Homework Number 2

This homework is based on the chapter 2 and chapter 4 and focuses primarily on performance and computer arithmetic issues.

We recommend solving the following problems from the textbook

Textbook Problems

- 2.18 through 2.24: This is a series of problems that walk you through design decisions and trade-offs that a processor (and compiler) designer has to go through based on expected and needed performance.
- 4.9: simple problem on the completeness of the MIPS instruction set
 ANS: a subtract immediate is the same as an add immediate since the “immediate” could be positive or negative.
- 4.10: understanding positive and negative numbers and the MIPS instruction set.
 ANS:
  ```
  addu $t2,$zero,$t3 // $t3 = $t2;
  bgez $t3,next // if ( $t3 >= 0 ) done
  sub $t2,$zero,$t3 // else $t2 = 0 - $t3;
  ```
 done:
- 4.14: bits, representations and meaning thereof in various contexts.
- 4.18: double precision integer arithmetic. Note, this problem does not specify whether the result should cause an overflow exception or not. I recommend trying to do this problem with overflow detection as well as without.

Without overflow detection

```ans:
addu $t3,$t5,$t7
sltu $t2,$t3,$t5
addu $t2,$t2,$t4
addu $t2,$t2,$t6
done:
```

With overflow detection

```ans:
addu $t3,$t5,$t7
sltu $t2,$t3,$t5
add $t2,$t2,$t4
add $t2,$t2,$t6
done:
```

Additionally try this

1. Suppose I am trying to compress a video file. On an old department PC with a Pentium processor, it takes me about 10 secs. At my brand new home PC with the latest in Itanium, it takes only 4 secs. Explain
 a) The Itanium was ______ times ______ (faster/slower) than the Pentium
 b) The Itanium was ______ percent ______ (faster/slower) then the Pentium

2. The DRAM growth rule is that the capacity of DRAM increases by a factor of 4 every three years. Figure 1.20 in the text shows that the performance of workstations has gone from 9 "specmarks" (the unit of performance for the SPEC benchmark) to 1140 in 10 years. Which is the faster growth rate? Note: there are (at least) two ways to compute this - you could figure out how much growth there would be in 30 years (assuming the growth rates remain the same), or you could

CSE141-Summer 2003
determine an average yearly growth rate for each measure. The best exercise would be to try it both ways.

3. Our old friend the FIR filter:
A finite impulse response (FIR) filter in signal processing, with N taps, is usually represented with the following piece of code:

```c
#define N 26
int fir(const int *w,const int *d)
{
    int sum=0;
    int i; // fine I'll actually declare this 😃
    for(i=0;i<N;i++) sum += w[i]*d[i];
    return sum;
}
```

You developed the MIPS assembly code for this in the last Homework. Assume a machine implementation of 1 clock per MIPS instruction. Assume that the clock speed is 100 MHz.

 a) Calculate the performance of this filter (number of taps/second). [Hint: find execution time per loop-step]
 b) If the number of taps is given to be 3 (viz., N=3) can you optimize and increase the performance?
 c) Comment on the overflow properties of the “sum”.