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ABSTRACT
We calculate an extensive set of characteristics for Internet
AS topologies extracted from the three data sources most
frequently used by the research community: traceroutes,
BGP, and WHOIS. We discover that traceroute and BGP
topologies are similar to one another but differ substantially
from the WHOIS topology. Among the widely considered
metrics, we find that the joint degree distribution appears to
fundamentally characterize Internet AS topologies as well
as narrowly define values for other important metrics. We
discuss the interplay between the specifics of the three data
collection mechanisms and the resulting topology views. In
particular, we show how the data collection peculiarities ex-
plain differences in the resulting joint degree distributions of
the respective topologies. Finally, we release to the commu-
nity the input topology datasets, along with the scripts and
output of our calculations. This supplement should enable
researchers to validate their models against real data and to
make more informed selection of topology data sources for
their specific needs.

Categories and Subject Descriptors
C.2.5 [Local and Wide-Area Networks]: Internet; C.2.1
[Network Architecture and Design]: Network topology;
G.3 [Probability and Statistics]: Distribution functions,
multivariate statistics, correlation and regression analysis;
G.2.2 [Graph Theory]: Network problems

General Terms
Measurement, Design, Theory

Keywords
Internet topology

1. INTRODUCTION
Internet topology analysis and modeling has attracted

substantial attention recently [1, 2, 3, 4, 5, 6, 7]1 because
the Internet’s topological properties and their evolution are
cornerstones of many practical and theoretical network re-
search agendas. Routing, performance of applications and

1We intentionally avoid citing the statistical physics liter-
ature, where the number of publications dedicated to the
subject has exploded. For an introduction and references
see [8].

protocols, robustness of the network under attack, etc., all
depend on network topology. Since obtaining realistic topol-
ogy data is crucial for the above agendas, researchers have
focused on a variety of measurement techniques to capture
the Internet’s topology.

Various sources of Internet topology data obtained using
different methodologies yield substantially different topolog-
ical views of the Internet. Unfortunately, many researchers
either rely only on one data source, sometimes outdated or
incomplete, or mix disparate data sources into one topology.
To date, there has been little attempt to provide a detailed
analytical comparison of the most important properties of
topologies extracted from the different data sources.

Our study fills this gap by analyzing and explaining topo-
logical properties of Internet AS-level graphs extracted from
the three commonly-used data sources: (1) traceroute mea-
surements [9]; (2) BGP [10]; and (3) the WHOIS database [11].

This work makes three key contributions to the field of
topology research:

1. We calculate a range of topology metrics considered in
the networking literature for the three sources of data.
We reveal the peculiarities of each data source and the
resulting interplay between artifacts of data collection
and the key properties of the joint degree distributions
of the derived graphs.

2. We analyze the interdependencies among an array of
topological features and observe that the joint degree
distributions of the graphs define other crucial topo-
logical characteristics.

3. To promote and simplify further analysis and discus-
sion, we release [12] the following data and results
to the community: a) the AS-graphs representing the
topologies extracted from the raw data sources; b) the
full set of data plots (many not included in the paper)
calculated for all graphs; c) the data files associated
with the plots, useful for researchers looking for other
summary statistics or for direct comparisons with em-
pirical data; and d) the scripts and programs we de-
veloped for our calculations.

We organize this paper as follows. Section 2 describes our
data sources and how we constructed AS-level graphs from
these data. In Section 3 we present the set of topological
characteristics calculated from our graphs and explain what
they measure and why they are important. We conclude in
Section 4 with a summary of our findings.



2. DATA SOURCES

2.1 Constructing AS graphs
We used the following data sources to construct AS-level

graphs of the Internet: traceroute measurements, BGP data,
and the WHOIS database. We make all of our constructed
graphs publicly available [12].

BGP (Border Gateway Protocol) [13] is the protocol for
routing among ASes in the Internet. RouteViews [10] col-
lects BGP routing tables using 7 collectors, 5 of which are
located in the USA, 1 in the UK and 1 in Japan. Each
collector has a number of globally placed peers (or vantage
points) that collect BGP messages from which we can infer
the AS topology. RouteViews archives both static snap-
shots of the BGP routing tables and dynamic BGP data
in the form of BGP message dumps (updates and with-
drawals). Therefore, we derive two types of graphs from
the BGP data for the same month of March 2004: one from
the static tables (BGP tables) and one from the updates
(BGP updates). We create the BGP tables graph using
data from the collector route-views.oregon-ix.net as it gath-
ers data from the largest number of peers—68. For the BGP
updates graph, we choose the collector route-views2.oregon-
ix.net, which uses 40 peers to collect data, since at the
time of this research route-views.oregon-ix.net did not collect
BGP updates. The data contains AS-sets [13], that is, lists
of ASes with unknown interconnection structures. For both
BGP tables and updates graph, we discard AS-sets from the
data to avoid link ambiguity. We filter private ASes [14] be-
cause they create false links in the graph. We then merge
the 31 daily graphs of March 2004 into one graph for each
BGP data source.

We show the overlap statistics of our graphs in Table 1.
This table uses the BGP-table graph as the baseline and
compares it with the BGP-updates graph in the first column.
Between the two BGP-derived graphs, we note the similarity
in the sets of their constituent nodes and links. Given minor
differences between node and link sets of the BGP table- and
update-derived topologies, we find the graph metric values
calculated for these two topologies to be nearly identical for
all characteristics that we consider. Therefore, in the rest of
this study we present characteristics of the static BGP table
graph only and refer to it as the BGP graph.2

Traceroute [15] captures the sequence of IP hops along
the forward path from the source to a given destination by
sending either UDP or ICMP probe packets to the destina-
tion. CAIDA has developed a tool, skitter [9], to collect con-
tinuous traceroute-based Internet topology measurements.
skitter maintains a target destination list that comprises ap-
proximately one million IPv4 addresses. CAIDA collects
these addresses from various sources such as existing desti-
nation lists, intermediate addresses in skitter traces, users
accessing CAIDA website. The goal is to find one respond-
ing IP address within each routable /24 segment, to provide
representative coverage of the routable IPv4 address space.
The destination list is updated once every 8 to 12 months to
ensure the addresses stay current and to maximize reacha-
bility. Skitter uses 25 monitors (traceroute sources), strate-
gically placed in the global Internet: 15 monitors in North
America, 6 monitors in Europe, 3 monitors in Japan and 1

2Plots and tables with metrics of the BGP-update graph
included are available in [12].

in New Zealand. Each monitor sends probe packets to des-
tinations in the target list and gathers the corresponding IP
paths.

Using the core BGP tables provided by RouteViews, CAIDA
maps the IP addresses in the gathered IP paths to AS num-
bers, constructs the resulting AS-level topology graphs on a
daily basis and makes these graphs publicly available at [16].
For this study, we start with daily graphs for each day of
March 2004, i.e., 31 daily graphs. Mapping skitter-observed
IP addresses to AS numbers involves potential distortion,
e.g., due to multi-origin ASes, that is, the same prefixes ad-
vertised by multiple ASes [17], AS-sets, and private ASes.
Both multi-origin ASes and AS-sets create ambiguous map-
pings between IP addresses and ASes, hence we filter them
from each graph. In addition, we filter private ASes as they
create false links. Unresolved IP hops in the traceroute data
give rise to indirect links [16], which we also discard. The
total discarded and filtered links constitute approximately 5
percent of all links in the initial graph. We then merge all
the daily graphs to form one graph, which we call the skitter
graph.

Comparing the skitter graph with the BGP graph (Ta-
ble 1, column 2 vs. baseline), we notice that there is ex-
actly 1 node seen in the skitter but not in the BGP graph.
This node is AS2277 (Ecaunet). Since we use BGP table
dumps to map IP addresses to AS numbers in constructing
the skitter graph, we expect the number of nodes present
in the skitter but not in the BGP to be 0. The one node
difference occurs because different BGP table dumps were
used to construct the BGP table graph and to perform IP-
to-AS mapping in the skitter graph on the day when skitter
observed this IP address in its traces.

WHOIS [11] is a collection of databases with AS peering
information useful to network operators. These databases
are manually maintained with little requirements for timely
updates of registered information. Of the public WHOIS
databases, RIPE’s WHOIS database contains the most reli-
able current topological information, although it covers pri-
marily European Internet infrastructure [18, 19].

We obtained the RIPE WHOIS database dump for April 07,
2004. We are interested in the following types of records:

aut-num: ASx

import: from ASy

export: to ASz

This record indicates the presence of links between ASx-
ASy and ASx-ASz. We construct an AS-level graph (here
after referred to as WHOIS graph) from these records and
exclude ASes that did not appear in the aut-num lines. Such
ASes are external to the database and we cannot correctly
estimate their topological properties, e.g., node degree. We
also filter private ASes.

Both Table 1 (column 3) and the topology metrics we
consider in Section 3 show that the WHOIS topology differs
significantly from the other two graphs. Thus, the following
question arises: Can we explain the difference by the fact
that the WHOIS graph contains only a part of the Internet,
namely European ASes? To answer this question we perform
the following experiment. We consider the BGP tables and
WHOIS topologies narrowed to the set of nodes present both
in BGP tables and WHOIS, i.e., the 5,583 nodes present in
the intersection of BGP tables and WHOIS graphs (Table 1)
and compute the various topological characteristics for these



Table 1: Comparison of graphs built from different data sources. The baseline graph GA is the BGP tables
graph. Graph GB is the other graph listed in the first row.

BGP updates skitter WHOIS
Number of nodes in both GA and GB (|VA

T

VB |) 17,349 9,203 5,583
Number of nodes in GA but not in GB (|VA \ VB |) 97 8,243 11,863
Number of nodes in GB but not in GA (|VB \ VA|) 68 1 1,902
Number of edges in both GA and GB (|EA

T

EB |) 38,543 17,407 12,335
Number of edges in GA but not in GB (|EA \ EB |) 2,262 23,398 28,470
Number of edges in GB but not in GA (|EB \ EA|) 3,941 11,552 44,614

reduced graphs. We then compare the properties of the
original BGP and WHOIS graphs to their reduced graphs
respectively and find that the reduced graphs preserve the
full set of the properly normalized topological properties
of the original graphs. In other words, the reduced BGP
graph, consisting only of ASes found in the intersection of
WHOIS and the original BGP graph, has topological char-
acteristics similar to the original BGP graph, while the re-
duced WHOIS graph has characteristics similar to the orig-
inal WHOIS graph. Therefore, the differences between full
BGP and WHOIS topologies are likely due to dissimilar in-
trinsic properties of their originating data sources, and not
due to geographical biases in sampling the Internet.

Based on the very method of their construction, the three
graphs in this study reveal different sides of the actual Inter-
net AS-level topology. The skitter graph closely reflects the
topology of actual Internet traffic flows, i.e., the data plane.
The BGP graph reveals the topology seen by the routing
system, i.e., the control plane. The BGP graph does not
reflect how traffic actually travels toward a destination net-
work. The WHOIS graph reflects the topology extracted
from manually maintained databases, i.e., the management
plane.

2.2 Limitations and validity of our results
All our data sources have some inaccuracies arising from

their collection methodology. Since skitter methodology re-
lies on answers to ICMP requests, ICMP filtering at in-
termediate hops adds some inaccuracy to the data. skit-
ter also fails to receive ICMP replies in the address blocks
advertised by some small ASes. The BGP graph depends
on routing table exchanges, and not all peer ASes adver-
tise all their peering relationships; therefore the BGP graph
tends to miss these unadvertised links. Various misconfig-
urations, e.g., announcement of prefixes not owned by an
AS, etc., are some of the other causes of errors with the
BGP data. The manually maintained WHOIS database is
most likely to contain stale or inaccurate information [18].
In fact, the WHOIS graph is likely to reflect unintentional
or even intentional over-reporting of peering relationships by
some providers. There have been reports about some ISPs
entering inaccurate information in the WHOIS database to
increase their “importance” in the Internet hierarchy [18].

We limit our data collection to a single month for obtain-
ing the skitter and BGP graph. If the topology of the In-
ternet evolves with time, then the values of metrics that we
calculate might also change. While we believe that the in-
terdependencies between different metrics will hold for data
gathered over various periods of time and are not an artifact
of the current Internet or our sampling period, we leave this
study to future work.

When processing each of our data sets to create the de-
sired graph, we make choices while dealing with ambiguities
and errors in the raw data. One example is the detection
of “false” links created by route changes in traceroute data.
The processing we apply may potentially cause ambiguity
in our final graphs.

While all three sources of topology data contain a number
of sources of errors and cannot be considered perfect repre-
sentations of true AS-level interconnectivity, the results of a
number of recent studies indicate that the available data is
a reasonable approximation of AS topology. The presence
of global and strategically located vantage points for both
BGP and skitter graphs as well as the careful choice of des-
tinations used by skitter lend credibility to traceroute-based
measurement studies. There have been some doubts about
the validity of topologies obtained from traceroute measure-
ments. Specifically, Lakhina et al. [20] numerically explored
sampling biases arising from traceroute measurements and
found that such traceroute-sampled graphs of the Internet
yield insufficient evidence for characterizing the actual un-
derlying Internet topology. However, Dall’Asta et al. [21]
convincingly refute their conclusions by showing that vari-
ous traceroute exploration strategies provide sampled distri-
butions with enough signatures to statistically distinguish
between different topologies. The authors also argue that
real mapping experiments observe genuine features of the
Internet, rather than artifacts.

3. TOPOLOGY CHARACTERISTICS
In this section, we quantitatively analyze differences be-

tween the three graphs in terms of various topology metrics.
We intentionally do not introduce any new metrics: the set
of characteristics we discuss here encompasses most of the
metrics discussed in the networking literature before [3, 4, 5,
7]. Relative to other studies, we analyze the broadest array
of network topology characteristics.

For each metric, we address the following points: 1) metric
definition; 2) metric importance; and 3) discussion on the
metric values for the three measured topologies. We present
these results in the plots associated with every metric and
in the master Table 2 containing all the scalar metric values
for all the three graphs.

We begin with simple metrics that characterize local con-
nectivity in a network. We then move on to metrics that
describe global properties of the topology. These latter met-
rics play a vital role in the performance of network protocols
and applications.

3.1 Average degree
Definition. The two most basic graph properties are the

number of nodes n (also referred to as graph size) and



the number of links m. They define the average node
degree k̄ = 2m/n.

Importance. Average degree is the coarsest connectivity
characteristic of the topology. Networks with higher k̄ are
“better-connected” on average and, consequently, are likely
to be more robust. Detailed topology characterization based
only on the average degree is rather limited, since graphs
with the same average node degree can have vastly different
structures.

Discussion. The WHOIS graph has the smallest number
of nodes, but its average degree is almost three times larger
than that of BGP, and ∼ 2.5 times larger than that of skitter
(Table 2). In other words, WHOIS contains substantially
more links, both in the absolute (m) and relative (k̄) senses,
than any other data source, although the credibility of these
links is lowest (cf. Section 2). The chief reason for WHOIS
graph’s high average degree lies in its measurement specifics:
we have information from every node’s perspective in the
database, while skitter and BGP graphs are obtained by
sampling using tree-like explorations of the Internet’s ASes.

We also observe that the number of nodes in the BGP
graph is almost twice the number of nodes in skitter. This
again can be explained by the measurement techniques of
the two data sources: skitter relies on responses to ICMP
requests sent to IP addresses on its target list of destina-
tions and it may not have any targets in the address blocks
advertised by some small ASes. As a result, skitter does
not see these ASes. The BGP routing tables however con-
tain information about these ASes and thus these nodes are
observed in the BGP graph. The extra ASes in the BGP
dataset are mostly low-degree (cf. Section 3.2) and there-
fore the BGP graph has a lower average degree than skitter.

Graphs ordered by increasing average degree k̄ are BGP,
skitter, WHOIS. We call this order the k̄-order.

3.2 Degree distribution
Definition. Let n(k) be the number of nodes of de-

gree k (k-degree nodes). The node degree distribution
is the probability that a randomly selected node is k-degree:
P (k) = n(k)/n. The degree distribution contains more in-
formation about connectivity in a given graph than the aver-
age degree, since given a specific form of P (k) we can always

restore the average degree by k̄ =
Pkmax

k=1 kP (k), where kmax

is the maximum node degree in the graph. If the degree
distribution in a graph of size n is a power law, P (k) ∼ k−γ ,
where γ is a positive exponent, then P (k) has a natural
cut-off at the power-law maximum degree [8]: kPL

max =

n1/(γ−1).
Importance. The degree distribution is the most fre-

quently used topology characteristic. The observation [1]
that the Internet’s degree distribution follows a power law
had significant impact on network topology research: In-
ternet models before [1] failed to exhibit power laws. Re-
searchers also widely believed that an organized hierarchy
existed among the ASes in the Internet. However, the au-
thors of [3] showed that topologies derived from structural
generators that incorporated hierarchies of AS tiers did not
have much in common with topologies obtained from real
observed data. The smooth power law degree distribution
indicates that there are no organized tiers among ASes. The
power law distribution also implies substantial variability as-
sociated with degrees of individual nodes.

Discussion. As expected, the degree distribution PDFs

and CCDFs in Figure 1 are in the k̄-order (BGP < skitter
< WHOIS) for a wide range of node degrees.

Comparing the observed maximum node degrees kmax

with those predicted by the power law kPL
max in Table 2,

we conclude that skitter is closest to power law. The power-
law approximation for the BGP graph is less accurate. The
WHOIS graph has an excess of medium-degree nodes and its
node degree distribution does not follow a power law at all.
It is not surprising then that augmenting the BGP graph
with WHOIS links breaks the power law characteristics of
the BGP graph [2, 19].

Note that there are fewer 1-degree nodes than 2-degree
nodes in all the graphs (Figure 1(a)). This effect is due to
the AS number assignment policies [14] allowing a customer
to have an AS number only if it has multiple providers. If
these policies were strictly enforced and if there were no
measurement inaccuracies, then the minimum observed AS
degree would be 2.

CCDFs of skitter and BGP graphs look similar (Figure
1(b)), but Table 1 shows significant differences between the
two graphs in terms of (non-)intersecting nodes and links.
We seek to answer the question of where, topologically, these
nodes and links are located. Calculating the degree distribu-
tion of nodes present only in the BGP graph (Figure 1(c)),
we detect a skew toward low-degree nodes. The average de-
gree of the nodes that are present only in BGP graphs, but
not in skitter, is 1.86. skitter’s target list of destinations
to probe does not contain IP addresses that respond in the
address blocks advertised by these small ASes. As a result,
the skitter graph misses them. Most links present only in
BGP, but not in skitter, are links between low-degree ASes
(see [12] for details). The majority of such links connect
the low-degree ASes present only in BGP to their secondary
(backup) low-degree providers, while their primary providers
are of high degrees. Even if skitter detects a low-degree AS
having such a small backup provider, the tool is still un-
likely to detect the backup link since its traceroutes follow
the primary path via the large provider.

3.3 Joint degree distribution
While the node degree distribution tells us how many

nodes of a given degree are in the network, it fails to provide
information on the interconnection between these nodes:
given P (k), we still do not know anything about the struc-
ture of the neighborhood of the average node of a given de-
gree. The joint degree distribution fills this gap by providing
information about 1-hop neighborhoods around a node.

Definition. Let m(k1, k2) be the total number of edges
connecting nodes of degrees k1 and k2. The joint de-
gree distribution (JDD), or the node degree correla-
tion matrix, is the probability that a randomly selected edge
connects k1- and k2-degree nodes: P (k1, k2) = µ(k1, k2) ×
m(k1, k2)/(2m), where µ(k1, k2) is 1 if k1 = k2 and 2 oth-
erwise. Note that P (k1, k2) is different from the conditional
probability P (k2|k1) = (k̄P (k1, k2))/(k1P (k1)) that a given
k1-degree node is connected to a k2-degree node. The JDD
contains more information about the connectivity in a graph
than the degree distribution, since given a specific form
of P (k1, k2) we can always restore both the degree distri-
bution P (k) and average degree k̄ by expressions in [8]. A
summary statistic of JDD is the the average neighbor
connectivity knn(k) =

Pkmax

k′=1 k′P (k′|k). It is simply the
average neighbor degree of the average k-degree node. It
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Figure 1: Node degree distributions P(k).

shows whether ASes of a given degree preferentially con-
nect to high- or low-degree ASes. In a full mesh graph,
knn(k) reaches its maximal possible value, n − 1. There-
fore, for uniform graph comparison we plot normalized val-
ues knn(k)/(n − 1). We can further summarize the JDD by
a single scalar called assortativity coefficient r [22, 23],

r ∼
Pkmax

k1,k2=1 k1k2(P (k1, k2) − k1k2P (k1)P (k2)/k̄2).
Importance. The assortativity coefficient r, −1 ≤ r ≤ 1,

has direct practical implications. Disassortative networks
with r < 0 have an excess of radial links, that is, links con-
necting nodes of dissimilar degrees. Such networks are vul-
nerable to both random failures and targeted attacks. On
a positive note, vertex covers in disassortative graphs are
smaller, which is important for applications such as traffic
monitoring [24] and prevention of DoS attack [25]. The op-
posite properties apply to assortative networks with r > 0
that have an excess of tangential links, that is, links con-
necting nodes of similar degrees.3

In contrast to the widely studied degree distribution, the
network community has only recently started recognizing
the importance of JDD [29, 6]. In the most prominent recent
example [4] Li et al. define likelihood and make this metric
central for their argument. They propose to use likelihood,
which is directly related to the assortativity coefficient, as
a measure of randomness to differentiate between multiple
graphs with the same degree distribution. Such a measure
is important for evaluating the amount of order, e.g., engi-
neering design constraints, present in a given topology. A
topology with low likelihood is not random; it results from
some sophisticated evolution processes involving specific de-
sign purposes.

Discussion. All the three Internet graphs built from our
data sources are disassortative (r < 0) as seen in Table 2.
We call the order of graphs with decreasing assortativity
coefficient r—WHOIS, BGP, skitter—the r-order.

We can explain the r-order in terms of differing topology
measurement methodologies. First, we notice that both skit-
ter and BGP graphs are results of tree-like explorations of
the network topology, meaning that we can roughly approx-

3The semantics behind the terms “radial” and “tangential”
comes from the commonly used technique in visualization of
the large-scale Internet topologies [26, 27, 28]: high-degree
nodes populate the center of a circle, while low-degree nodes
are close to the circumference. Links connecting high-degree
nodes to low-degree nodes are indeed radial then.

imate these graphs by a union of spanning trees rooted at,
respectively, skitter monitors or BGP data collection points.
As such, both these methods are likely to discover more ra-
dial links connecting numerous low-degree nodes, i.e., small
ASes, to high-degree nodes, i.e., large ISP ASes, where the
monitors are located. At the same time, these measure-
ments fail to detect some tangential links interconnecting
medium-to-low degree nodes since many of these links be-
long to none of the spanning trees rooted at the vantage
points in the core. In contrast, WHOIS data contains abun-
dant medium-degree tangential links because it relies on op-
erators to report all the links attached to a given AS, i.e.,
a source of a WHOIS record. This excess of tangential links
in WHOIS is thus responsible for its much higher assortativ-
ity. Second, we explain that the BGP graph has a slightly
higher assortativity than the skitter graph. As discussed in
Section 3.2, the BGP graph contains the tangential links be-
tween low-degree nodes that traceroute probes of skitter miss
since these links are typically the backup links to smaller
secondary providers, while skitter’s ICMP packets tend to
follow the primary paths to larger primary providers. This
small excess of tangential links is responsible for a slightly
higher assortativity of the BGP graph compared to skitter.

The interplay between k̄- and r-orders underlies Figure 2,
where we plot the average neighbor connectivity functions
for the three graphs. Skitter has the largest excess of ra-
dial links that connect low-degree nodes (customers ASes) to
high-degree nodes (large provider ASes). The highest rela-
tive number of radial links is responsible for skitter’s highest
average degree of the neighbors of low-degree nodes: in Fig-
ure 2, skitter is at the top in the area of low degrees, while
BGP is below and WHOIS is at the bottom (r-order). On
the other hand, the greatest proportion of tangential links
between ASes of similar degrees in the WHOIS graph con-
tributes to connectivity of neighbors of high-degree nodes;
therefore the WHOIS graph is at the top for high-degree
nodes (k̄-order).

Note that in the case of skitter and BGP, knn(k) can be
approximated by a power law with the corresponding expo-
nents γnn in Table 2.

3.4 Clustering
While JDD contains information about the degrees of

neighbors for the average k-degree node, it does not tell us
how these neighbors interconnect. Clustering partially sat-
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isfies this need by providing a measure of how close a node’s
neighbors are to forming a clique.

Definition. Let m̄nn(k) be the average number of links
between the neighbors of k-degree nodes. Local clustering
is the ratio of this number to the maximum possible num-
ber of such links: C(k) = m̄nn(k)/

`

k
2

´

. If two neighbors of a
node are connected, then these three nodes together form a
triangle (3-cycle). Therefore, by definition, local clustering
is the average number of 3-cycles involving k-degree nodes.
The two summary statistics associated with local clustering
are mean local clustering Cmean =

P

C(k)P (k), which
is the average value of C(k), and the clustering coeffi-
cient Ccoeff , which is the percentage of 3-cycles among all
connected node triplets in the entire graph (for the exact
definition, see [30]).

Importance. Clustering expresses local robustness in the
graph and thus has practical implications: the higher the
local clustering of a node, the more interconnected are its
neighbors, thus increasing the path diversity locally around
the node. Networks with strong clustering are likely to be
chordal or of low chordality,4 which makes certain routing
strategies perform better [31]. One can also use clustering as
a litmus test for verifying the accuracy of a topology model
or generator [5].

Discussion. We first observe that the clustering aver-
age values Cmean in Table 2 are in the k̄-order, which is
expected: clustering increases with increase in number of
links. The values of Cmean are almost equal for skitter and
WHOIS, but the clustering coefficient Ccoeff is 15 times
larger for WHOIS than for skitter. As shown in [32], orders
of magnitude difference between Cmean and Ccoeff is intrin-
sic to highly disassortative networks and is a consequence of
strong degree correlations (JDD) necessarily present in such
networks.

Similar to knn(k), the interplay between k̄- and r-orders
explains Figure 3, where we plot local clustering as a func-
tion of node degree C(k). Skitter’s clustering is the highest
amongst the three graphs for low-degree nodes because this
graph is most disassortative. The links adjacent to low-
degree nodes are most likely to lead to high-degree nodes,
the latter being interconnected with a high probability. The
WHOIS graph exhibits the highest values for clustering for

4Chordality of a graph is the length of the longest cycle
without chords. A graph is called chordal if its chordality
is 3.

high-degree nodes since this graph has the highest average
connectivity (largest k̄). The neighbors of high-degree nodes
are interconnected to a greater extent, resulting in higher
clustering for such nodes.

Similar to knn(k), C(k) also can be approximated by a
power law for skitter and BGP graphs (exponents γC in
Table 2).

Strong correlations in JDD play a major part for the pres-
ence of non-trivial clustering observed in many networks [32].
The interplay between k̄- and r-orders explains the overall
similarity between degree correlations and clustering, in gen-
eral, and similarity between knn(k) and C(k), in particular.

3.5 Rich club connectivity
Definition. Let ρ = 1 . . . n be the first ρ nodes ordered

by their non-increasing degrees in a graph of size n. Rich
club connectivity (RCC) φ(ρ/n) is the ratio of the num-
ber of links in the subgraph induced by the ρ largest-degree
nodes to the maximum possible number of such links

`

ρ
2

´

. In
other words, the RCC is a measure of how close ρ-induced
subgraphs are to cliques.

Importance. The Positive Feedback Preference (PFP)
model by Zhou and Mondragon [7] has successfully repro-
duced a wide spectrum of metrics of their measured AS-level
topology by trying to explicitly capture only the following
three characteristics: (i) the exact form of the node degree
distribution; (ii) the maximum node degree; and (iii) RCC.
One can show that networks with the same JDDs have the
same RCC. The converse is not true, but given a specific
form of RCC, one can fully describe all possible JDDs that
would yield the specified RCC.

Discussion. As expected, the values of φ(ρ/n) in Fig-
ure 4 are in the k̄-order with WHOIS at the top: more links
result in denser cliques. RCC exhibits clean power laws
for all three graphs in the area of medium and large ρ/n.
The values of the power-law exponents γrc in Table 2 result
from fitting φ(ρ/n) with power laws for 90% of the nodes,
0.1 ≤ ρ/n ≤ 1.

3.6 Distance
Definition. The shortest path length distribution or sim-

ply the distance distribution d(x) is the probability that
a random pair of nodes are at a distance x hops from each
other. Two basic summary statistics associated with the
distance distribution of a graph are average distance d̄



and the standard deviation σ. We call the latter the dis-
tance distribution width since distance distributions in In-
ternet graphs (and in many other networks) have a charac-
teristic Gaussian-like shape.

Importance. Distance distribution is important for many
applications, the most prominent being routing. A distance-
based locality-sensitive approach [33] is the root of most
modern routing algorithms. As shown in [34], performance
parameters of these algorithms depend mostly on the dis-
tance distribution. In particular, short average distance and
narrow distance distribution width break the efficiency of
traditional hierarchical routing. They are among the root
causes of interdomain routing scalability issues in the Inter-
net today.

Distance distribution also plays a vital role in robustness
of the network to worms. Worms can quickly contaminate
a network that has small distances between nodes. Topol-
ogy models that accurately reproduce observed distance dis-
tributions will benefit researchers developing techniques to
quarantine the network from worms [35].

We note that expansion, identified in [3] as a critical met-
ric for topology comparison analysis, is a renormalized ver-
sion of the distance distribution: it is the product of the
distance distribution and the graph size n.

Discussion. Although the distance distribution is a global
topology characteristic, we can explain Figure 5 by the in-
terplay between our local connectivity characteristics: the
k̄- and r-orders. First, we note that the skitter graph stands
out in Figure 5 as it has the smallest average distance and
the smallest distribution width (Table 2). This result ap-
pears unexpected at first since the skitter graph has more
nodes than the WHOIS graph and only about half the links.
One would expect a denser graph (WHOIS) to have a lower
average distance since adding links to a graph can only de-
crease the average distance in it. Surprisingly, the average
distance of the most richly connected (highest k̄) WHOIS
graph is not the lowest. This result can be explained us-
ing the r-order. Indeed, a more disassortative graph has a
greater proportion of radial links, shortening the distance
from the fringe to the core.5 The skitter graph has the right
balance between the relative number of links k̄ and their
radiality r, that minimizes the average distance. Compared
to skitter, the BGP graph has larger distance because it is
sparser (lower k̄), and the WHOIS graph has larger distance
because it is more assortative (higher r).

Another observation is that for all three graphs, including
WHOIS, the average distance as a function of node degree
exhibits relatively stable power laws in the full range of node
degrees (Figure 6), with exponents given in Table 2.

3.7 Betweenness
Although the average distance is a good node centrality

measure—intuitively, nodes with smaller average distances
are closer to the graph “center,”—the most commonly used
measure of centrality is betweenness. It is applicable not
only to nodes, but also to links.

Definition. Betweenness measures the number of short-
est paths passing through a node or link and, thus, estimates
the potential traffic load on this node/link assuming uni-
formly distributed traffic following shortest paths. Let σij

be the number of shortest paths between nodes i and j and

5We use terms fringe and core to mean “zones” in the graph
with low- and high-degree nodes respectively, cf. [28].

let l be either a node or link. Let σij(l) be the number
of shortest paths between i and j going through node (or
link) l. Its betweenness is Bl =

P

ij σij(l)/σij . The
maximum possible value for node and link betweenness is
n(n − 1) [21], therefore in order to compare betweenness in
graphs of different sizes, we normalize it by n(n − 1).

Importance. Betweenness is important for traffic en-
gineering applications that try to estimate potential traf-
fic load on nodes/links and potential congestion points in
a given topology. Betweenness is also critical for evaluat-
ing the accuracy of topology sampling by tree-like probes
(e.g. skitter and BGP). As shown in [21], the broader the
betweenness distribution, the higher the statistical accuracy
of the sampled graph. The exploration process statistically
focuses on nodes/links with high betweenness thus providing
an accurate sampling of the distribution tail and capturing
relevant statistical information. Finally we note that link
value, used [3] to analyze the topology hierarchy, and router
utilization, used [4] to measure network performance, are
both directly related to betweenness.

Discussion. The simplest approach to calculating node
betweenness requires long run times, but we used an efficient
algorithm from [36]. We had to modify it to also compute
link betweenness.

For skitter and BGP graphs, node betweenness is a grow-
ing power-law function of node degree (Figure 7) with expo-
nents given in Table 2. An excess of medium degree nodes in
the WHOIS graph (Figure 1) leads to greater path diversity
and, hence, to lower betweenness values for these nodes.

We also calculate average link betweenness as a function
of degrees of nodes adjacent to a link B(k1, k2) (Figure 8).
The contour plots provide information on the betweenness
values of the links that connect similar or dissimilar degree
nodes. One would expect links connecting high-degree nodes
to exhibit highest link betweenness and thereby be used as
a measure of link centrality. Contrary to popular belief, the
contour plots show that link betweenness does not measure
link centrality. First, betweenness of links adjacent to low-
degree nodes (the left and bottom sides of the plots) is not
the minimum. In fact, non-normalized betweenness of links
adjacent to 1-degree nodes is constant and equal to n − 1
(the number of destinations in the rest of the network).
Similar values of betweenness characterize links elsewhere
in the graph, including radial links between high and low-
to-medium degree nodes and tangential links in the zone of
medium-to-high degrees (diagonal zone from bottom-right
to upper-left). While the maximum-betweenness links are
between high-degree nodes as expected (the upper right cor-
ner of the plots), the minimum-betweenness links are tan-
gential in the medium-to-low degree zone (diagonal areas
of low values from bottom-left to upper-right). We can ex-
plain the latter observation by the following argument. Let i
and j be two nodes connected by a minimum-betweenness
link l. The only shortest paths going through l are those
between nodes that are below i and j, where “below” means
further from the core and closer to the fringe. When the
degrees of both i and j are small, the numbers of nodes be-
low them (with lower degree) are small, too. Consequently,
the number of shortest paths, proportional to the product
of the number of nodes below i and j, attains its minimum
at l. We conclude that link betweenness is not a measure
of centrality but a measure of a certain combination of link
centrality and radiality.
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Figure 8: Logarithm of normalized link betweenness B(k1,k2)/n/(n − 1) on a log-log scale.

3.8 Spectrum
Definition. Let A be the adjacency matrix of a graph.

This n × n matrix is constructed by setting the value of its
element aij = aji = 1 if there is a link between nodes i and j.
All other elements have value 0. Scalar λ and vector v are
the eigenvalue and eigenvector respectively of A if Av = λv.
The spectrum of a graph is the set of eigenvalues of its
adjacency matrix.

Another closely related and frequently used definition of
the graph spectrum is the spectrum of the eigenvalues of its
Laplacian, L = T −1/2(T −A)T −1/2, where T is the diagonal
matrix with tii equal to the degree of node i. This definition
is a normalized version of the original definition, in the sense
that for any graph, all the eigenvalues of its Laplacian are
located between 0 and 2. We use the original definition in
this paper.

Importance. Spectrum is one of the most important
global characteristics of the topology. Spectrum yields tight
bounds for a wide range of critical graph characteristics [37],
such as distance-related parameters, expansion properties,
and values related to separator problems estimating graph
resilience under node/link removal. The largest eigenvalues
are particularly important. Most networks with high values
for these largest eigenvalues have small diameter, expand
faster, and are more robust.

Two specific examples of spectrum-related metrics that
made significant contributions to networking topology re-
search further emphasize the importance of spectrum. First,
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Figure 9: Spectrum. Absolute values of top 10% of
eigenvalues ordered by their normalized rank: nor-
malized rank is node rank divided by the total num-
ber of nodes in the graph.

Tangmunarunkit et al. [3] defined network resilience, one of
the three metrics critical for their topology comparison anal-
ysis, as a measure of network robustness under link removal,
which equals the minimum balanced cut size of a graph. By
this definition, resilience is related to spectrum since the
graph’s largest eigenvalues provide bounds on network ro-
bustness with respect to both link and node removals [37].

Second, Li et al. [4] define network performance, one of the



two metrics critical for their HOT argument, as the maxi-
mum traffic throughput of the network. By this definition,
performance is related to spectrum since it is essentially the
network conductance [38] which can be tightly estimated by
the gap between the first and second largest eigenvalues [37].

Beyond its significance for network robustness and per-
formance, the graph’s largest eigenvalues are important for
traffic engineering purposes since graphs with larger eigen-
values have, in general, more node- and link-disjoint paths
to choose from. The spectral analysis of graphs is a powerful
tool for detailed investigation of network structure, such as
discovering clusters of highly interconnected nodes [39], and
possibly revealing the hierarchy of ASes in the Internet [40].

Discussion. Our k̄-order (BGP, skitter, WHOIS) plays
a key role once again: the densest graph, WHOIS, is at the
top in Figure 9 and its first eigenvalue is largest in Table 2.
The eigenvalue distributions of all the three graphs follow
power laws.

4. CONCLUSION
We presented a detailed comparison of widely available

sources of Internet topology data—skitter, BGP, and WHOIS—
in terms of a number of popular metrics studied in the liter-
ature. Of the set of metrics we considered, the joint degree
distribution (JDD) P (k1, k2) appears to play a central role
in determining a wide range of other topological properties.
Indeed, using only the average degree k̄ and the assortativity
coefficient r, the two coarse summary statistics of the JDD,
we could explain the relative order of all other metrics for all
our data sources. At the same time, we saw that the values
of k̄ and r are closely connected with the data source prop-
erties and collection methodologies. While additional work
is required to assess the definitiveness of the JDD in describ-
ing topologies, we have demonstrated that it is a powerful
metric for capturing a variety of important graph proper-
ties. Isolating such an encompassing metric or a small set
of metrics is a prerequisite to developing accurate topology
generators since it would reduce the number of parameters
one has to reproduce. Building a JDD-based topology gen-
erator and investigating the roles of degree correlations of
higher orders are subjects of our current research.

A number of methods have been proposed [41, 42] to an-
notate links in AS-level graphs thus incorporating AS re-
lationship information. Although we did not consider AS
relationships in this study, we note that the results of our
analysis, in general, and JDD-related statistics, in particu-
lar, are immediately applicable to directed—or, more gen-
erally, annotated—graphs as well.

It remains an open question which data source most closely
matches actual Internet AS topology, given that each graph
approximates a different view of the Internet looking at the
data (skitter), control (BGP), and management (WHOIS)
planes. In particular, we want to know what data source
contains reliable information about what type of links and
how over- or under-reporting of such links affects the metric
values in the resulting graphs. This knowledge would al-
low us to combine information that we trust from all three
data sources so that we can obtain the most representative
and complete Internet topology view. For now, we see that
topologies derived from the three data sources are quan-
titatively but not qualitatively different: all three degree
distributions are scale-free, but not all of them are power
laws. We conclude that comparative analysis of these three

views allows us to test the limits of metrics’ sensitivity to
measurement incompleteness and inaccuracies.

We believe that our work will arm researchers with deeper
insights into specifics of each topology view. We hope that
this study encourages the validation of existing topology
models against real data and motivates the development of
better ones.
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