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ABSTRACT
Modern processors require highly accurate branch prediction
for good performance. As such, a number of branch predic-
tors have been proposed with varying size and complexity.
This work identifies techniques to improve the accuracy of
most predictors. It is especially effective with smaller, sim-
pler predictors, allowing those predictors to be competitive
with more expensive and complex variants.

Modern branch predictors rely heavily on global history
to produce accurate branch predictions. However, not all
regions of control flow are correlated with recently executed
branches. For these regions, the extra information encoded
in the global history does more harm than good. This work
performs artificial modifications to the global history regis-
ter to improve branch prediction accuracy, targeting regions
with limited branch correlation. This approach is applied to
a number of realistic modern branch predictors of varying
size.

The total number of mispredicts in select SPEC2000 bench-
marks and the Championship Branch Prediction traces can
be reduced by 12% overall for a 32 Kb alloyed perceptron
predictor. 2Bc-gskew, A21264, filter, and gshare predictors
also benefit from these techniques.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiprocessors

General Terms
Design, Performance

Keywords
Branch Prediction

1. INTRODUCTION
The importance of accurate branch prediction has been

well documented in the literature. Modern processors rely
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on highly accurate branch prediction for good performance.
In this work, we propose a simple technique based on heuris-
tics that improves branch prediction for a number of branch
predictors. Smaller, less complex branch predictors benefit
the most from our technique.

In the uniprocessor era, it made sense to pursue increas-
ingly larger, more complex predictors to squeeze out even
small margins of performance. In the multi-core era, every
transistor we do not use on one core can be put to other use
– allowing more cores, faster cores, more cache, better inter-
connects, etc. This is even more true of the power envelope,
as future processors will be designed under very tight power
constraints. Therefore, the highest performance processor is
composed not from the highest performance building blocks,
but rather from the most area-efficient and power-efficient
building blocks. Thus even the branch predictor must care-
fully justify the use of its transistor budget, and smaller
predictors may provide higher processor-wide performance
by better utilizing those resources elsewhere. This research
demonstrates techniques that improve the branch prediction
accuracy of most modern predictors. By requiring no addi-
tional storage and minimal logic, it improves overall proces-
sor performance with no power or real estate cost. Moreover,
as it is most effective on small predictors, allowing those to
become more competitive with larger, more complex predic-
tors, it potentially enables a reduction in predictor size with
no cost in per-core performance.

To produce highly accurate predictions, modern branch
predictors use global history to index prediction tables [27,
1, 10, 13, 19, 20], as input to a neural network [8], or
as tags in table lookup [4, 17]. Global history is success-
fully used to produce accurate branch predictions because
branches often correlate with previously executed branches
(other nearby branches and themselves). Longer branch his-
tories enable predictors to view a larger window of previously
executed branches and learn based on correlations with those
branches.

Evers, et al. [5] demonstrate that the amount of corre-
lation with prior branches varies per branch. For branches
highly correlated with recent history, global history can pro-
vide key prediction information. However, we show that for
a branch that is not highly correlated, that history is mostly
noise and does more harm than good. It increases the time
to train the predictor and it significantly expands the level
of aliasing in the prediction tables, reducing the accuracy of
prediction on this and other branches.

The technique we propose directly modifies global history
based on simple code heuristics. These heuristics identify
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Figure 1: Percentage of dynamic branches positively or negatively impacted by history.

sections of code where branch correlation is likely to be
low, and modifies the GHR to reduce or eliminate unnec-
essary noise. Specifically, these heuristics target backward
branches, function calls, and returns.

We evaluate these techniques using select SPEC2000 bench-
marks and the Championship Branch Prediction (CBP) traces
from The Journal of Instruction Level Parallelism. These
techniques provide gains for a number of branch predictors.
For a set of 32Kb predictors, these techniques improve each
of the A21264, gshare, and alloyed perceptron predictors.
The latter reduces mispredicts per thousand instructions
(MISP/KI) by 12% overall. A 416Kb implementation of
2Bc-gskew has a 9% reduction in MISP/KI for the CBP
traces. Smaller predictors benefit more from these tech-
niques - an 8Kb implementation of gshare achieves a 18%
overall reduction in MISP/KI for our select SPEC bench-
marks.

This work provides the following contributions: (1) We
provide a technique of GHR modification that has excep-
tionally low hardware cost and demonstrate that branch
prediction can benefit from its use. (2) The benefit of this
technique is shown for a number of branch predictors of low
to medium complexity and for a number of branch predic-
tion sizes. These gains are shown both on a selection of
SPECint benchmarks and the Championship Branch Pre-
diction Competition traces.

This paper is organized as follows: Section 2 provides the
motivation and basic architectural approach. Section 3 dis-
cusses related work. Section 4 discusses our hardware tech-
niques based on code heuristics, and also discusses some
potential hardware/software techniques. Section 5 provides
the methodology. Section 6 provides results and Section 7
concludes.

2. MOTIVATION
The global history register (GHR) allows a predictor to ex-

ploit correlations with recently executed branches. A longer
GHR enables correlation with more distant branches, but
also increases the number of uncorrelated branches that are
included in the history. Those uncorrelated branches can
create significant noise. Consider a 15-bit GHR. A branch
that is highly correlated with 3 prior branches will make
good use of a correlating predictor; but even in this positive
scenario, the history contains 12 bits of useless noise. This
means that (worst case), we could have to use 212 times

more entries to predict this branch than we need, greatly
increasing the training period and the aliasing with other
branches. For a branch uncorrelated with prior branches,
the entire 15 bits are noise, only serving to confuse the pre-
dictor and pollute the tables.

In our simulations of select SPEC benchmarks, we found
that the average branch, using a 16-bit GHR, observes over
100 different branch histories; with 20 bits, it more than
doubles and we see over 200 histories per branch. Some of
those histories will be useful and indicate useful correlations,
but most will not [5]. Thus, it is reasonable to surmise that
on average we are using dozens of times more table entries
than desired.

Figure 1 shows the percentage of branches that achieve
either loss or benefit from correlation history. It compares
the accuracy of a correlating predictor (a unique 2-bit pre-
dictor for every possible history) with the actual bias of the
branch. For example, if the correlating predictor achieved
78% accuracy, but the branch was 90% biased (toward taken
or not-taken), we would say this branch was negatively im-
pacted by history. The remaining branches not indicated on
this graph had less than a 1% difference between the two.

In this graph, we see (1) that in all cases there are a
number of branches that degrade because of branch history,
and (2) that for larger histories, the number of degraded
branches can be quite large. The effect we are observing
is that with large histories, the noise begins to dominate.
This leads to the somewhat counter-intuitive result that the
longer the history, the fewer branches actually make effective
use of that history.

Clearly, some branches do gain from large history, as prior
work has shown. What we want, then, is an architecture
that allows some branches to benefit from large histories,
but eliminates or reduces the history noise in those regions
where the noise is not useful. While this prior research exam-
ined a number of techniques that target the optimal history
for individual branches, this paper focuses on a surprisingly
effective (yet simple) heuristic that only requires that we
identify a place in the execution stream where we transi-
tion from one region (with potentially high correlation) to
another, but where there is not correlation between the re-
gions. It turns out that this captures the most significant
correlation gaps.

Not surprisingly, the control flow instructions themselves
are the most useful clues to these transition regions. The



Figure 2: Example function in sched.c from gcc.

transitions we found to be most interesting are the transi-
tions between procedures (indicated by call and return in-
structions), and loop exits (often indicated by not taken
backwards branches). Upon identifying one of these tran-
sitions, we do better if we ignore all prior history (thus col-
lapsing all possible paths into one). By setting the GHR to
a single known value, we begin training the predictor for the
subsequent branches quickly, and greatly reduce pollution
and aliasing.

2.1 Source Code Example
Gcc, a SPEC2000 integer benchmark, benefits from our

techniques. An example from that benchmark which serves
to illustrate the advantage of our technique appears in Fig-
ure 2. Branch A is the first branch instruction in a function
call which performs a null pointer check. The branch exe-
cutes 2455 times during the execution of the 100M instruc-
tion simpoint and is never taken. The branch encounters
208 unique 16-bit histories. As a result, it is only predicted
correctly 91% of the time using non-aliasing 2-bit predictors
per history. If you were to set the ghr to a fixed value when
the function call is made, the branch would be predicted
correctly 99% of the time, again assuming no aliasing. In
this particular case the Filter predictor would also solve this
problem, but in the more general case (e.g., if Branch A were
not completely biased, but did follow a pattern), it would
not.

3. RELATED WORK
The Global History Register, first proposed by Yeh and

Patt [27], is a special case of their two-level adaptive branch
predictor, with per-branch pattern history being collapsed
into one global history. The benefits of the GHR were fur-
ther demonstrated by McFarling [13] with his gselect and
gshare predictors. Branch prediction research has continued
to use global history for branch prediction accuracy.

One trend has been to exploit increasingly long global his-
tories. Longer histories aid in establishing correlation with
more distant branches as well as (in some cases) reducing
aliasing in indexed predictors. The Alpha 21264 predic-
tor [19] uses 12 bits of global history to index its global
history and choice tables. The 2Bc-gskew predictor [20] uses
21 bits of global history to index its three prediction tables.

The perceptron predictor [8] uses 34 bits of global history to
train a simple neural network. More recent branch predic-
tors use even longer histories to improve performance. The
O-GEHL predictor [17] exploits history lengths ranging from
100-200 bits. The PPM predictor [2] detects closest match-
ing patterns in very long history lengths. The L-Tage [18]
predictor uses history lengths varying from 0 to 640 bits.
However, the complexity of some of these predictors have
deterred their adoption in modern processors [12]. L-Tage
is of particular interest to our work in that its ability to dy-
namically use different history lengths likely benefits from
the phenomenon we identify.

Another trend leverages the property of branch bias. The
bimodal [22], bi-mode [10], YAGS [4], and Filter [1] predic-
tors dynamically exploit the bias of a large percentage of
branches. The bi-mode predictor separates branches, pre-
dicting those with a taken bias using a different table than
those with a not-taken bias. The YAGS predictor maintains
a similar table of biases indexed by the pc and two gshare
tagged caches which store the branches whose behavior is
contrary to the bias. The Filter predictor [1] uses the BTB
to identify highly biased branches. Those branches are then
excluded from the dynamic gshare prediction thus reducing
the amount of aliasing. One benefit of our predictor is that,
like these techniques, it allows the prediction of some biased
branches with minimal resource utilization; however, this is
only part of the benefit, as evidenced by the fact that we
improve even the performance of the Filter predictor, which
has already eliminated the biased branches from the tables.

The seminal work of Pan, et al. [14] investigates the ben-
efits of global branch correlation. Evers, et al. [5] continue
the investigation into branch correlation and recognize that
while many branches are highly correlated with a small num-
ber of prior branches, some are not. This phenomenon -
exploited by others in the work discussed in this section -
is critical to this work. Additionally, the work of Thomas,
et al. [25] similarly identifies branches which are correlated
and those which are not. Their technique removes non-
correlated branches on a branch-by-branch basis. Recent
work by Sazeides, et al. [16] demonstrates that selecting the
subset of history that is most highly correlated with a given
branch can improve predictor accuracy.

Gao and Sair [6] target function entry and return as a
point where correlation may diminish. A similar approach is
taken in “Path-Based Next Trace Prediction” by Jacobson,
et al. [7] of discarding some of the irrelevant history from
within a subroutine and after a subroutine return by using
a Return History Stack. Our work similarly addresses entry
and return but does so with a different mechanism. Their
work attempts to save the GHR at entry and restore at
return whereas our work does not require saving any copies
of the GHR. The Frankenpredictor [11] also targets call and
return by shifting in masks depending on the instruction
opcode. Their work likely benefits from the phenomenon we
identify in this work.

The notion of removing useless bits from history is not
entirely novel. The perceptron predictor, by the nature of
its neural network, attempts to do exactly that. “Dynamic
history-length fitting” [9] directly tries to cut history to the
desired length based on trial and error rather than using
heuristics as we recommend. The Elastic History Buffer [24]
and Variable Length Path Branch Prediction [23] both pro-
pose allowing branches to specify how much history will be



used. Our proposal differs from this technique in that it
works entirely using simple heuristics and because the mod-
ifications made to the ghr in our technique are not unique
to a single branch but rather affect all subsequent branches.

Choi, et al. [3] propose modifying the GHR during thread
migration between cores on a CMP featuring speculative
multithreading (to provide a useful GHR to begin thread
execution). For some benchmarks, they find that inserting
the program counter of the thread spawning instruction dur-
ing thread creation can provide slightly better accuracy than
providing an oracle-based correct GHR. This effect is likely
related to the regions of limited branch correlation targeted
by our work. Our work differs in that it improves branch
prediction even for single-threaded execution.

4. RESETTING THE GHR
In this section, we discuss the particular hardware tech-

niques we examine in this paper. In addition, we will discuss
some potential software/hardware techniques based on ISA
modification and profile analysis. However, the latter is pri-
marily only interesting in that it motivates the much simpler
hardware-only techniques.

The goal of this section and the next is to identify points
in the program control flow with little correlation to prior
branches. These Regions of Limited Branch Correlation
(RLBCs) may benefit from artificial modifications to the
GHR.

4.1 Hardware RLBC Identification
Existing control flow constructs provide hints for find-

ing these RLBCs. Loops and function calls often represent
breaks in control flow. The not-taken path following a back-
ward branch often indicates a loop exit, and we typically
expect branches following the loop to be less correlated with
branches inside the loop. Similarly, branches in a function
call may not be correlated with the branches preceding the
call. Finally, branches following a return from a procedure
may lack correlation with the branches in the procedure.
When these regions are detected - by the execution of the
applicable instruction - we can perform modifications to the
GHR to improve accuracy.

As mentioned before, when entering an RLBC, the GHR
contains noise. To eliminate this noise, we could zero the
GHR but this may cause potential problems for index-based
predictors. By zeroing the GHR, index-based predictors like
gshare would bias training toward one particular region of
the predictor. Therefore, in resetting the GHR we use the
same technique as [3]. They generate a GHR from the pro-
gram counter, in their case to manufacture a GHR when
forking a speculative multithreading thread, for which the
correct GHR is unknowable. Using the PC provides a unique
history for each point at which we reset the GHR (elimi-
nating aliasing between the different resetting points), and
ensures that when we return to this code, we will reset to
the same value.

For not-taken backward branches, the value inserted into
the GHR is the PC of the backward branch. For function
calls, the PC of the calling instruction is inserted into the
GHR. Finally, for function returns, the PC of the return
instruction is inserted into the GHR.

For the hardware-only techniques, we assume a very sim-
ple decision – we either always reset the GHR, or not. But
in which cases we want to reset the GHR (e.g., on backwards

branches and calls, but not returns) depends on the specific
branch prediction hardware (specifically, which branch pre-
dictor and what size) we are modifying. For example, the
higher the incidence of branch aliasing, the more aggressive
we will want to be. For a wide variety of predictors, we will
find the best combination of these three resetting points.

Modifications to the GHR will typically take place in the
fetch pipeline stage, just like any other modification. For ex-
ample, if a backwards branch is predicted not taken, we will
modify the GHR as described, but checkpoint the old GHR
as on any other speculative branch. If the branch is mis-
predicted, we restore the GHR. If the branch was originally
predicted taken, we update the GHR as normal, and only
apply our technique if the branch is resolved mispredicted.
In either case, the GHR is modified in the same places as
other branches.

Results for these approaches are discussed in Section 6.

4.2 Static Analysis of RLBC Points
We also examined profile-based identification of the best

points to modify the GHR (and even allow more flexible
modification, such as only clearing regions of the GHR).
However, the static techniques are somewhat problematic
for several reasons, and ultimately provided little gain over
our hardware-only techniques.

The issues include (1) it requires ISA modification to in-
dicate the modification point and possibly how the GHR
should be modified, (2) it requires expensive profiling, (3) it
requires software that knows the exact details of the branch
predictor, and some manufacturers have been extremely pro-
tective of those details. However, these results are still inter-
esting as a comparison with the hardware-only techniques.
But we omit many details of the profile-driven analysis, since
the results are primarily useful as a point of comparison.

We created a branch trace of each benchmark, and for that
trace recorded the expected result (branch predicted cor-
rectly or incorrectly) assuming a history length of any given
value below a certain maximum. Prediction accuracy as-
sumed a correlating predictor for each branch with no alias-
ing. Accounting accurately for aliasing at this stage in the
profiler would have made the subsequent steps prohibitively
expensive.

We could identify a “good” place to dynamically reset the
GHR, by identifying a place in the trace where the next
branch predicted well with zero bits of history, the subse-
quent branch with 1 bit of history, the next with 2 bits,
etc. By calculating all such places (a single possible loca-
tion would be following a possible static branch, in either the
taken or not-taken case – we could make different decisions
for each), we select the best. Because the different resetting
points will interact, we need to start the analysis anew after
one is chosen to select the next. We continue the process un-
til we reach a minimum threshold of marginal improvement.
Interestingly, the optimal minimum threshold was actually a
negative improvement. This is because the effect of aliasing
makes the gains higher than the trace predicts – so we need
to make it more aggressive than it would otherwise be.

Of the four types of conditional branches (forward taken
and not-taken, backwards taken and not-taken), we quickly
learned that the first three are almost always better left
alone, and the last are usually best modified. Therefore,
our analysis technique worked best if we just forced it to
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Figure 3: MISP/KI improvement from targeting all backward branches or those selected by profiling.

ignore all but backwards-NT, and just decide which of those
to modify the GHR.

Figure 3 shows the best parameterized static result, com-
pared to our simplest technique which blindly modifies the
GHR at all backwards NT branches. These results are based
on a gshare predictor using a maximum number of history
bits executing select SPECint benchmarks. While we see
that for small predictor sizes, the static analysis does indeed
do a better job of selecting branches than the hardware-only
technique, it does not seem to be enough of a gain to account
for the concerns over this technique. But this does indicate
there is room for future investigation in this direction.

5. METHODOLOGY
This section describes our simulation framework and bench-

mark selection. We modified a version of SMTSIM [26] to
implement our array of branch predictors. SMTSIM exe-
cutes unmodified Alpha ISA code and supports out-of-order
SMT or CMP processors. In this study, SMTSIM was exe-
cuting a single threaded binary on a single core.

We also modified the framework provided by the Champi-
onship Branch Prediction Competition to execute the array
of branch predictors via trace-based simulation.

The SPEC results, then, come from detailed simulation
of the predictors running on a modern core, and includes,
for example, the effects of delayed updates to the predic-
tor. The details of the simulated core are not particularly
important, however, as we only produce branch mispredict
rates in this paper. This is because the CBP results only al-
low trace-based simulation of mispredict rates and no direct
performance results.

5.1 Branch Predictors
Gshare [13] is a standard implementation with varying size

prediction tables. Filter [1] is implemented using a three bit
saturating counter and one bias bit per BTB entry. Af-
ter eight sequential executions with the same outcome, the
counter becomes saturated. Predictions for branches with a
BTB saturated counter are given as the bias. If the bias
prediction is correct, no update is performed. All other
branches are predicted using a gshare predictor. The BTB
assumed has 512 entries with 4 way associativity. The ad-
ditional BTB hardware required by filter is not included in
the hardware budget for the filter predictor. Our default
size for gshare and filter is 32Kb.

BIM G0 G1 META

prediction table 16K 64K 64K 64K

history length 4 13 21 15

Table 1: Characteristics of 2Bc-gskew predictor

The Alloyed (Global/Local) Perceptron is a 32Kb imple-
mentation [8]. The Alloyed Perceptron has a 91 entry table
and uses 34 bits of global and 10 bits of local history.

Our 2Bc-gskew predictor [20] is a 416Kb implementation
with four prediction tables. Three of these tables are in-
dexed with the GHR. The fourth is a meta predictor which
chooses between the results produced by the 2-gskew pre-
dictor (two of the GHR indexed tables) and the bimodal
predictor. We provided each entry with its own hysteresis
bit — we did not simulate the space optimization of shared
hysteresis bits. More details of the 2Bc-gskew predictor are
given in Table 1. We did not attempt to create a reduced
version of this predictor (similar in size to our other predic-
tors). That predictor was carefully tuned in [20] for this
size; additionally, this allows us to demonstrate that our
technique is effective even on a very large branch predictor.

Our implementation of the Alpha 21264 predictor [19] is
29Kb with a 4k entry choice prediction table, 4k entry global
prediction table, a 1k entry local history table with 10 bits
of history per entry, and a 1k entry local prediction table.

BTB misses are faithfully modeled and we assume branch
instructions which miss in the BTB are repredicted when
identified by decoding. Similar to [15] we use the number of
conditional branch mispredictions per thousand instructions
executed (MISP/KI) as our primary metric.

5.2 History Tuning
For each of our predictors, we evaluated all possible his-

tory lengths to ensure the strongest baselines performance.
To determine the optimal history length we averaged the
average MISP/KI for SPECint, SPECfp, and CBP. Most
predictors benefited from the maximum available history
lengths. However, some predictors, especially our smallest
sizes of gshare and filter, benefited from low amounts of his-
tory. In fact - the 4Kb implementation of gshare uses only
2 bits of history.

5.3 Benchmark Selection
We choose eight benchmarks from the SPEC2000 suite.

We intentionally select eight programs that are sensitive
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to the (overall) branch prediction accuracy in our simula-
tion framework. We do this by filtering out those programs
whose performance improved by less than 3% when a perfect
branch predictor was introduced. We simulate 100 million
instructions starting at a single execution Simpoint [21].

We also use the traces provided for the Championship
Branch Prediction Competition.

6. RESULTS
The techniques detailed in previous sections for GHR mod-

ification (GHRM) will likely have different impacts for dif-
ferent branch predictor sizes. For realistic predictor sizes,
we compare the accuracy of GHRM when applied to simple
predictors against the accuracy of more advanced and larger
predictors. Lastly, we evaluate the effectiveness of GHRM
when applied to these more advanced predictors.

6.1 Predictor Size
In general, the benefits of these techniques are most sub-

stantial when working with smaller predictors. This is be-
cause aliasing is most extensive in smaller predictors, and
reducing aliasing is the most important result of our modi-
fications. However, we also show that these approaches are
still applicable to larger predictors. In particular, the 2Bc-
gskew predictor is discussed in section 6.3.

We start by examining the gshare and Filter predictors
initially. We do this because these are simple, highly effec-
tive predictors, and they are easily parameterized by size.
The results for varying gshare and Filter sizes are contained
in Figure 4 and Figure 5 respectively. The MISP/KI for each
baseline predictor is provided for both the select SPEC2K
benchmarks and the CBP traces.

The percentage reductions in MISP/KI are provided in
Table 2. The results are highest for the small predictors, and
actually go negative when the tables get large. There are still
gains for individual branches, but this is where our simpler
hardware-only technique breaks down because it cannot dis-
tinguish between instances – in this region, approaches like
our static technique may become more attractive.

Our technique (GHRM) uses the best configuration of
heuristics (which specific points to modify the GHR on) for
each predictor type and size. The actual configurations used
are contained in Table 3. We see in this table that as pre-
dictors get larger, and the effect of aliasing is reduced, we
tend to get less aggressive; for example, resetting the GHR
on returns tends to only be beneficial with the smallest pre-
dictors.

It should be noted that the negative results are primarily
the effects of the variety of compilation systems. For exam-
ple, if we could optimize for SPEC alone, we get positive



Size (Kb)
Predictor 4 8 16 32 64 128

SPEC gshare+GHRM 6.5% 18.2% 12.7% 5.0% 4.8 % 1.5%
CBP gshare+GHRM -0.5% 9.9% 8.1% 5.3% -4.2% -5.7%

SPEC filter+GHRM 9.8% 6.0% 1.1% -4.3% 0.6% -1.9%
CBP filter+GHRM 4.1% 4.9% 4.7% 3.1% -7.4% -8.8%

Table 2: MISP/KI reductions per size for gshare+GHRM when compared against standard gshare and
filter+GHRM compared against standard filter for both the select SPEC2K benchmarks and CBP traces.

0
2
4
6
8

10
12
14
16

cr
af

ty
2k

gc
c2

k

gz
ip

2k

pa
rs

er
2k

pe
rl

bm
k2

k

tw
ol

f2
k

vo
rt

ex
2k

vp
r2

k

FP
-1

FP
-2

FP
-3

FP
-4

FP
-5

IN
T-

1

IN
T-

2

IN
T-

3

IN
T-

4

IN
T-

5

M
M

-1

M
M

-2

M
M

-3

M
M

-4

M
M

-5

SE
R

V -
1

SE
R

V -
2

SE
R

V -
3

SE
R

V -
4

SE
R

V -
5

SP
EC

 A
V

E

C
B P

 A
ve

Benchmark

M
IS

P 
/ K

I

Gshare Gshare+GHRM

Figure 6: Baseline and improved gshare for each benchmark. (Lower bars indicate better accuracy.)

Gshare Filter
Size NT- NT
(Kb) FC RTR BB FC RTR -BB

4 T T T T F T
8 T F T T F F
16 T F T T F F
32 T F F T F F
64 F F T F F T
128 F F T F F T
256 F F T F F T

Table 3: Gshare and filter heuristic configurations:
either function calls (FC), return (RTR) instruc-
tions, and/or not-taken backward branches (NT-
BB) can trigger GHR modifications.

results for this entire range. Similarly for the CBP results,
which were generated differently than our SPEC binaries.
But trying to find a single best configuration for both re-
sulted in significantly lowered results in many cases. This
implies that if the compilation systems are universally aware
of what the hardware is doing, and at least does not generate
code that is at cross purposes, the potential gain from these
techniques can be much higher than shown here. It may also
indicate that a simple dynamic technique that chose dynam-
ically (but at a coarse granularity) which of our eight config-
uration combinations was most effective could also provide
good results.

From Figure 4, we can see that for some of the smaller sizes
of gshare, gshare+GHRM enables branch prediction accura-
cies similar to predictors of twice the size. Filter (Figure 5),
because of its ability to filter out highly biased branches,

benefits less from these techniques but still shows noticeable
improvements at smaller sizes. These results validate the
assertion that in some cases, our simple and nearly cost-free
branch prediction modification can provide the same perfor-
mance with a significant decrease in predictor size.

Figure 6 provides the MISP/KI for each of the selected
benchmarks. For the select SPEC2K benchmarks, almost
all benchmarks benefit from applying GHRM. For the CBP
traces, applying GHRM has a positive benefit on the major-
ity of traces, most notably the server traces.

6.2 Heuristic Configuration
In the previous section, different heuristics were said to be

effective for the same predictors given different benchmark
sets. The most notable difference is that the CBP traces
benefit more from function call modification than the select
SPEC2K benchmarks. This likely comes primarily from the
difference in code generation.

Although one configuration may offer the best perfor-
mance for each predictor of a given size, often other heuris-
tics offer competitive performance. Figure 7 provides the
MISP/KI improvement for both working sets given each con-
figuration using different sizes of gshare. Different sizes of
gshare are provided up to 64Kb where the utility of the con-
figurations drops (as shown in Figure 4). This figure shows
us that while some configurations may provide the best per-
formance, many still provide reasonable benefits.

6.3 Other Predictors
The primary goal of these techniques is to aid simpler

branch predictors. However, these techniques can benefit
other predictors as well. Even in the absence of significant
aliasing, this mechanism allows faster training (when the
branch working set changes) and retraining (when branch
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Figure 7: MISP/KI improvement for different heuristic configurations for varying sizes of gshare.

Configuration
Predictor FC RTR NT-BB
2Bc-gskew T F F
A21264 T F T
Filter T F F
Gshare T F F

Alloyed Perceptron T F T

Table 4: The best heuristic configuration for each
predictor.

bias or patterns change). Figure 8 provides the percentage
reduction in MISP/KI for a larger set of predictors, some but
not all of similar size. The GHRM configuration selected for
each of these predictors is provided in Table 4.

All predictors benefit from these techniques. The Alloyed
Perceptron has the largest MISP/KI reduction, 14.4% for
the select SPEC2K benchmarks and 10.0% for the CBP
traces. The Alloyed Perceptron predictor results are par-
ticularly interesting. Perceptron predictors are specifically
targeted at reducing the impact of non-correlated branches,
and are largely successful at doing so. But it removes the ef-
fect of the noise only probabilistically, and therefore some of
the noise always remains. We find that even in the context
of that predictor, we are able to further remove the impact
of useless noise.

The other really interesting results are for the 2Bc-gskew
predictor. This result is in contrast to some of our earlier
results that might indicate that this technique is only useful
for small predictors. This predictor, with multiple large ta-
bles, and significant features to tolerate aliasing, still takes
significant advantage of our ability to identify non-correlated
regions of code.

6.4 Non-Select Benchmarks
The prior results are shown for the select SPEC2000 bench-

marks. When averaging the benefit of our technique across
all, not just select, SPEC2000 we found that 8Kb, 16Kb,
32Kb implementations of gshare achieved 9%, 6%, and 1%
MISP/KI improvements. Our techniques were not beneficial
for larger sizes of gshare. All the other predictors except
2Bc-gskew and 16Kb or greater implementations of filter
also saw a reduction in MISP/KI.

SPECfp is not included in the select benchmarks and
has some interesting characteristics. The IPC performance
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Figure 8: Reduction in MISP/KI for various predic-
tors. Gshare and filter are 32Kb implementations.

of these benchmarks was not found to be highly tied to
the branch prediction accuracy. In addition, nearly all our
branch predictors were able to predict SPECfp with high
accuracy. In fact - the average MISP/KI for SPECfp is less
than 1 for our 32Kb gshare implementation.

One particularly interesting result relates to a methodol-
ogy common in recent branch prediction research. Following
this precedent, as described in Section 5, we tuned all of our
baseline predictors to find the optimal amount of GHR his-
tory to use. This methodology, though, has a tendency to
overtune the predictor for a small set of benchmarks (where
a real predictor would be tuned for a much larger set). In
fact, this methodology significantly reduced the magnitude
of our overall gains, which were always higher when our pre-
dictor and the baseline used the same amount of history.
In the case of the smallest predictor (4 Kb gshare), this
overtuning becomes very apparent – although we used all of
SPEC to find the optimal length, the greater importance of
branch prediction in the integer benchmarks created an op-
timal history length (2 bits!) which was an extremely poor
choice for the FP benchmarks. So when applying our tech-
niques, we see tremendous improvements in those bench-
marks – a 47% reduction in average MISP/KI for SPECfp.



But we did not choose to highlight these results in this pa-
per, because we feel they are more an artifact of the standard
methodology.

But this does highlight an important advantage of our
branch predictor – it enables the use of longer histories
by eliminating the artifacts that create the pressure to use
shorter history than that dictated by the size of the branch
history tables. For these small predictors, the best tuned
predictor using our optimizations consistently used more
history length than a tuned predictor without our optimiza-
tions. If we had not followed this methodology, and instead
assumed all predictors use the expected amount of history,
our reported results would be higher. For example, again for
the smallest gshare, our techniques provide a 21% reduction
in mispredicts for SPEC-select and 10% reduction for CBP
(as opposed to the 6.5% and -0.5%, respectively, reported in
Table 2).

6.5 Summary
These results demonstrate that simple heuristics can be

used for improved branch prediction accuracy at little cost
by reducing the amount of noise in the global path history.
For most predictors, modifying the GHR when a backward
branch is not taken or when encountering a function call
provides a reasonable reduction in MISP/KI.

In general, our results show that the technique of modify-
ing the GHR is most useful for smaller predictors. However,
the techniques are not limited to simple predictors and are
shown to eliminate a significant percentage of MISP/KI in
more complicated predictors.

7. CONCLUSION
This paper demonstrates that artificially modifying the

GHR before regions of limited branch correlation (RLBC)
can improve branch predictor performance during single
threaded execution.

By performing GHR modifications based on program heuris-
tics - when backward branches are not taken and when en-
countering function call and return instructions - improved
branch predictor accuracy can be achieved. For 32Kb pre-
dictors, our techniques offer up to a 12% overall decrease in
MISP/KI. For small gshare predictors, these techniques can
provide as much as a 14% reduction in MISP/KI. All pre-
dictors examined benefit from these techniques and only a
minor hardware modification is required for implementation.

These techniques enable processors to achieve higher branch
prediction accuracy, increased performance, and reduced
power consumption with simple branch predictors. Simple
branch predictors have the advantages of easier design and
verification as well as lower hardware cost and lower power
consumption.
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