synthetic trace
representing a sequence of file accesses to media ser-
vice. This process consists of generating values/dis-
tributions for all the properties introduced above
for each media file.

Once all the file’s properties are generated, Med-
iSyn generates a sequence of accesses to each file
accordingly to the assigned popularity distributions
and file temporal properties. At the end, all the
media sessions for all the files are combined and
sorted according to a global time and merged
together to generate the synthetic trace.

3. Main models of workload generation in MediSyn

This section describes the models used in Medi-
Syn to capture static and temporal properties of
streaming media workloads.

Throughout this paper, we use two representative
streaming media server logs, collected over a period
of years, to demonstrate the chosen properties and
to validate our mathematical models introduced to
reflect these properties. The streaming media server
logs represent two different media services: HP Cor-
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Fig. 1. PDF of the HPC duration distribution: (a) four normal
distributions to capture the four peaks and (b) the aggregate
distribution of the four normal distributions.
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porate Media Solutions Server (HPC) and HPLabs

Media Server (HPL). We define a session as a client
access to a particular file. Table 1 briefly summa-
rizes the workloads.

In Table 1, the HPC media server shows more
activities than the HPLabs server. While the HPL-
abs server serves a small number of research-ori-
ented communities within HP, the HPC workload
represents a reasonably busy media server with
300–800 client sessions everyday with peak rate at
12,000 sessions per day. Given this difference, it
becomes even more interesting whether we can
design common models that are capable of generat-
ing these diverse enterprise media workloads.

In the paper, we chosed to use a visualization
help for presentating our models and results. Most
of the figures are used to visually characterize the
nature of studied workloads and help in under-
standing the main workload properties and their
specifics. We used MatLab for fitting our data with
distribution candidates. In particular, we used v2

(chi-squared) and k2 for goodness-of-fit measure-
ment based on [22,21].

3.1. Static properties

3.1.1. Duration

Prior studies [12,3] observed that media files
might be classified into a set of groups according
to their durations. Different workloads can be
grouped based on the content of media files hosted
by a streaming service. For example, music sites
may have file durations from 3 to 5 min, while
movie sites may have file durations from one and
half to two hours. While a particular workload
might be captured by a certain statistical distribu-
tion, the same distribution may fail to capture
another workload. In our case, although the file
duration distribution of the HPC trace can be mod-
eled by a heavy-tail distribution such as a Weibull

distribution [15], the same distribution fails to cap-
ture the file duration distribution of the HPL trace.

As shown in Figs. 1(a) and 2(a), the file durations
in our traces are concentrated around a set of hot
points. These hot points are usually some common
durations, semantically meaningful to a particular
type of media content. Based on this observation,
we classify these hot points into a set of groups
and use a set of normal distributions to model the
grouped file duration distribution as shown in Figs.
1(a) and 2(a). Here, each group is modeled by a nor-
mal distribution with the mean (l) of each distribu-
tion defined by the hot point of that group. The
standard deviation (r) of each normal distribution
determines the concentration of the durations
within that group.

Note that we do not use segmented probability
density functions (PDFs) to model the duration dis-
tribution. We assume a hot point can affect the
entire duration scope rather than just a segment.
Thus, we use an aggregated distribution, whose
PDF sums the PDFs of all normal distributions pro-
portionally. To proportionally sum all duration
groups, we associate each group with a ratio deter-
mined by the number of files in the group compared
with the total number of files in the trace. So the
normal distribution PDF of each group is normal-
ized against the ratio of that group. If only a frac-
tion of a normal distribution for a group is used,
normalization is performed on the adopted fraction
of the distribution. For example, since the mean of
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Fig. 2. PDF of the HPL duration distribution: (a) five normal
distributions to capture the five peaks and (b) the aggregate
distribution of the five normal distributions.

Table 2
Parameters of the normal distributions for the HPC trace

Group 1 2 3 4

l 0 2000 3300 5821
r 600 400 600 1223

Ratio 63% 10% 18% 9%

Table 3
Parameters of the normal distributions for the HPL trace

Group 1 2 3 4 5

l 117 2900 4200 5160 6300
r 1200 240 360 180 1000

Ratio 19% 26% 30% 10% 15%
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Fig. 3. PDF of the MediSyn duration distribution: (a) Four
normal distributions to capture the four peaks and (b) the
aggregate distribution of the four normal distributions.
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the first group in Table 2 is 0, only half of the nor-
mal distribution is used. Tables 2 and 3 present the
mean (l), the standard deviation (r) and the ratio of
each normal distribution for the HPC and HPL
trace respectively. They show that the HPC and
HPL traces have different hot points.

In MediSyn, users can specify a set of duration
groups with different l, r and ratios based on the
nature of the media workload they want to generate.
For each duration group, MediSyn generates a
sequence of durations according to the ratio and
the normal distribution of the group. We use the
rejection method [15] to generate the duration
sequence according to the parameterized normal dis-
tribution. Fig. 3(a) and (b) shows the durations gen-
erated by MediSyn to simulate the HPC workload
based on the parameters presented in Tables 2 and 3.

We use k2 discrepancy measure introduced by
Vern Paxson [26] to compare the duration set gener-
ated by MediSyn with the original data set. The k2

value is 0.1140.
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3.1.2. Encoding bit rate

Since most of commercial media servers are
designed to stream media files encoded at some
constant bit rates, the current version of MediSyn
is designed to only generate a set of constant bit
rates for the underlying fileset.

MediSyn models encoding bit rates by a discrete
distribution, where the value of each bit rate and the
ratio of the bit rate occupied in the fileset can be
specified. Based on the discrete distribution pro-
vided by users, MediSyn generates a sequence of
bit rates for the fileset and matches the bit rate with
the file duration randomly, since we observe that
there is no correlation between them in our traces
(the correlation coefficient is 0.0144).

3.1.3. Popularity

Earlier studies [13,18] found that media file pop-
ularity can often be captured by a Zipf-like distribu-
tion. A Zipf-like distribution states that the access
frequency of the ith most popular file is propor-
tional to 1/ia. If the frequencies of files and the
corresponding popularity ranks are plotted on a
log–log scale, a Zipf-like distribution can be fitted
by a straight line. A larger a implies more sessions
are concentrated on the most popular files. Some
synthetic workload generators [6,17] also adopt a
Zipf-like distribution in generating file popularity.

However, several studies [2,12,3,5,9] analyzing
the properties of workloads collected over signifi-
cant periods of time observed that for some web
and streaming media workloads, a Zipf-like distri-
bution does not accurately capture the file popular-
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Fig. 4. The original popularity distributions of the HPC trace
and the HPL trace on a log–log scale.
ity distribution. The popularity distribution of these
workloads shows a circular curve on a log–log scale.

For reference, Fig. 4 shows the file popularity
distributions of the HPC and the HPL traces over
the entire trace periods on a log–log scale. They
are more like circular curves similar to those distri-
butions noticed in previous web studies [5,9] and
media workload studies [2,12].

If we use a straight line (a Zipf-like distribution)
to fit the circular curve and generate session fre-
quencies based on the value of a obtained by curve
fitting, the generated frequencies must be skewed
from the original session frequencies. Breslau et al.
[9] calculated a by excluding the top 100 files. For
our traces, not only the beginning but also the end
of the curves cannot be fitted by straight lines.
Moreover, since the most popular files are especially
important for synthetic streaming media workloads,
we cannot ignore the first 100 files.

• Zipf–Mandelbrot law

Zipf–Mandelbrot law [25] is a discrete probability
distribution, which is a generalized Zipf distribu-
tion. The law can be described as
f ðxÞ ¼ C
ðxþ kÞa ; ð1Þ
where x is the file popularity rank, k is a con-
stant, C is a normalization constant, a is the same
as the parameter of Zipf distribution. C ¼PN

i¼11=ðiþ kÞa. We observe that circular curves
of file popularity can be captured by Zipf–Man-
delbrot law.

• k-transformation

To facilitate users to select popularity distri-
butions in our workload generator, we provide
a simple transformation (k-transformation) that
can assist the parameter fitting of Zipf–Mandelb-
rot law and intuitively illustrate the meaning of
the parameters. The k-transformation is defined
as follows: given x as a file rank, y as the corre-
sponding access frequency for the file, the follow-
ing k-transformation can transform x and y to a
Zipf-like distribution between xk and yk with the
same a,
xk ¼
xþ kx � 1

kx
ð2Þ

yk ¼
y þ ky � 1

ky
ð3Þ
where kx and ky are scale parameters. Since
yk ¼ Ck=xa

k (Ck is the normalization constant),
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ðy þ ky � 1Þ=ky ¼
Ck

ððxþ kx � 1Þ=kxÞa
; ð4Þ

y ¼ Ckka
xky

ðxþ kx � 1Þa þ 1� ky : ð5Þ
Eq. (5) is a centered Zipf–Mandelbrot distribu-
tion. The parameters C and a of the Zipf–Man-
delbrot distribution on x and y can be
described as C = Ckkx

aky, k = kx � 1. We also
introduce a constant a = 1 � ky.
Fig. 5 shows the relationship between xk and yk

of the HPC and HPL traces on a log–log scale
respectively. We observe that they are perfectly
straight lines. The a value of the Zipf k-transfor-
mation is derived through linear regression [14].
Table 4 shows some critical parameters related
to the curve fitting of the two workloads. As
shown in the table, R2 is 0.995 for both the
HPC and HPL traces, indicating that straight
lines fit both the distributions very well.The rea-
son that the original traces do not show perfectly
straight lines at the heads of the curves is that
there is little differentiation in the frequencies of
the most popular files (with smaller x). It can
be attributed to the fact that a long-term trace
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le 4
ameters of Zipf k-transformation of the HPC and the HPL
es

ce a R2 kx ky Maximum
frequency

Number
of files

1.561 0.995 12 12 17831 1434
1.23 0.995 7 7 961 364
can collect enough files with similar popularities
over time, and thus these files can be considered
as a group (equivalence class), where a group
rank will be a better reflection of the file popular-
ities. Intuitively, the effect of the k-transforma-
tion is that the popularity follows a Zipf-like
distribution if we check every group of kx files.
We divide x by kx to scale the file ranks so that
the ((i � 1)kx + 1)th rank becomes the ith rank
and reflect now the corresponding file group
rank. So we actually move all points on the
log–log scale along the x-axis to the left and
squeeze the points to a more straight line.
Similarly, the reason that the traces do not show
perfectly straight lines at the tails of the curves is
that there is not enough differentiation in the
number of files with the lowest frequencies. So
we divide y by ky to squeeze those points
along the y-axis on the log–log scale. The value
of ky is not necessarily the same as kx. However,
MediSyn uses the same value for kx and ky based
on our observations for both the HPC and HPL
traces, which we simply refer to as k. The scale
parameter k of our k-transformation is similar
to the scale parameter k of a general Pareto dis-
tribution [1].
An explanation for the k-transformation is that
the original frequency sequence cannot be fitted
by a Zipf-like distribution starting from rank 1,
but it can be fitted into part of a Zipf-like distri-
bution starting from rank kx. To describe this file
rank starting from kx by a Zipf-like distribution,
we have to divide its original rank by kx. Similar
explanation can be applied for ky.

For popularity generation, instead of specifying
the total number of requests, we choose to follow
traditional load generator style to ask users to spec-
ify the maximum access frequence of the most pop-
ular file and then generate other file’s popularity
based on Zipf–Mandelbrot law. To generate a
sequence of frequencies, users of MediSyn only need
to specify the maximum frequency M for the most
popular file, the number of files N, the scale param-
eter k, and the Zipf-like distribution parameter a.
MediSyn computes the frequency of the most
popular xth file (x 2 [1,N]) using the following
formula:
Mk

ðxþk�1
k Þa � 1

 !
k þ 1; ð6Þ
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Table 5
Correlation coefficient between file popularity and file duration

Workload HPC
frequency

HPL
frequency

HPC
rank

HPL
rank

Correlation
coefficient

�0.03 0.05 �0.20 �0.002
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Fig. 8. Popularity rank vs. duration for the HPL trace.
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where Mk ¼ M�1
k þ 1. Fig. 6 compares the frequen-

cies generated by MediSyn with the original fre-
quencies in our traces.

To determine whether there is a correlation
between file duration and file popularity, we
compute the correlation coefficient between file
popularity and file duration for both of our work-
loads. Table 5 shows these results. We use both
the file frequency and the file rank as the popularity
metric to compute the correlation coefficient.
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Fig. 7. Popularity rank vs. duration for the HPC trace.
Figs. 7 and 8 show the relationship between pop-
ularity and file duration for the HPC and HPL
traces.

Overall, we observe no strong correlation
between file popularity and file duration. So file
duration and file popularity are randomly matched
in MediSyn.

We also check for possible correlation between
popularity and encoding bit rate. Once again, there
is no correlation between them, so MediSyn matches
popularity and encoding bit rate randomly.

3.1.4. Prefix

One major characteristics of streaming work-
loads is that a significant amount of clients do not
finish playing an entire media file [12,3]. Typically,
this reflects the browsing nature of client accesses,
client time constraints, or QoS-related issues. Most
incomplete sessions (i.e. terminated by clients before
the video is finished entirely) access only the initial
segments of media files. In the HPC (HPL) trace,
only 29% (12.6%) of the accesses finish the playback
of the files. 50% (60%) of the accesses in the HPC
(HPL) trace last less than 2 min. This high percent-
age of incomplete accesses as well as a high number
of sessions accessing only the initial part of the file
create a very special resource usage model, which
is widely considered for streaming media cache
design [24].

We refer to the duration between the start of a
media session and the time when the session is ter-
minated by the client as the prefix duration of the
session, or simply the prefix. Figs. 9 and 10 show
the histogram for the prefixes of two typical exam-
ple files in the HPC trace. The ‘‘spikes’’ in the
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figures correspond to successfully completed media
sessions for the files, while the other prefixes in the
figures are incomplete sessions. We observe that
there is a strong correlation between the file dura-
tion and the prefix distribution:

• Complete sessions. The fraction of complete ses-
sions of a file highly depends on the file duration.
A short file tends to have more complete sessions.
For example, the file durations in Figs. 9 and 10
are 723 s and 4133 s respectively. The file in Fig. 9
has more complete sessions than that in Fig. 10.
We use rc to denote the ratio of complete sessions
for a file compared with the total number of ses-
sions for the file. Fig. 11 shows the relationship
between file duration and rc. We can observe that
the rc of each file highly depends on the file
duration.

• Incomplete sessions. The prefix distribution of
incomplete sessions of a file depends on the file
duration. Fig. 9 reflects that the prefixes of
incomplete sessions for a short-duration media
file can be captured by an exponential distribu-
tion. While for a long-duration file as shown in
Fig. 10, the prefixes of incomplete sessions can-
not be captured by an exponential distribution.

Thus, the overall prefix distribution of a media
workload highly depends on each file’s prefix distri-
bution, which in turn depends on the duration of
the file. There is not a straightforward solution to
directly capture the overall prefix distribution for
the entire workload. To generate each file’s prefix
distribution, we first generate rc for the file, then
model the distribution of incomplete sessions for
the file based on the assigned rc.

To generate rc for a file, we need to determine the
relationship between rc and the file duration as
shown in Fig. 11. We observe that the contour of
the dotted area in Fig. 11 follows a Zipf-like distri-
bution. To obtain this curve, we segment the dura-
tions of all files into 1-min bins. The maximum rc

value of each bin (denoted as rmax
c ) constitutes the

contour of the dotted area in Fig. 11. Fig. 12 shows
the relationship between rmax

c of each bin and the
duration (in minutes) for the corresponding bin on
a log–log scale. Because the maximum value of
rmax

c is 0.74, the curve is flat in the beginning. The
other points can be fitted with a straight line. Thus,
we can use a Zipf-like distribution to capture the
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distribution of rmax
c for all bins. We also observe that

the rc values for other files within a bin, are uni-
formly distributed between 0 and the rmax

c value of
the bin. So, to generate rc for each file, MediSyn first
classifies files into 1-min bins based on their dura-
tions. Then, MediSyn generates rmax

c for each bin.
For files in each bin, their rc values are chosen
according to a uniform distribution between 0 and
rmax

c of the bin. Through this process, the rc of each
file can be determined.

After the rc value of each file is determined, the
distribution of incomplete sessions needs to be
determined. As mentioned above, depending on
the file duration, it could be captured by an expo-
nential distribution or a mix of an exponential and
a uniform distribution. Additionally, both Figs. 9
and 10 show a similar shape in the beginning of
the distributions within a certain range of duration.
We observe that for more than 90% of the media
files in the HPC trace, the distributions of prefixes
within the first 5 min can be fitted by exponential
distributions. These results confirm similar findings
for an educational workload studied by Almeida
et al. [3]. Given the fact that prefixes within a certain
duration range (e.g., the first 5 min) occupy a high
percentage of total incomplete sessions, we intro-
duce a cut-off point and use the following method
to model the prefix distribution of a given media file:

• If a media file duration is less than the cut-off

point, its incomplete prefixes are modeled by an
exponential distribution.

• If a media file duration is longer than the cut-off

point, the distribution of incomplete prefixes is
modeled by the concatenation of two distributions.
The distribution of incomplete prefixes less than
the cut-off point is modeled by an exponential dis-
tribution. The distribution of the remaining
incomplete prefixes longer than the cut-off point
is approximated by a uniform distribution.

In the HPC trace, the cut-off point is 5 min. Users
of MediSyn can specify their own cut-off point. We
use the following denotations:

• re defines the ratio of incomplete sessions whose
prefixes are within the cut-off point compared
with the total number of sessions of the file,

• ru defines the ratio of incomplete sessions whose
prefixes are longer than the cut-off point com-
pared with the total number of sessions of the
file. If a file duration is less than the cut-off point,
ru is 0.

Given rc for a file, MediSyn needs to generate the
values of re and ru for the file. The strategy is to gen-
erate re for the file and to set ru = 1 � rc � re. Fig. 13
shows the relationship between rc and re for all files
in the HPC trace. We can see that for a given rc, the
value of re is bounded on both the lower and upper
sides. If we denote the maximum of all rc values as
Rmax

c (0.74 for the HPC trace), the upper bound
rupper

e and the lower bound rlower
e of a given rc can

be computed by Eqs. (7) and (8) respectively.

rupper
e ¼ 1� rc ð7Þ

rlower
e ¼ rupper

e � ð0:6þ 0:4 � rc=Rmax
c Þ ð8Þ
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Fig. 13 plots these calculated upper and lower
bounds. The upper bound is caused by the limita-
tion that the sum of rc, re, and ru is 1. The lower
bound changes from 60% of the upper bound to
the same as the upper bound while rc increases from
0 to Rmax

c . So during workload generation, for a
given rc, MediSyn generates the value of re accord-
ing to a uniform distribution between the corre-
sponding upper bound rupper

c and the lower bound
rlower

c .
After generating rc, re and ru for each media file,

MediSyn still needs to generate the mean (l) of the
exponential distribution for the incomplete prefixes.
Since each file has its own exponential distribution
for prefixes, we have to derive the distribution for
the l’s of all media files. Analysis of session prefixes
in the HPC trace shows that l’s of all media files fol-
low a normal distribution.

MediSyn generates a sequence of prefixes accord-
ing to the generated ratios of rc, ru, re and l for each
file. Then, these prefixes are randomly matched with
all the sessions of the file. In this way, MediSyn can
generate all session prefixes for every file. Fig. 14
shows the cumulative distribution function (CDF)
of the prefixes in the HPC trace compared with
the CDF of the prefixes generated by MediSyn.

3.2. Temporal properties

3.2.1. Causes of temporal locality in media workloads

collected over long period of time

Temporal reference locality, which is universally
observed in web and media workloads [13,12,4], is
the primary factor that affects session arrival order-
ing. Temporal locality states that recently accessed
objects are likely to be accessed in the near future
in the access stream. Two factors can cause the tem-
poral locality in the access stream: skewed popularity

distribution and temporal correlation [11,16]. Since
popular files have a higher probability to be accessed
within the access stream, a file’s popularity contrib-
utes to its temporal locality. If we randomly permute
the access stream, the temporal locality caused by
skewed popularity is still preserved under reorder-
ing. However, temporal locality caused by temporal
correlation cannot be preserved under random per-
mutation. In MediSyn, to generate a stream of ses-
sion arrivals exhibiting proper temporal locality,
we need to clearly understand and distinguish the
causes of temporal locality.

To check the existence of possible temporal cor-
relation among sessions for the same files in our
traces, we compare reference distances [4] between
the original HPC trace and a randomly permuted
HPC trace. Let s1, s2, . . . , sn be the stream of accesses
representing the media sessions of the entire HPC
trace. Let si1 ; si2 ; . . . ; sim be the sequence of sessions
to the same file fi. The reference distances of si2 ;
si3 ; . . . ; sim are defined as i2 � i1, i3 � i2, . . . ,
im � im�1. We calculate the reference distances for
all the files and their sessions over the entire HPC
trace. Then we apply similar procedure to the ran-
domly permuted HPC trace.

Fig. 15(a) shows the histogram of the reference
distances in the original HPC trace on a log–log scale.
The X-axis shows the reference distances, and the Y-
axis shows the number of sessions in the original HPC
trace for the corresponding reference distance.
Fig. 15(b) shows the histogram of the reference dis-
tances in the randomly permuted HPC trace on a
log–log scale. It can be observed that two curves are
not the same. In Fig. 15(b), there are less references
with small distances. For example, there are
122,765 references with distance 1 in Fig. 15(a). But
there are only 5468 references with distance 1 in
Fig. 15(b). Since in Fig. 15(b), reference distances
are only determined by the file popularity, we assume
the reason that Fig. 15(a) and (b) are not the same is
that there is temporal correlation among sessions for
the same files over the entire trace.

To verify whether our media traces exhibit short-
term temporal correlation, we calculate reference
distances within every day and sum the number of
references with the same distance over all days for
the HPC trace. Then, we permute accesses within
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Fig. 16. (a) Reference distances calculated within each day in the original HPC trace and (b) reference distances calculated within each day
in the permuted HPC trace.

Fig. 15. (a) Reference distances calculated over the entire trace period in the original HPC trace and (b) reference distances calculated over
the entire trace period in the permuted HPC trace.
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every day and calculate reference distances again for
the permuted trace. The results are shown in
Fig. 16(a) and (b). We observe that there is almost
no difference between the original trace and the per-
muted trace on reference distances. This implies that
there is no temporal correlation for sessions within a
single day and that temporal locality of sessions
within a single day is purely determined by the file
popularity distribution within that day.

The analysis above implies that temporal correla-
tion in media workloads collected over long period
of time is due to long-term temporal correlation
exhibited on a daily time scale, and that there is
no temporal correlation for sessions within a single
day. These observations motivate our choice of tem-
poral properties in MediSyn. The temporal proper-
ties described below intend to reflect the dynamics
and evolution of accesses to media content over
time and to define the proper temporal locality
and long-term temporal correlation found in media
workloads.

3.2.2. New file introduction process

One recent study [12] observes that accesses to
new files constitute most of the accesses in any given
month for enterprise media servers. We envision
that this access pattern is even more pronounced
for media news and sports sites. While for educa-
tional media sites the rate of new file introduction
and accesses to them might be different, we aim to
design a generic parameterized model capable of
capturing the specifics of new content introduction
for different media workloads. Among the design
goals of our synthetic generator is the ability to
reflect the evolution of media content provided by
different media sites over a long period of time
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(months). Since we design MediSyn to support
detailed resource allocation studies, we must
account for the dynamic introduction of new con-
tent and its relative popularity.

The process of new file introduction mimics how
files are introduced at a media site and attempts to
answer the following questions:

• What is the new file arrival process on a daily
time scale?

• What is the new file arrival process within an
introduction day?

To model new file arrival on a daily level, we cap-
ture the time gap measured in days between two
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Fig. 17. New file introduction gaps measured in days for the
HPC trace.
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Fig. 18. New file introduction gaps measured in days for the
HPL trace.

Fig. 19. The number of new files introduced per introduction
day.
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Fig. 20. The histogram and the PDF of the new file introduction
gap for the HPC trace.
introduction days and the number of new files intro-
duced in each introduction day. Fig. 17 shows the
distribution of new file introduction gaps measured
in days for the HPC trace. The distribution depicted
in Fig. 17 can be captured by a Pareto distribution
with a = 2.0164. Fig. 20 shows the histogram of
the original trace and the PDF of the fitted Pareto
distribution. Fig. 18 shows the introduction gap dis-
tribution for the HPL trace, which can be captured
by an exponential distribution with l = 4.2705.
Fig. 21 shows the histogram of the original trace
and the PDF of the fitted exponential distribution.
We center the exponential distribution at x = 1.

MediSyn can generate new file introduction time
gaps according to one of three possible distribu-
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tions: (1) a Pareto distribution, (2) an exponential

distribution, (3) a fixed interval. If users specify a
Pareto distribution for the new file introduction
process, files tend to be introduced into the system
clustered over time. If the introduction process is
specified by an exponential distribution, the new file
arrival process is a Poisson arrival process, which
means the interarrival times are independent. The
fixed interval is used to model some artificial intro-
duction process with regular patterns.

Since there may be multiple new files introduced
in a given day, we must also model the number of
files introduced per introduction day. Fig. 19 shows
the distribution for the number of files introduced in
a given day for the HPC trace. The distribution can
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Fig. 22. The histogram and the PDF for the number of new files
introduced per day.
be fitted by a Pareto distribution with a = 1.1323.
Fig. 22 shows the histogram and the PDF of the fit-
ted Pareto distribution.

After determining the number of files introduced
in a given day, MediSyn needs to model the new file
arrival process within that day. We model this pro-
cess by capturing the gap between two file arrivals.
Fig. 23 shows the time gaps for new files introduced
within a day. Since the distribution is too sparse on
time scale of seconds, we measure the time gaps at
multiples of 900 s (15 min). The distribution can be
captured by a Pareto distribution with a = 1.0073.

Due to the properties of Pareto distribution, if we
only model the time gap between two file arrivals
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Fig. 24. The start times of new file introduction within intro-
duction days.
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and start to introduce new files from the beginning
of a day, then most of the files will be introduced
in the beginning of every day. So we also capture
the start times of new file introduction process
within every introduction day. Fig. 24 shows this
distribution. Since it looks like a rotated normal dis-
tribution with the peak at 0, we rotate the distribu-
tion by 12 h as shown in Fig. 25. This is a normal

distribution with mean 43,200 s and standard devia-
tion 21,600 s.

Fig. 26 shows the correlation of file introduction
time between the HPC workload and a workload
generated by MediSyn to simulate the HPC work-
load.

The correlation coefficient is 0.9889. So the gen-
erated file introduction time sequence matches the
original trace quite well.
3.2.3. Life span

Since temporal correlation is observed in media
workloads, an independent reference model com-
bined with a global popularity distribution [9] is
insufficient for a synthetic workload generator to
generate a file access stream. SURGE [6] uses a
stack distance model to generate web reference
streams with reference locality. Both the indepen-
dent reference model [9] and the stack distance
model [6,4] assume that each file’s popularity is sta-
tionary over the entire trace period and that each
file is introduced at the start of the trace. Since we
observe non-stationary popularity in streaming
media workloads, such models are unsuitable for
generating session arrivals in streaming media
workloads.

A new property called life span has recently been
proposed in [12] to measure the change in access rate
of newly introduced files. Life spans reflect the time-
liness of accesses to the introduced files. We observe
that accesses to a media file are not uniformly dis-
tributed over the entire trace period. Instead, most
accesses for a file occur shortly after the file is intro-
duced, with access frequency gradually decreasing
over time. For example, for the HPC (HPL) log,
52% (51%) of the accesses occur during the first week
after file introduction, while only 16% (10%) of the
accesses occur during the second week, etc. Hence,
the file access frequency (file popularity) changes
over time. In other words, file popularity is non-sta-

tionary over the trace period. This phenomenon
implies that session arrivals might be very bursty
when new files are introduced at a site.

To accurately model the non-stationarity of file
popularity, we use the new file introduction process
to mimic how media files are introduced at the
media sites, as we described above. In addition, each
file has its own life span, which characterizes its
changing popularity after the file’s introduction.
Thus, the global file popularity distribution, the file
introduction process and life spans of individual
files, all together capture the popularity change of
media files over the entire trace.

We define the relative access time of a file as a
random variable whose value is the time measured
in days when the file is accessed by a client after
the file is introduced. The distribution of a file’s rel-

ative access times describes the temporal correlation
of all accesses to the file. We also call this distribu-
tion the life span distribution of the file. In our
traces, we observe two types of life span distribu-
tions as illustrated in Figs. 27 and 28 respectively.
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Table 6
The parameters for the distributions (normal distributions) of the
parameters in lognormal and pareto life span distributions

Normal
distribution
paramaters

Lognormal l Lognormal r Pareto a

l 3.0935 1.1417 0.7023
r 0.9612 0.3067 0.2092
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Since most files in our traces have life spans similar
to Fig. 27, we call this type of life span a regular life

span.
News-like streaming contents typically have life

span distributions similar to Fig. 28, where most
accesses occur shortly after the file introduction
and the access frequency diminishes relatively
quickly. So we refer to this kind of life span as
news-like life span.

We experimented with gamma, Pareto, exponen-
tial and lognormal distributions to fit the relative

access times of our traces. Although gamma distribu-
tions can somehow capture both news-like and
regular life spans, the combination of Pareto and
lognormal distributions can better fit them. Thus,
news-like life spans follow Pareto distributions, and
regular life spans follow lognormal distributions.
To generate a sequence of regular life spans and
news-like life spans, we need to model the distribu-
tions of the mean (l) and the standard deviation (r)
for regular life spans, and the distributions of a for
news-like life spans. Our analysis of the HPC and
HPL traces shows that these parameters follow nor-

mal distributions. Table 6 shows the parameters for
these normal distributions derived from the HPC
log to capture the parameters of regular life spans
(l and r) and news-like life spans (a).

There is a strong correlation between file popu-
larity and life span shape. A file with a higher pop-
ularity rank tends to have a higher probability for
having a news-like life span. Fig. 29 shows the
PDF for this probability. The distribution can be
captured by an exponential distribution. File ranks
have been transformed between 0 and 1 so that l
for the exponential distribution is independent of
the number of media files generated. In the HPC
trace, we observed 82 news-like life spans out of
the 400 most popular files. Users of MediSyn can
specify their own ratio according to the workload
they want to generate. A workload including more
files with news-like life spans has a more bursty
access pattern.



0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

Gap (sec)

R
at

io

Fig. 31. The PDF of session access interarrival time gaps for a
file measured in an hour.

352 W. Tang et al. / Computer Networks 51 (2007) 336–356
3.2.4. Diurnal access pattern

Earlier studies observed the diurnal access pat-
terns for streaming media workloads [13,18,2,
3,17]. The diurnal access pattern defines how the
number of accesses to a site varies during a given
period of time, e.g., a day. Diurnal access patterns
might significantly vary for different media sites.
For mixed media workloads utilizing a shared infra-
structure, the diurnal access patterns have to be
taken into account when designing the optimal sup-
port for efficient resource allocation. Additionally,
the diurnal access pattern is important for capturing
the burstiness of resource consumption within a
given time period. The diurnal access patterns are
defined using the second time scale in our synthetic
workload generator, e.g., within a day.

After determining the life span and the global
popularity of every file, MediSyn can generate the
number of accesses for every day of a file’s life span.
Distributing these accesses over a day is challenging
because we wish to model both session interarrival
time and diurnal access patterns.

Fig. 30 shows a typical session interarrival time
distribution for a file measured in a day. It is a
heavy-tail distribution and can be fitted by a Pareto
distribution better than an exponential distribution.
However, if we generate all interarrival times within
a day based on this Pareto distribution, it is difficult
to simultaneously ensure diurnal pattern. Fig. 31
shows the interarrival time distribution for the same
file within one hour of the same day. This distribu-
tion is not a heavy-tail distribution and can be cap-
tured by an exponential distribution. Thus, if we can
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Fig. 30. The PDF of session access interarrival time gaps for a
file measured in a day.
determine the number of accesses in each hour of a
day according to a certain diurnal pattern, we can
use an exponential distribution to generate the inter-
arrival times of the accesses in this hour. Thus, we
can both generate the diurnal pattern and satisfy
the observed exponential distribution for interarri-
val times.

Diurnal access patterns are universally observed
by other streaming workload analyses. But we do
not explicitly find diurnal patterns for single files.
We only observe an aggregate diurnal access pattern
for all file accesses. Fig. 32 shows the average ratios
of accesses in each hour for all files in the HPC
trace.

In MediSyn, a user can specify a global diurnal
pattern like Fig. 32, which contains a set of bins.
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Fig. 32. The session access diurnal pattern for the HPC trace.
Each bin is an hour.
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Each bin specifies a time period and the ratio of
accesses in this bin. Since we believe there is no tem-
poral correlation among file accesses within a day
(i.e., the temporal locality within a day is entirely
determined by file popularities), we can make every
file follow the diurnal pattern. Essentially, each file’s
session arrival process within a given day is modeled
as a non-homogeneous Poisson process [23], where
only the session arrivals within each bin can be
modeled by a Poisson process. The session arrival
rate of the file for a given bin is computed based
on the diurnal pattern specified by the user and
the number of accesses within a day determined
by the file life span. MediSyn generates the interar-
rival time gaps within each bin and constructs a
sequence of sessions for the file on the scale of
seconds.

4. Workload generation process in MediSyn

MediSyn’s goal is to generate a synthetic trace
representing a sequence of file accesses to media ser-
vice. This process consists of two steps: file property

generation and file access generation.

• File property generation

The first step is to generate values for all proper-
ties introduced above for each media file. Static
properties define file set parameters (duration
and encoding bit rate) and the principal access
patterns (popularity and prefix). Temporal prop-
erties define the ordering and timing of media
sessions. MediSyn defines these properties using
a parameterized set of distributions in the input
configuration file. If a property can be described
by a value such as global file popularity, dura-
tion, encoding bit rate, MediSyn first generates
a sequence of values according to the given distri-
bution, and then selects a value for each file. If a
property is modeled as a distribution, the choice
of the distribution and parameter(s) of the distri-
bution are generated for each file.Thus, a file is
the basic unit to which the property values are
Table 7
Properties generated for each file

File id Duration Bit rate (Kbps) Popularity File introduct

1 3600 112 20,000 100
2 200 350 14,300 50
..
. ..

. ..
. ..

. ..
.

n 600 28.8 1 10,000
propagated at the first step of workload genera-
tion. At the end of the first step, the set of corre-
sponding static and temporal properties shown in
Table 7 is generated for each file. Section 3
describes each property generation and correla-
tions among the properties in detail.

• File access generation

Taking the assigned file popularities as the basis,
MediSyn independently generates the arrival of
media sessions to each file using: (i) the initial file
introduction time, (ii) the life span of the file, and
(iii) the diurnal access pattern of the file. Each file
access includes the following three fields:
– timestamp indicating the session arrival time,
– file id specifying the target file accessed during

the media session,
– file access prefix describing the duration of the

media session.
Once a sequence of media sessions is generated
for each file, all the media sessions are sorted
according to a global time and merged together
to generate the synthetic trace.

5. Related work

Accurate workload characterization lays down a
foundation for a successful synthesis of realistic
workloads. A number of studies on multimedia
workload analysis have been reported in literature
[2,3,13,12,18,20].

Acharya et al. [2], presented the analysis of the
six-month trace data from mMOD system (the mul-
ticast Media on Demand) which had a mix of edu-
cational and entertainment videos. They observed
high temporal locality of accesses, the special client
browsing pattern showing clients preference to pre-
view the initial portion of the videos, and that
rankings of video titles by popularity do not fit a
Zipfian distribution.

Almeida et al. [3] performed an analysis of two
educational media server workloads. The authors
provide a detailed study of client session arrival
ion time (s) Life span Life span parameters � � �
Pareto 1.0 � � �
Lognormal 2.0,10.0 � � �
..
. ..

. ..
.

Lognormal 1.0, 1.0 � � �
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process: the client session arrivals in one workload
can be characterized as a Poisson process, and the
interarrival times in the second workload follow a
heavy-tail Pareto distribution. They also observed
that media delivered per session depends on the
media file length.

The study by Chesire et al. [13] analyzed the
media proxy workload at a large university. The
authors presented a detailed characterization of ses-
sion duration (most of the media streams are less
than 10 min), object popularity (78% of objects are
accessed only once), sharing patterns of streaming
media among the clients, and that popularity distri-
bution follows a Zipf-like distribution (trace dura-
tion covers one week).

Two enterprise media server workloads have
been extensively studied in [12]. The data was col-
lected over significant period of time. Thus authors
concentrated on the analysis of media server access
trends, access locality, dynamics and evolution of
the media workload over time. They reported non-
Zipfian and non-stationary popularity of files
observed in their data.

In our work, we attempt to summarize findings
from the earlier work, and build a general, unified
model for workload characteristics capturing
unique properties of streaming media workloads
as well as the dynamics in media workloads
observed over long period of time.

Since HTTP requests and streaming media ses-
sions are very different, streaming media workloads
exhibit many new properties relative to traditional
web workloads. Thus existing synthetic web work-
load generators [6] are not suitable for generating
streaming media workloads.

The only synthetic workload generator for
streaming media reported in literature is GISMO
[17]. MediSyn adopts similar approach chosen in
GISMO to organize the synthetic trace generation
in two steps: (i) defining the individual session char-
acteristics, and (ii) determining the media session
arrival process. GISMO operates over a ‘‘fixed’’
set of media files already ‘‘introduced’’ at a media
site, with the assumption that object popularity fol-
lows a Zipf-like distribution and remains the same
over the entire duration of the experiment. Since
we pursue the goal of developing a synthetic work-
load generator which reflects the dynamics and evo-
lution of media workloads over time, we propose a
set of new models to reflect these new temporal
properties of streaming media workloads in
MediSyn.
6. Conclusion and future work

Development of efficient resource allocation
mechanisms for Internet hosting centers and CDNs,
serving streaming media content, requires perform-
ing the experiments with realistic streaming media
workloads which need to be scaled, parametrized,
and mixed in a controllable and desirable way.

In this work, we present a synthetic streaming
media workload generator, MediSyn, which is spe-
cially designed to accomplish this goal. In MediSyn,
we develop a number of novel models to capture a
set of characteristics critical to streaming media
services, including file duration, file access prefix,
non-stationary file popularity, new file introduction
process, and diurnal access pattern. Among the pri-
mary features of our synthetic generator is the abil-
ity to reflect the dynamics and evolution of content
at media sites and the change of access rate to the
sites over time. Our evaluation, based on two
long-term traces of streaming media services, dem-
onstrates that MediSyn accurately captures the
essential properties of media workloads, which are
chosen to represent the unique (while generic) prop-
erties of streaming media workloads and their
dynamics over time.

MediSyn implementation is based on a modular
design allowing the particular system properties to
be customized, enhanced or extended to reflect the
requirements of individual scenarios. In a future
work, we plan to extend MediSyn with implementa-
tion of client interactivities within media sessions.

As part of MediSyn, we plan to release a work-
load analysis tool reflecting the property profiles
generated by MediSyn. These profiles can be conve-
niently used for tuning the workload generator
parameters to specify the desired properties.
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