
Designing Incentives for Peer-to-Peer Routing
(Technical Report)

Alberto Blanc
Electrical and Computer Engineering Dept.

University of California, San Diego

Yi-Kai Liu, Amin Vahdat
Computer Science and Engineering Dept.

University of California, San Diego

Abstract— In a peer-to-peer network, each node is typically
required to route packets on behalf of other nodes. We study the
problem of designing incentives to ensure that nodes carry out
this responsibility. We model the interactions between nodes as
a “random matching game,” and describe a simple reputation
system that can provide incentives for good behavior. Using
simulations, we investigate the robustness of this scheme in the
presence of noise and malicious nodes, and we attempt to quantify
some of the design trade-offs.

I. INTRODUCTION

Peer-to-peer networks suffer from the problem of free-
loaders, users who consume resources on the network without
contributing anything in return. Originally it was hoped that
users would be altruistic, “from each according to his abilities,
to each according to his needs.” In practice, however, altruism
breaks down as networks grow larger and include more diverse
users. This situation can lead to a “tragedy of the commons,”
where the individual players’ self-interest causes the system
to collapse.

This paper focuses on a special version of the free-loader
problem which arises in peer-to-peer routing. Each node in the
network relies on other nodes to forward its requests, and it in
turn is expected to forward the requests sent by other nodes.
However, a self-interested user might choose to free-load by
refusing to forward requests, conserving local bandwidth.

To reduce free-loading, the system as a whole must provide
incentives for behavior that maximizes aggregate utility while
delivering acceptable payoffs to individual users. This paper
investigates one such scheme, using tools from game theory.
First, we model a peer-to-peer network using a random-
matching game. This game was previously studied by Kandori,
who showed that, if there is a simple reputation system, then
cooperation can be sustained as a robust and subgame-perfect
equilibrium [1]. We extend Kandori’s result by showing that
this equilibrium can tolerate malicious nodes and noise in the
system.

We then consider a more complicated version of the random
matching game that models peer-to-peer routing. Under certain

E-mail: alberto@cwc.ucsd.edu
E-mail: y9liu@cs.ucsd.edu. Supported by the National Security

Agency (NSA) and Advanced Research and Development Activity (ARDA)
under Army Research Office (ARO) Grant No. DAAD19-01-1-0520.

E-mail: vahdat@cs.ucsd.edu. Supported by NSF grant ITR-0082912,
NSF CAREER award CCR-9984-328, Hewlett-Packard, IBM, Intel and Mi-
crosoft.

assumptions, we again get a subgame-perfect equilibrium. We
use simulations to show that cooperation in this game can
be sustained in the presence of malicious nodes and noise.
We also attempt to quantify some of the design trade-offs; in
particular we demonstrate that the reputation system can still
be effective even if it only monitors a small fraction of routing
events. A key contribution of this paper is quantifying the
necessary effectiveness of a reputation scheme to enforce the
incentives required to deliver high levels of global aggregate
utility. Our initial results are encouraging, with implications
for the design of such a practical system.

There is a substantial body of related work on using
incentives in computer science; for a recent survey, see [2].
For peer-to-peer networks, a variety of reputation schemes
have been proposed; most of them are based on notions of
currency (money), trust relationships, or some combination of
the two [3]. These schemes can be quite sophisticated, and
are not easy to analyze. Also, incentive problems have been
extensively studied in economics. Useful techniques can be
found in game theory and mechanism design [4]. In particular,
one can view peer-to-peer networks as an example of a public
goods problem [5].

Section II in this paper describes the basic random-matching
game and the equilibrium strategy, and gives some theoretical
analysis; section III presents some simulation results. Section
IV describes the peer-to-peer routing game, and section V
presents simulation results for that game. Section VI discusses
some open issues and related work. Section VII concludes the
paper.

II. THE RANDOM MATCHING GAME

A. The Prisoner’s Dilemma

The Prisoner’s Dilemma is a well-known game, with the
following payoff matrix:

� �
� ����� ���	�
� �
��� �
���

Here
�

means “cooperate,”
�

means “defect,” and the payoffs
consist of

�
(reward),

�
(punishment),

�
(temptation) and

�

(sucker). The payoffs satisfy the inequalities
�����������

�
so that, for each player, defection is a dominant strategy.

The dilemma comes from the fact that, if both players had

cooperated, they could have achieved a much more desirable
outcome.

In the context of networks, the Prisoner’s Dilemma models
two nodes who want to trade resources. Suppose that if node 1
agrees to service node 2’s request, node 1 pays some cost � ��

, and node 2 receives some benefit � � �
; and let � � � , so it

is a positive-sum game. Also, assume the game is symmetric,
i.e. the costs and benefits are the same if node 2 is servicing
node 1’s request. Then we have a Prisoner’s Dilemma: a node
cooperates if it services a request, a node defects if it ignores
a request, and the payoffs are

��� � � ��� ����� � �	� � � �
� ���
As noted earlier, in a single-round Prisoner’s Dilemma, ra-

tional players will always defect. In a repeated game, however,
the situation is different because cooperation can be sustained
by the threat of punishment in the next round. One effective
strategy is “tit-for-tat,” where each player cooperates in the
first round, and in each subsequent round, does whatever his
opponent did in the previous round. There are a wide variety
of possible strategies; see [6] for a survey of work in this area.

B. Random Matching

The main difficulty with peer-to-peer networks is that users
do not form long-lived relationships with other users, so
strategies like “tit-for-tat” do not work. The common case
is to interact with a stranger, with no prior history and no
expectation of meeting again in the future. We model this using
Kandori’s random matching game [1]: In each round, nodes are
randomly matched, and then each pair plays a (single-round)
Prisoner’s Dilemma. For simplicity, we will do matchings
between the left and right vertices in a complete bipartite
graph. We do allow non-uniform random matching.

It would seem that cooperation cannot be sustained between
complete strangers unless they have some way to determine
each other’s past behavior before making their moves. Indeed,
the strategy described below does rely on a primitive repu-
tation scheme. But Kandori also found another equilibrium
strategy that does not require any information; instead, it relies
on a global threat that any deviation from equilibrium will
eventually cause the system to collapse. This is completely
impractical, since in a real system there are always errors and
mistakes, which should be tolerated. This example illustrates
some of the issues in applying game theory to a realistic
situation.

C. A Simple Equilibrium Strategy

We now describe a simple strategy for the random-matching
game and prove that it is a subgame-perfect equilibrium. This
result is due to Kandori [1]. In this paper we refer to it as the
“social norm” strategy.

Each node has a reputation consisting of a number in the
range � � ��
 ������� ����� ; 0 means innocent, nonzero means guilty.
The reputations are maintained by a trusted authority, who
observes the players’ actions and updates their reputations
accordingly. Essentially, the reputations ensure that a node

who defects will be punished in the next round, even though
it plays a different opponent in each round. The strategy is as
follows:
� If the two players are innocent, they both cooperate.� If the two players are guilty, they both defect.� If one is innocent and one is guilty, then the guilty player

cooperates, and the innocent player defects.

Any deviation from the above strategy triggers a punishment
that lasts for

�
rounds. That is, the offending node is marked

“guilty,” causing it to be punished by its opponents. After�
rounds, the node becomes innocent again, provided it has

followed its assigned strategy. If a node deviates during the
�

-
round punishment phase, the punishment is re-started from the
beginning. To implement this protocol, the trusted authority
uses the following rule to update the reputations:
� If a node is innocent and it follows its assigned strategy,

then leave its reputation unchanged.� If a node is guilty and it follows its assigned strategy,
then decrement its reputation by 1.� If a node deviates, then set its reputation to

�
.

Observe that a node’s action only depends on the reputation
of its opponent, and a node’s reputation only depends on its
own action.

Kandori showed that the social norm strategy is a subgame-
perfect equilibrium, provided that we set the punishment
length

�
and the discount factor � correctly. The discount

factor can be interpreted as the probability that a player will
participate in the next round of the game. Setting � ��

means
that players are infinitely patient, while setting � to a smaller
value, say 1/2, means that players favor more short-term gains.
The proof that this strategy is an equilibrium can be found in
[1]; we reproduce it here for convenience.

The proof consists of checking the incentives of all the
players:

For a guilty player who follows the assigned strategy, the
payoff is

�������
��! � ���#" �! �$�$�$� �&%('*) ��� �+�,�� � �&% �&%.-�) /0�$1� �
where

�2�43 �
is either

�
(if the opponent is innocent) or

�
(if

the opponent is guilty). For a guilty player who deviates in
this round, the payoff is

5 �� � � �2�#" �� /0�$. �&%6'7) �2� �+�� �&% �8�7 � �&%0-�) �$�$0$9�	�
Note that after

�
rounds, all the other players will be innocent.

The difference between these two expressions is

�:�2�
�� � �/ �&% � � � �8�� � � �� �&% � � � �;�
This must be

� �
; so we require the following condition:

�&% �
� � �� � �

For an innocent player who follows the assigned strategy,
the payoff is ���
 � �&% � � �&% ��� �
For an innocent player who deviates in this round, the payoff
is 5	�
 ��� � � � � ���&%0-�) � �� �&%.-�) �
To ensure that the first expression is greater than the second,
we require that:

� �	�
 ��� � � � ���
 � � % �	�� � % � �
Now we will show how to set

�
and � so that the two

inequalities are both satisfied. Fix � % � � , so we have
� �

������� � �	�
���
 � . The first inequality becomes:

� � � � �� � �
The second inequality becomes:

� �	�
 ��� � � � �,�
 � � � �/ � � �
� � � � �
 � � � � � � � � � � � �

� �
� � �� � �
 � � �	� � � �

We can first pick � to satisfy the first inequality, then pick
� to satisfy the second inequality, and calculate

�
last. For

example, if the payoffs are
� ��

,
� � "

,
� � �

,
� � � " ,

then we can set

� �	
�� " � � � " ��� � � � �

��� �#" ��� ���
 ���

We think that these parameter settings are reasonable for a
practical system.

Finally, it is convenient to express the above inequalities in
terms of the cost � and benefit � associated with servicing each
request. Recall that � � � � �

, and the payoffs are given by:
��� � � ��� ����� � �	� � � �
� ���

Then the inequalities are:

� � �
� � � ��
 � � � � � �

D. Tolerating Malicious Nodes

Here we describe some extensions to Kandori’s original
analysis, to look at the effect of malicious nodes, i.e., nodes
that always defect. Let � be the fraction of malicious nodes,
and suppose we use uniform random matching. Then one can
derive new versions of the inequalities in the proof: (the actual
calculation is straightforward but tedious)

�&% �

 ���
� � �� � �

�
 ��� � �/ � �
 ��� %0-�) �	��	�
 ��� � �,�
 ��� � � � � ���&%0-�) � �/ �&%.-�) � �9
� �
 � � %.-�) �	�

Observe that when � is small, these inequalities are simply
the original inequalities with some minor perturbations. There-
fore, the equilibrium can tolerate a small fraction of malicious
nodes (the precise threshold depends on other parameters such
as the payoffs in the game).

One can also analyze the global efficiency of the game.
In particular, if uniform random matching is used, then a �
fraction of malicious nodes causes only a gradual decrease
in performance. To see this, recall that we have a complete
bipartite graph with � nodes on each side (and a � fraction
of the nodes on each side is malicious). We can generate
a uniform random matching by randomly permuting the �
vertices on the right-hand side, randomly permuting the �
vertices on the left-hand side, and then pairing off the vertices
on the left and right sides.

For each match � , let ��� equal 1 if both players in the
match are good (non-malicious), and 0 otherwise. Then � �
�! ��") � � is the number of good matchings. Using linearity of
expectation, we get that # � � �;� � ��") #

� ��� �;� � �
 �$� �&% .
So, on average, a

�
 �'� �&% fraction of the matchings will be
between two good (non-malicious) nodes. This can be used to
calculate the overall efficiency, given the payoffs for the game.

We also tried to analyze the effect of noise, i.e., random
errors that cause nodes to defect when they intended to
cooperate. This appears to be somewhat harder, since noise
can trigger punishments that last for more than one round.
Intuitively, we expect that the amount of noise that can be
tolerated will depend on the punishment length

�
; if the

expected time between errors is less than the punishment
length, the system will break down.

III. SIMULATIONS OF THE RANDOM MATCHING GAME

We ran simulations to measure the effects of malicious
nodes and noise in the random matching game.

A. The Simulator

We simulated a random matching game with 1024 nodes
and 1000 rounds. We considered three strategies: the so-
cial norm, denoted Sn; “defect unconditionally,” denoted Du,
which always defects; and “cooperate unconditionally,” de-
noted Cu, which always cooperates. The Du and Cu strategies
are intended to model malicious and altruistic nodes.

We also simulated an evolutionary game, where the number
of players playing each strategy changes over time, depending
on how well each strategy performs. After some number of
rounds, the fraction of the population (� that plays strategy �
is updated according to:

(��*)+(��
, �,

where
, � is the average payoff of strategy � and

,
is the

average payoff over the whole population. Hence, if a strategy

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

pa
yo

ff

Du fraction

Average payoff for Sn and Du players for increasing fraction of Du players

Du
Sn

(a) Punishment ��� �

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

pa
yo

ff

Du fraction

Average payoff for Sn and Du players for increasing fraction of Du players

Du
Sn

(b) Punishment �����

Fig. 1. Payoff per round of Sn and Du players as the number of Du players
increases

does better than the average, a larger fraction of the population
will start playing that strategy; and if a strategy does worse
than the average, its fraction of the population will decrease.
This process mimics biological evolution, and has been used
before to study repeated games [6].

B. Simulation results

1) Malicious Nodes: Figure 1 shows the payoff per round
of the Sn and Du players as the number of Du players
increases. Not surprisingly, the Du players do better with
punishment period

� ��

than with

� ���
.

Observe that the payoffs of the Sn nodes drop significantly
as the number of Du nodes increases. The payoffs of the Du
nodes remain small, because they are marked guilty by the
reputation system. However, the Du payoffs do rise slightly;
this is because whenever a Du node defects on another Du
node, it is actually behaving in agreement with the social norm,
and thus its reputation will be restored. This phenomenon is
less noticeable with the longer punishment period. Finally,
when the fraction of Du nodes becomes too large, the Du
payoffs fall back to zero since there are too few Sn nodes to
exploit.

Note that there is a kink in the Sn curve at the right side of
the graph; this is because when there are no Sn players, the
average payoff for the Sn strategy is 0 by default.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

gl
ob

al
 e

ffi
ci

en
cy

du fraction

Global efficiency

punishment=1
punishment=5

Fig. 2. Global efficiency as the number of Du players increases

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

gl
ob

al
 e

ffi
ci

en
cy

error rate

Global efficiency vs. error rate

punishment=1
punishment=5

Fig. 3. Global efficiency as the error probability increases

Figure 2 shows the global efficiency as the number of Du
players increases. The global efficiency is the total payoff
of all the players, divided by the total payoff of all the
players assuming 100% cooperation. The results are similar
with punishment period

� �

and

� ���
.

2) Noise: Next, we consider the effect of noise or errors
in the system. We model this by setting 	�

�&����� to be the
probability that a node who intends to cooperate will end
up defecting instead; for instance, when a node attempts to
forward a request, the request might get dropped due to a
network failure. In these simulations, we use a network of all
Sn nodes.

Observe in figure 3 that, as the noise level rises, the
overall efficiency remains higher when we use the shorter
punishment period. This illustrates a trade-off in choosing
the punishment: longer punishments let us tolerate a higher
fraction of malicious nodes, but shorter punishments let us
tolerate a higher error rate.

3) Evolutionary Game: With these simulations we wanted
to compare the relative merits of a variety of strategies.
The results depend both on the initial population and on the
punishment length. For example, for the starting population:
Sn=

 ���
, Du=

����
and Cu=

 ���
, with

� �

, Du overtakes the

other strategies, while for
� � "

the social norm prevails.
This is shown in figure 4. Different starting populations and
different punishment lengths yield different results.

In general a longer punishment period helps the social norm,
while a higher initial fraction of non cooperating (Du) players
makes it harder for the social norm to prevail.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

F
ra

ct
io

n
of

 th
e

po
pu

la
tio

n

Generation

Fraction of the population playing different strategies

Cu
du
sn

(a) Punishment ��� �

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

F
ra

ct
io

n
of

 th
e

po
pu

la
tio

n

Generation

Fraction of the population playing different strategies

Cu
du
sn

(b) Punishment �����

Fig. 4. Evolutionary game, with initial population
�����

Sn,
�����

Du,
�����

Cu

IV. THE PEER-TO-PEER ROUTING GAME

To study the problem of peer-to-peer routing, we con-
structed a new kind of random matching game, and we defined
an analogous “social norm” strategy for this game. We then
ran simulations to measure the performance of the social norm
strategy under varying conditions.

A. Peer-to-Peer Routing

We consider networks where each node has a routing table
containing the addresses of a small number of nodes, and
requests are forwarded through multiple hops until they reach
their destinations. We use Chord [7] as an example, although
this basic structure is found in many peer-to-peer networks.

We define a simplified model of routing as follows: We have
a network of � nodes, arranged in a ring. Each node has
a routing table of size

��� � � � , called its finger table, which
contains the addresses of nodes (“fingers”) that are located
ahead of it on the ring at distances

" � , � � � �0
 � " ���0��� � ��� � � � �

. That is, the fingers are at distances

 � " �
 �0����� � � � " . To send
a request, a node contacts the node in its finger table that is
the closest predecessor to the destination node; this node then
does the same using its own finger table, and so on until the
destination node is reached. Sending a request thus takes at
most

��� � � � hops. To allow the sender to determine the identity
of the node that dropped its request, we adopt iterative rather
than recursive routing for our game.

Also note that a node will use some of its fingers more
often than others: to send a request to a randomly-chosen
destination, it will use its � ’th longest finger with probability
 � "��

. (That is, it uses its longest finger with probability

�� "

,
its second longest finger with probability

��

, and its shortest

finger with probability

 � � ; with probability

 � � it uses none
of its fingers, i.e., the node chose itself as the destination.)

B. The Game

We define the peer-to-peer routing game as follows: We
have � nodes, with routing tables as described above; the
routing tables are filled in with randomly chosen neighbors
before the start of the game. The game runs in continuous
time, rather than discrete rounds: at any time, a node can send
a request to be routed by the network. (The routing process
is described below.) We assume that nodes do not control the
generation of requests, but can only choose whether to route
requests sent by other nodes. (Later, we will revisit this issue
of how requests are generated.)

When a node sends a request, it is matched with a sequence
of opponents, in a way that simulates the routing of a request to
a destination chosen uniformly at random. For the first hop, the
sender 	 is randomly matched with one of its fingers, choosing
the � ’th longest finger with probability

 � " �
. In the case where

none of the fingers is chosen (which happens with probability
 � �), we match node 	 with its shortest finger.
Say that node 	 ends up matched with node

3
. The two

nodes then play an asymmetric game: 	 does nothing, while
3

can either cooperate (forward the request) or defect (drop the
request). At this stage, 	 does not receive any payoff, while

3
gets a payoff of � " if it cooperates and 0 if it defects.

If
3

defects, then 	 is finished and gets payoff 0, since its
request has been dropped. But if

3
cooperates, then 	 goes on

to play another game—its request has been forwarded one hop,
and it is now ready to make another hop. 	 can be matched
with any of

3
’s fingers that are shorter than

3
is as a finger of

	 . (In other words, the next hop must be shorter than the last
hop.) We choose the � ’th longest such finger with probability
 � " �

.
Thus the game repeats, until either one of 	 ’s opponents

defects, or 	 is matched with a finger of length 1 (which means
there are no shorter fingers). Node 	 now plays the asymmetric
game with this final opponent. If the opponent cooperates, 	
receives a large payoff of

 �
, because its request has reached

its destination.
This completes the description of the game. We point out

the following facts: First, this game uses non-uniform random
matching. For the first hop, the matching is highly non-
uniform, since there are only

��� � � � possible choices (and one
of them has probability

�� "
); but for later hops, the matching

becomes more uniform.
Second, if we ignore the actual choices of the intermediate

nodes, and simply look at the lengths of the hops, we observe
that, for each
 �
 � " ���0��� � ��� � � � �

, the probability of at
some point taking a hop of length

"��
is 1/2; for
 � �

, the
probability of taking a hop of length

"
� �

is 1, but this is

really a quirk of the game. So the expected number of hops
per request is

� ��� � � � �
.� � " /
 � ��� � � � � " �
 � "
.

Finally, we think it is realistic that the sender receives a large
payoff when its request reaches its destination, and nothing
when its request gets dropped. A successfully delivered request
presumably has a fairly high value to the sender, much higher
than the cost of forwarding someone else’s request; whereas,
when a request gets dropped, the sender may learn some
routing information, but it only amounts to a partial (and
unreliable) route. Thus routing is a positive-sum game, but it
is brittle, since a node that drops a request completely wipes
out the sender’s payoff. (Also note that as the network grows,
the number of hops per request slowly increases. In order for
the incentives to work, the final payoff must also increase, to
balance out the cost of routing.)

C. The “Social Norm” Strategy

We would like to find an analogue of Kandori’s “social
norm” strategy, that will work in the peer-to-peer routing
game. The routing game differs from Kandori’s game in that
it is asymmetric: in each round, we have node � requesting
a service from node � and node � requesting a service from
node

�
, where � and

�
are different.

�	����� ��� �
However, it turns out that the social norm still makes sense in
this situation. Using the social norm, what � should give to� depends only on � ’s reputation, and what � should receive
from

�
depends only on � ’s reputation. So � only has to

know about its own reputation and about � ’s reputation; it
does not care if � and

�
are not the same entity.

So we can simply state the social norm strategy for the
asymmetric game. Let � make a request to � . Then:� If � is innocent, � cooperates; if � is guilty, � defects.

As before, we assume that there is a reputation scheme
which marks nodes as innocent or guilty. We still assume that
the reputation scheme is secure against tampering. However,
we allow the reputation scheme to be unreliable in the fol-
lowing sense: If a node behaves properly, its reputation will
always be updated correctly; but if a node misbehaves, the
incident will only be detected with probability 	�� ��� . This would
describe a system that computes reputations based on random
sampling. One of the goals of our simulations was to determine
the amount of sampling, and the severity of punishment, that
are needed to provide incentives that will deter cheating.

Finally, we need to specify what kinds of punishments will
be enforced by the reputation scheme. We use a “time-based”
punishment: when a node deviates from the social norm, it
is punished for a period of time

�
; if the node deviates again

while it is being punished, the punishment period is re-started.
During the punishment period, all requests sent by this node
will be dropped; but this node will still be required to forward
the requests of other innocent nodes. This is a natural way to
do punishment in the continuous-time game, and it would not
be hard to implement in a real system.

In certain cases, we can show that the social norm is a
subgame-perfect equilibrium for the routing game. Specif-
ically, if each node’s requests are generated by a Poisson
process with the same rate, then Kandori’s original proof
goes through with minor modifications. The intuition is that
requests are generated at a smooth rate, so over the course of
one punishment period, a node will ask other nodes to route its
requests, and it will route requests for other nodes, roughly the
same number of times. This situation is similar to the original
(symmetric) random-matching game. The proof of this result
is given in the following subsection.

Unfortunately, if requests are bursty, or if nodes can manip-
ulate the timing of their requests, then the social norm may
not be an equilibrium. If a node receives a very large burst of
requests, it might be cheaper to drop the requests and undergo
punishment. Also, a node can cheat by defecting while it
accumulates a large number of requests, then cooperating just
long enough to rebuild its reputation and send off all of the
requests in one burst.

Finally, even when an equilibrium can be achieved, the
routing game is not as robust in the presence of malicious
nodes. This is due to the non-uniform matching. The burden
of the malicious nodes falls disproportionally on a small
group of honest nodes—namely, those nodes who have a
malicious node as one of their frequently-used “long” fingers.
For instance, a node whose longest finger is a malicious node
will lose half of its requests. For these unlucky nodes, the
incentives break down very quickly.

D. Proof of Equilibrium

First, some preliminary remarks: Suppose that some event
occurs at random times specified by a Poisson process with
rate 	 . Let
 � be the time of the � ’th event, and

� � be the time
between the �8�

’st event and the � ’th event. If we earn 	
points each time the event occurs, and � is the discount factor,
then our total payoff is

��� ����
 	 ������	 �$�$0$
and our expected payoff is

E � ����� E � � ��
 � 	 E � � ��� � 	 �$�$0$
Since
 � � �

)
 0�$ � � , and the random variables�

)
�0����� �	� � are independent and identically distributed, we have

E � ����� �*� E � ���
 0�$ ����� �*� E � ���
 � 0�$ E � ����� �7� E � ���
 � �
We define the “effective discount factor” to be � eff

�
E � � ��
 � .

This lets us write the expected payoff as

E � ����� � eff 	
 � %eff 	

 /0�$ �
	

� eff
 ��� eff

The probability density function for
�
) is 	

�43 � � 	�� '���� ,
and so we have

� eff
�

E � � ��
 �*��� �! � � 	"� '��#�%$ 3 � 		 � ����� �

Also, the expected payoff during some time interval � � �,� �
is

E � � � !�� % � �*� �
 � �&% � E � ����� �
 �
�&% � 	 � eff
 � � eff

The proof involves checking the incentives of each node.
Each request has cost � for the node that services it, and benefit
� for the node that sent it. In the case of routing, a single
request may have to be serviced (forwarded) by several nodes.
Each node sends requests at rate 	 � , and receives requests at
rate 	"� . For routing, 	"� depends on how many other nodes are
using this node as a finger; for the incentives to work, we need
the gains to be large enough to offset the losses, even if this
node has to forward more than its fair share of the requests,
due to an unlucky configuration of the routing tables.

Punishment is measured in terms of time; for a guilty
node, dropping a request delays its recovery. This delay time
makes all the difference between following the social norm,
and deviating from it. The non-burstiness of the requests is
crucial. If multiple requests were to arrive simultaneously, a
node could drop all of them without any additional penalty.
But instead we ensure that a node has some time to recover its
reputation after dropping a request; so, when a second request
arrives, the node will have “something to lose” if it drops the
request.

Note that punishing a node by dropping a certain number of
requests does not create the right incentives. After dropping a
request, a node will continue to drop requests, until the time
when it sends its first request (which gets dropped). Time-
based punishment is preferable for this reason: it provides an
incentive for a node that has dropped a request to immediately
resume forwarding requests.

So the situation for a guilty node is as follows: At time 0,
we dropped a request and became guilty. Now, at time

�
) ,

another request arrives. If we forward it, we will be forgiven
at time

�
; if we drop it, we will be forgiven no sooner than

time
� �

) . This will affect any requests that we send during
the interval � � �,� �) � . Note that all the other guilty nodes are
following the social norm, so they will be forgiven at time

�
.

The expected payoff difference between following the social
norm and deviating from it is

� ��� E � # of requests sent in � � �,� �) � � � % �� ��� 	 � E � �) � �&% � � ��� 	 �	 � �&% �
We need this to be

� �
, that is,

� % � 	 � �	 � �
Now consider the situation for an innocent node: The

decision of whether to forward a request at time 0 will affect
our payoffs during the interval � � ��� � . Note that there may be
other guilty nodes during this time. If we forward the request,
we will stay innocent, gain � points each time we send a
request, and lose at most � points each time we receive a
request (this happens when the request is from an innocent
node). If we drop the request, we will become guilty, gain 0

points each time we send a request, and lose 0 or more points
each time we receive a request (we lose 0 points when the
request is from a guilty node).

Let � effs and � effr be the effective discount factors for
sending and receiving requests. The expected payoff difference
between following the social norm and deviating from it is

� ��� �
 ��� % � � � effs
 � � effs
� �
 ��� % � � � effr
 � � effr� ��� �
 ���&% � � 	 �

� ��� � � �
�
 �
�&% � � 	"�

� ����� �� ��� �
 ���&% � 	 ����� 	��0�� ����� �
We need this to be

� �
, that is,

� ��� � �

� ��
 ��� % � � 	 � �8� 	 � � �
To set the parameters, we first fix � � � % , then fix � , and

finally compute
� � ��� � � ��� � .

If the sending and receiving rates are equal, 	 � � 	�� �

,

and the benefit and cost are � �

and � � "

, then we get
something similar to Kandori’s random matching game, but
running in continuous time and with asymmetric requests. We
can set

� �
 � "

� ����� �
�/" ��� � � � '7) � % ��� � � " ���
� � �
 � ��� � �
 ���

In the case of the routing game, with 1024 nodes, we set	 � ��

and 	"� ��
 �

. (Each request takes 5.5 hops on average,
but we add some margin to allow for irregularities caused by
the particular configuration of the routing tables.) The benefit
and cost are � �
 � and � � "

. Then we can set

� �
 � "

� ��� � �
�
�� � ��� � � � '	� ��� � � " ���
� � �
 � ��� � �
 ���

Note that, while these incentives are quite strong, they are
sensitive to noise and malicious nodes.

V. SIMULATIONS

We ran simulations to measure the performance of the peer-
to-peer routing game. For simplicity, we simulated a game with
discrete rounds, where each node sends one request per round,
and the nodes are randomly shuffled before each round (so the
order of moves is random). This approximates a continuous-
time game where each node’s requests are generated by a
Poisson process with the same rate.

We ran simulations with 1024 nodes and 1000 rounds. Each
request took 5.5 hops on average, and the expected payoff per
request (assuming 100% cooperation) was

 � � � � � $ " � "�

.

(Recall that a node earns 40 points when its request reaches its

destination, and pays 2 points each time it forwards a request
for another node.)

Punishment was measured in terms of rounds, with the
reputations of the guilty nodes being decremented at the end
of each round. We used punishment periods

� �

,
� � "

and
� � �

. Note that with
� �

, every guilty node will be
automatically forgiven at the end of the round; whereas with� � "

, a guilty node must cooperate for at least one full round
before it is forgiven.

Error bars on the graphs show the 99% confidence intervals.

A. Simulation Results

1) Malicious Nodes: We show how the presence of varying
fractions of malicious nodes affects the performance of the
system. We model malicious nodes as nodes that always defect
(“defect unconditionally” or “Du” nodes). Nodes that follow
the social norm strategy are denoted “Sn” nodes. Figure 5
shows the payoff per request for the Sn and Du nodes, as the
number of Du nodes increases. Note that punishment

� �

is indeed much weaker than

� � "
or
� � �

.
Observe that the payoffs of the Sn nodes drop significantly

as the number of Du nodes increases, while the payoffs of the
Du nodes remain small, because they are marked guilty by the
reputation system. The cross-over occurs when the population
is roughly 40% Du nodes. Note that there is a kink in the Sn
curve at the right side of the graph; this is because when there
are no Sn players, the average payoff for the Sn strategy is 0
by default.

Figure 6 shows the global efficiency as the number of
Du nodes increases. The results are similar with punishment
periods

� ��

,
� � "

and
� � �

.
2) Noise: We next consider the effect of noise or errors in

the system. We set 	
 � � ��� to be the probability that a node
who tries to cooperate will end up defecting instead (if, for
instance, the request gets dropped due to a network failure).
In these simulations, we use a network of all Sn nodes.

Observe in figure 7 that as the noise level rises, the overall
efficiency remains higher when we use the shorter punishment
period. This illustrates a trade-off in choosing the punishment:
longer punishments let us tolerate a higher fraction of mali-
cious nodes, but shorter punishments let us tolerate a higher
error rate.

3) Reliability of the Reputation Scheme: Finally, we look
at how the reliability of the reputation scheme together with
the length of the punishment period affects the behavior of the
system. Here we simulate a network with a 20% fraction of
Du nodes. We plot the payoff per request for the Sn and Du
nodes (figure 8).

Observe that the reputation scheme is effective even when
the reliability is quite low; this is partly because the Du nodes
are easy to catch. In this particular scenario, to ensure that
the Du nodes earn less than the Sn nodes, the reputation
system must be at least 50% reliable when using a 1-round
punishment, and at least 10% reliable when using a 5-round
punishment.

-5

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

pa
yo

ff

Du fraction

Du
Sn

(a) Punishment ��� �

-5

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

pa
yo

ff
Du fraction

Du
Sn

(b) Punishment � ���

-5

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

pa
yo

ff

Du fraction

Du
Sn

(c) Punishment �����

Fig. 5. Payoff per request for Sn and Du nodes, as the number of Du nodes
increases

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

gl
ob

al
 e

ffi
ci

en
cy

du fraction

punishment=1
punishment=2
punishment=5

Fig. 6. Global efficiency as the number of Du nodes increases

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

gl
ob

al
 e

ffi
ci

en
cy

error probability

punishment=1
punishment=5

Fig. 7. Global efficiency with varying levels of noise

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

pa
yo

ff

reliability

punishment=1
punishment=5

(a) Sn nodes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

pa
yo

ff

reliability

punishment=1
punishment=5

(b) Du nodes

Fig. 8. Payoff per request for Sn and Du nodes, varying the reliability of
the reputation scheme. Population is 20% Du nodes.

4) Distribution of Payoffs among the Nodes: To gain further
insight into the effectiveness of the reputation system, we
look at the distribution of the payoffs among the nodes. We
assume a reputation system with fairly low reliability (�� � � �
20%), but a fairly severe punishment (

� � �
). We then vary

the number of Du nodes, and plot the cumulative distribution
function (CDF) of the total payoffs of the Sn and Du nodes
(figure 9).

There is a fairly large variance in the payoffs of the Sn
nodes. This is due to the random choices of the routing tables:
if a node appears in many other nodes’ finger tables, it will

have to route many requests, reducing its own payoff. The
presence of Du nodes also contributes to the variance: an Sn
node whose longest finger happens to be a Du node will do
very poorly, as half of its requests will be dropped. The payoffs
of the Du nodes, on the other hand, are concentrated close
to zero. (Note that, unlike Sn nodes, Du nodes never have
negative payoffs.) This shows that the reputation system is
effective.

 0

 200

 400

 600

 800

 1000

 1200

 5000 10000 15000 20000 25000 30000 35000 40000

nu
m

be
r

of
 p

la
ye

rs

total payoff

Overall

(a) 0% Du nodes

 0

 200

 400

 600

 800

 1000

 1200

-15000 -10000 -5000 0 5000 10000 15000 20000 25000 30000 35000 40000

nu
m

be
r

of
 p

la
ye

rs

total payoff

Overall
Defect Unconditionally

Social Norm

(b) 10% Du nodes

 0

 200

 400

 600

 800

 1000

 1200

-15000 -10000 -5000 0 5000 10000 15000 20000 25000 30000 35000 40000

nu
m

be
r

of
 p

la
ye

rs

total payoff

Overall
Defect Unconditionally

Social Norm

(c) 20% Du nodes

Fig. 9. CDF of the total payoffs of the Sn and Du nodes, with reliability
������� � 20% and punishment � � �

 0

 200

 400

 600

 800

 1000

 1200

-20000 -10000 0 10000 20000 30000 40000

nu
m

be
r

of
 p

la
ye

rs

total payoff

Overall
Social Norm Randomized

Social Norm

(a) 10% Snr nodes

 0

 200

 400

 600

 800

 1000

 1200

-10000 -5000 0 5000 10000 15000 20000 25000 30000 35000 40000

nu
m

be
r

of
 p

la
ye

rs

total payoff

Overall
Social Norm Randomized

Social Norm

(b) 20% Snr nodes

Fig. 10. CDF of the total payoffs of the Sn and Snr nodes (with ��� ��� �
�����), with reliability � ����� � 20% and punishment �����

B. Improved Strategies

1) Social Norm with Random Defections: Another possible
strategy is the social norm with random defections, denoted
Snr:� If our opponent is innocent, we cooperate with probability
 � 		� ��
 and defect with probability 	�� ��
 ; if our opponent

is guilty, we defect.

Note that Snr is actually a family of strategies, with pa-
rameter 		� �

 , which includes both Du (when 	�� ��

�

) and

Sn (when 		� �

� �

). Typically we would set 	�� ��
 to an
intermediate value, say 	�� ��

� � � "
. The intuition here is that

an unreliable reputation system will have trouble detecting
intermittent or occasional defections. So, although Snr is less
aggressive than Du, it may do better because it can avoid
punishment.

To evaluate the performance of Snr (with 	 � �

� " ���

), we
again assume a reputation system with reliability 	 � ��� � 20%
and punishment

� � �
. We vary the number of Snr nodes,

and plot the cumulative distribution function (CDF) of the
total payoffs of the Sn and Snr nodes. (See figure 10.)

The payoffs of the Snr nodes vary substantially, which
indicates that they are not being consistently punished by the
reputation system. However, the average payoff remains small;
evidently the punishment is sufficiently severe that it wipes out

any gains from the occasional defections.

VI. DISCUSSION

In this section we discuss some open issues in our under-
standing of the routing game. We finish by describing some
of the related work.

A. Open Issues in the Routing Game

1) Timing of Requests: As mentioned earlier, a node can
cheat by sending its requests in batches, so that it only needs to
maintain a good reputation for the time needed to send a single
batch. This kind of “timing” attack would not be practical in
some applications, since it delays the servicing of requests.
One area of future work is to quantify this trade-off: How
much delay must be incurred, in order to get significant savings
with this strategy? What kinds of monitoring and punishments
would be needed to prevent this sort of cheating?

One idea is to punish a guilty node by dropping a certain
number of its requests, instead of dropping its requests for a
period of time. This turns out not to work; a guilty node can
“fake” its punishment by sending a string of worthless requests
that it knows will be dropped. Time-based punishment still
seems to be the most effective.

Another idea is to make the reputations “sticky,” so that
if a node is consistently good or consistently bad, then it
takes a sustained change in behavior to cause a change in
its reputation. This is a little bit like a monetary scheme,
except that it doesn’t do exact bookkeeping. The advantage
of this scheme is that it punishes bad nodes that defect most
of the time and cooperate only when they have a bunch of
requests to make; but it tolerates good nodes that suffer from
occasional bursts of noise. However, this scheme would be
harder to implement in a practical system.

On a related note, our simple cost function (counting the
number of requests) may not be realistic if the traffic is bursty.
Five requests spread out over time may not incur the same cost
as five requests in a single burst.

2) Tampering with Reputations: In a real network, reputa-
tions cannot be implemented entirely by a trusted third party.
At the very least, one would probably have to rely on the nodes
to report when their requests are dropped. This creates some
difficult incentive problems: for instance, a self-interested node
might falsely accuse other nodes, especially those who are
using it as one of their fingers, so that it can drop their requests.

This is an example of a more general concern, that nodes
may manipulate an untrusted reputation system as part of their
strategy. Preventing these attacks may require a combination
of incentives (to encourage nodes to report truthfully), and a
reputation system that resists tampering by a single node or a
small group of nodes.

3) Other Limitations: The social norm strategy works best
when the network is more-or-less homogenous: all nodes send
the same number of requests per round, and all nodes choose
destinations uniformly at random. But there is nothing in our
present scheme that limits the number of requests that a node
can send; so long as it continues to forward other nodes’

requests, a node is free to send as many requests as it likes,
thus maximizing its payoff. Our scheme works when all the
nodes need to make roughly the same number of requests. In a
highly heterogenous network, one may have to use some kind
of monetary scheme instead, to obtain the right incentives.

Also, in the game, nodes are only allowed to choose
between cooperating and defecting; whereas in real life, a node
can do other things, such as forwarding a request incorrectly.
And, in a real system, the utility function of each node may
be more complicated than in our simple model.

Finally, in the routing game we do not consider collusion
between nodes. But there is nothing that prevents a subset of
the nodes from attempting to build their own overlay network
on top of the peer-to-peer system. This could be a significant
issue.

4) Retrying Dropped Requests: One could modify the rout-
ing game to allow a node to retry a request that has been
dropped, or to give nodes greater freedom in choosing their
fingers. This would make routing much more robust, which
would benefit the innocent nodes. Guilty nodes would not be
able to take advantage of this, because the reputation system
causes them to lose their requests regardless of what route
they choose.

We have not implemented these changes, because of their
complexity. However, the fact that such improvements are
possible suggests that our current simulation results are fairly
conservative.

B. Related Work

There have been many studies of incentive and reputation
systems in peer-to-peer networks; here we mention two papers
that are similar in spirit to our work:

Lai et al [8] use the evolutionary Prisoner’s Dilemma as a
model for file sharing. They study strategies based on private
and shared history, as well as strategies that “adapt” to the
behavior of strangers.

Ranganathan et al [9] use the multiple-player Prisoner’s
Dilemma as a model for file sharing. They investigate two
different reputation-based schemes and one monetary scheme.

Also, a number of systems have been built that incorporate
incentives. Karma [10] is a peer-to-peer file sharing system
that uses a monetary scheme. Each node has a bank account
that is implemented by a set of the other nodes, called its “bank
set.” The system also has mechanisms to deal with pricing and
inflation. This approach is flexible, but has a high performance
overhead.

Samsara [11] is a distributed storage system, that requires
each node to contribute as much disk space to the system as it
is using. Claims to storage space can be traded, allowing the
nodes to form asymmetric or transitive relationships.

Finally, Castro et al [12] studied a variety of attacks on peer-
to-peer routing, and proposed some solutions using techniques
in cryptography and security. Their approach is complemen-
tary to ours: we try to provide incentives for good behavior,
while they seek to detect and prevent bad behavior.

VII. CONCLUSIONS

In this paper we used a random-matching game to model
routing in peer-to-peer networks. We defined an analogue
of Kandori’s “social norm” strategy, which uses a simple
reputation system to provide incentives for cooperation. Our
simulation results show that this scheme is robust in the
presence of malicious nodes and noise. Furthermore, we
showed that an unreliable reputation system which monitors
only a fraction of the routing events can still be effective,
provided that the punishments are sufficiently severe. Although
our model does not capture all aspects of a real network, we
feel that it is a useful starting point for understanding the
incentive problems that arise in peer-to-peer systems.

One area of future work is to develop more realistic games
which model different aspects of peer-to-peer systems. Some
of these issues, such as the timing of requests, have been
discussed in this paper.

Another area of work is to implement reputation systems in
real networks. A real reputation system cannot use a trusted
third party, but must be distributed over the nodes themselves.
It is a serious engineering challenge to build a reputation
system that is secure against tampering, provides the proper
incentives, and has good performance and scalability.

REFERENCES

[1] M. Kandori. “Social Norms and Community Enforcement.”
Review of Economic Studies, Vol. 59, No. 1 (Jan. 1992), pp.63-
80.

[2] J. Feigenbaum and S. Shenker. “Distributed Algorithmic Mech-
anism Design: Recent Results and Future Directions.” Proc. 6th
Intl. Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications, New York, 2002, pp.1-13.

[3] Workshop on Economics of Peer-to-Peer Systems, Berkeley,
2003.

[4] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
[5] Vincent Crawford, personal communication.
[6] Kuhn, Steven, ”Prisoner’s Dilemma”, The Stanford Encyclo-

pedia of Philosophy (Fall 2003 Edition), Edward N. Zalta
(ed.), URL = http://plato.stanford.edu/archives/fall2003/entries/
prisoner-dilemma/.

[7] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan.
“Chord: A Scalable Peer-To-Peer Lookup Service for Internet
Applications.” Proc. ACM Sigcomm, August 2001.

[8] K. Lai, M. Feldman, I. Stoica, J. Chuang, “Incentives for
Cooperation in Peer-to-Peer Networks.” Workshop on Economics
of Peer-to-Peer Systems, Berkeley, 2003.

[9] K. Ranganathan, M. Ripeanu, A. Sarin, I. Foster, “To Share or
Not to Share: An Analysis of Incentives to Contribute in Col-
laborative File Sharing Environments.” Workshop on Economics
of Peer-to-Peer Systems, Berkeley, 2003.

[10] V. Vishnumurthy, S. Chandrakumar and E. Gun Sirer,
“KARMA: A Secure Economic Framework for P2P Resource
Sharing.” Workshop on the Economics of Peer-to-Peer Systems,
Berkeley, California, June 2003.

[11] L. Cox and B. Noble, “Samsara: Honor Among Thieves in Peer-
to-Peer Storage”, Proc. SOSP 2003, Lake George, NY, October,
2002.

[12] M. Castro, P. Druschel, A. Ganesh, A. Rowstron and D.S.
Wallach. “Secure routing for structured peer-to-peer overlay
networks.” Proc. OSDI 2002, Boston, MA, December 2002.

