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Abstract

Early detection is the key to minimizing failure damage

induced by configuration errors, especially those errors

in configurations that control failure handling and fault

tolerance. Since such configurations are not needed for

initialization, many systems do not check their settings

early (e.g., at startup time). Consequently, the errors be-

come latent until their manifestations cause severe dam-

age, such as breaking the failure handling. Such latent

errors are likely to escape from sysadmins’ observation

and testing, and be deployed to production at scale.

Our study shows that many of today’s mature, widely-

used software systems are subject to latent configuration

errors (referred to as LC errors) in their critically impor-

tant configurations—those related to the system’s reli-

ability, availability, and serviceability. One root cause

is that many (14.0%–93.2%) of these configurations do

not have any special code for checking the correctness of

their settings at the system’s initialization time.

To help software systems detect LC errors early, we

present a tool named PCHECK that analyzes the source

code and automatically generates configuration checking

code (called checkers). The checkers emulate the late ex-

ecution that uses configuration values, and detect LC er-

rors if the error manifestations are captured during the

emulated execution. Our results show that PCHECK can

help systems detect 75+% of real-world LC errors at the

initialization phase, including 37 new LC errors that have

not been exposed before. Compared with existing detec-

tion tools, it can detect 31% more LC errors.

1 Introduction

1.1 Motivation

Failures are a fact of life in today’s large-scale, rapid-

changing systems in cloud and data centers [7,24,30,58].

To mitigate the impact of failures, tolerance and recov-

ery mechanisms have been widely adopted, such as em-

ploying data and node redundancy, as well as supporting

fast rebooting and rollback. While these mechanisms are

successful in handling individual machine failures (e.g.,

hardware faults and memory bugs), they are less effective

in handling configuration errors [20, 24, 28], especially

the errors in configurations that control the failure han-

dling itself. For example, an erroneous fail-over config-

uration resulted in a 2.5 hour outage of Google App En-

gine in 2010, affecting millions of end users [44]. More-

over, very often, the same configuration error is deployed

onto thousands of nodes and resides in persistent files on

each node, making it hard to tolerate by redundancy or

server rebooting. As a result, configuration errors have

become one of the major causes of failures in large-scale

cloud and Internet systems, as reported by many system

vendors [21, 34, 55] and service providers [7, 24, 28, 43].

Since it is hard to completely avoid configuration er-

rors (after all, everyone makes mistakes; as do system ad-

ministrators), similar to fatal diseases like cancer, a more

practical approach is to detect such errors as early as pos-

sible in order to minimize their failure damage:

• Early detection before configuration roll-out can pre-

vent the same error from being replicated to thousands

of nodes, especially in the data-center environment.

• Unlike software bugs, configuration errors, once de-

tected, can be fixed by sysadmins themselves with no

need to go through developers. Therefore, if detected

earlier, the errors can be corrected immediately before

the configurations are put online for production.

• For many configurations that control the system’s fail-

ure handling, early detection of errors in their settings

can prevent the system from entering an unrecoverable

state (before any failures happen). Often, the combina-

tion of multiple errors (e.g., a configuration error plus

a software bug) can bring down the entire service, as

shown in many newsworthy outages [9, 42, 43, 45].

Unlike software bugs that typically go through various

kinds of testing before releases (such as unit testing, re-

gression testing, stress testing, system testing, etc.), sys-

tem administrators often do not perform extensive testing

on configurations before rolling them out to other nodes

and putting the systems online [25]. Besides the lack of

skills [25] and the temptation of convenience [24], the

more fundamental reason is that system administrators

do not have the same level of understanding on how and

when the system uses each configuration value internally.

Thus, they are limited to simple black-box testing such as

starting the system and applying a few small workloads

to see how the system behaves. Due to time and knowl-

edge limitations, system administrators typically do not
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Severity level Latent Non-latent

All cases 47.6% 52.4%

High severity 75.0% 25.0%

Table 1: Severity of latent versus non-latent errors among the cus-

tomers’ configuration issues of COMP-A. LC errors contribute to

75% of the high-severity configuration issues.

Error class Mean Median

Latent 1.14 1.70

Non-latent 0.87 0.41

Table 2: Diagnosis time of latent versus non-latent errors among

customers’ configuration issues of COMP-A. The time is normalized

by the average time of all the reported issues.

perform a comprehensive suite of test cases against con-

figuration settings, especially for those hard-to-test ones

(e.g., failure/error-handling related configurations) that

may require complex setups and even fault injections.

Therefore, early detection should inevitably fall onto

the shoulder of the system itself—the system should au-

tomatically check as many configurations as possible at

its early stages (the startup time). Unfortunately, many of

today’s systems either skip the checking or only check

configurations right before the configuration values are

used, as shown in our study (§2). Typically, at the startup

time, only those configuration parameters needed for ini-

tialization are checked (or directly used), while many

other parameters’ checking is delayed much later until

when they are used in special tasks. Since such config-

uration parameters are neither used nor checked during

normal operations, errors in their settings go undetected

until their late manifestation, e.g., under circumstances

like error handling and fail-over. For simplicity, we refer

to such errors as latent configuration (LC) errors.

LC errors can result in severe failures, as they are of-

ten associated with configurations used to control criti-

cal situations such as fail-over [44], error handling [42],

backup [37], load balancing [9], mirroring [45], etc. As

explained above, their detection or exposure is often too

late to limit the failure damage. Take a real-world case

as an example (c.f., §2: Figure 3a), an LC error in the

fail-over configuration settings is detected only when the

system encounters a failure (e.g., due to hardware faults

or software bugs) and tries to fail-over to another compo-

nent. In this case, the fail-over attempt also fails, making

the entire system unavailable to all the clients.

Tables 1 and 2 compare the severity level and diagno-

sis time of real-world configuration issues caused by LC

errors versus non-latent configuration errors (detected at

the system’s startup time) of COMP-A1, a major storage

company in the US. Although there have been fewer LC

errors than non-latent ones, LC errors contribute to 75%

of the high-severity issues and take much longer to diag-

nose, indicating their high impact and damage.

1We are required to keep the company and its products anonymous.

 Parse config files;

 store the settings 
 in program vars.

- 26 rounds of diagnostic 

  conversations;

- 5 collections of logs &  

  runtime traces; 

- 2 incorrect patches. 

Diagnosis (48 hrs) 

 [Patch] Check existence of diskd_program during initialization 

 Use the setting of  

 diskd_program  
 for log rotation.

Initialization Serving requests ³Hogging the CPU for 7+ hrs´

Configuration error:

diskd_program = a non-existent path

Figure 1: A real-world LC error from Squid [37]. The error caused

system hanging for 7+ hours, and resulted in 48 hours of diagnosis ef-

forts. Later, a patch was added to check the existence of the configured

path during initialization. Unfortunately, the patched check is still sub-

ject to LC errors such as incorrect file types and permissions.

The TaskTrackers were trapped 

into infinite loops (³When I ran 

jobs on a big cluster, some map 

tasks never got started.´) 

1. Configuration error:

mapred.local.dir 

= directory path w/ wrong owner

2. Impact

(mapred.local.dir is not used 

 until exec. of MapReduce jobs)

3. Code snippets:

while (running) {

  try {

    ...

    access mapred.local.dir

    ...

  } catch(Exception e) {

    LOG.log(iRetrying!j);

  }

}                 

User requests: ³TaskTracker should check whether it can access 

to the local dir at the initialization time, before taking any tasks.´�

/* TaskTracker.java */

Throw 
Exception

// no check at initialization

Too late to avoid 

the failure!

Infinite loops

Figure 2: A real-world LC error from MapReduce [12]. When the

exception handler caught the runtime exception induced by the LC er-

ror, it was already too late to avoid the downtime. After this incident,

the user requested to check the configuration “at the initialization time.”

Figure 1 shows a real-world LC error from Squid, a

widely used open-source Web proxy server. The LC er-

ror resided in diskd program, a configuration parameter

used only during log rotation. Squid did not check the

configuration during initialization; thus, this error was

exposed much later after days of execution. It caused 7+

hours of system downtime and cost 48 hours of diagnosis

efforts. After the error was finally discerned, the Squid

developers added a patch to proactively check the setting

at system startup time to prevent such latent failures.

Figure 2 shows another real-world example in which

an LC error failed a large-scale MapReduce job process-

ing. This LC error was replicated to multiple nodes and

crashed the TaskTrackers on those nodes. Specifically,

the error caused a runtime exception on each node. The

TaskTracker caught the exception and restarted the job.

Unfortunately, as the error is persistent in the configura-

tion file, restarting the job failed to get rid of the error

but induced infinite loops. Note that when the exception

handler caught the error, it was already too late to avoid

downtime (the best choice is to terminate the jobs).

Preventing above LC-error issues would require soft-

ware systems to check configurations early during the

initialization time, even though the configuration values

are only needed in much later execution or during special
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circumstances. This is indeed demonstrated by the devel-

opers’ postmortem patches. As revealed in Facebook’s

recent study [43], 42% of the configuration errors that

caused high-impact incidents are “obvious” errors (e.g.,

typos), indicating the limitations of code review and sys-

tem testing in preventing LC errors. These errors might

be detected by early checks (only if developers are will-

ing to and remember to write the checking code).

1.2 State of the Art

Most prior work on handling configuration errors focuses

on troubleshooting and diagnosis [5, 6, 32, 46, 48, 49, 52,

53,56,60,61,62]. The techniques proposed in these work

are helpful for system administrators to identify the fail-

ure root causes faster to shorten the repair time. How-

ever, they cannot prevent failures and downtime.

Most of the existing detection tools check configura-

tion settings against apriori correctness rules (known as

constraints). However, as large software systems usually

have hundreds to thousands of configuration parameters,

it is time-consuming and error-prone to ask developers to

manually specify every single constraint, not to mention

that constraints change with software evolution [61].

So far, only a few automatic configuration-error de-

tection tools have been proposed. Most of them detect

errors by learning the “normal” values from large collec-

tions of configuration settings in the field [29,36,57,59].

While these techniques are effective in certain scenarios,

they have the following limitations, especially when be-

ing applied to cloud and data centers.

First, most of these works require a large collection of

independent configuration settings from hundreds of ma-

chines. This is a rather strong requirement, as most cloud

and data centers typically propagate the same configura-

tions from one node to all the other nodes. Thereby, the

settings from these nodes are not independent, and thus

not useful for “learning”. Second, they do not work well

with configurations that are inherently different from one

system to another (e.g., domain names, file paths, IP ad-

dresses) or incorrect settings that fall in normal ranges.

They also cannot differentiate customized settings from

erroneous ones. Furthermore, most of these tools tar-

get on specific error types (encoded by their predefined

constraint templates) and are hard to generalize to detect

other types of errors. A recent work learns constraints

from KB (Knowledge Base) articles [31]. However, this

approach has the same limitations discussed above. Spe-

cially, KB articles are mainly served for postmortem di-

agnosis and thus may not cover every single constraint.

There are very few configuration-error detection ap-

proaches that do not rely on constraints specified manu-

ally by developers or learned from large collections of in-

dependent settings (or KB articles). The only exception

(to the best of our knowledge) is conf spellchecker [35]

which detects simple errors based on type inference from

source code. While this technique is very practical, it is

limited in the types of configuration errors that can be

detected, as shown in our experimental evaluation (§4).

1.3 Our Contributions

This paper makes two main contributions. First, to un-

derstand the root causes and characteristics of latent con-

figuration (LC) errors, we study the practices of configu-

ration checking in six mature, widely-deployed software

systems (HDFS, YARN, HBase, Apache, MySQL, and

Squid). Our study reveals: (1) In today’s software sys-

tems, many (14.0%–93.2%) of the critically important

configuration parameters (those related to the system’s

reliability, availability, and serviceability) do not have

any special code for checking the correctness of their

settings. Instead, the correctness is verified (implicitly)

when the configuration values are being actually used in

operations such as a file open call. (2) Many (12.0%–

38.6%) of these configuration parameters are not used at

all during system initialization. (3) Resulting from (1)

and (2), 4.7%–38.6% of these critically important con-

figuration parameters do not have any early checks and

are thereby subject to LC errors that can cause severe im-

pact on the system’s dependability.

Second, to help systems detect LC errors early, we

present a tool named PCHECK that analyzes the source

code and automatically generates configuration checking

code (called checkers) to validate the system’s configu-

ration settings at the initialization phase. PCHECK takes

a unique and intuitive method to check each configura-

tion setting—emulating the late execution that uses the

configuration value; meanwhile capturing any anoma-

lies exposed during the execution as the evidence of con-

figuration errors. PCHECK does not require developers

to manually implement checking logic, nor rely on learn-

ing a large volume of configuration data. The checkers

generated by PCHECK are generic: they are not limited

to any specific, predefined rule patterns, but are derived

from how the program uses the parameters.

PCHECK shows that it is feasible to accurately and

safely emulate late execution that uses configurations. It

statically extracts the instructions that transform, propa-

gate, and use the configuration values from the system

program. To execute these instructions, PCHECK makes

a best effort to produce the necessary execution context

(values of dependent variables) that can be determined

statically. PCHECK also “sandboxes” the emulated exe-

cution by instruction rewriting to prevent side effects on

the running system or its environment.

More importantly, emulating the execution can expose

many configuration errors as runtime anomalies (e.g., ex-
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ceptions and error code) and the emulated execution runs

in a short period. PCHECK inserts instructions to capture

the anomalies that may occur during the emulated execu-

tion, as the evidence to report configuration errors.

As an enforcement, PCHECK encapsulates the emu-

lated execution and error capturing code into checkers for

every configuration parameter, and invokes the checkers

at the system’s initialization phase. This can minimize

potential LC errors, and compensate for the missing and

incomplete configuration checks in real-world systems.

We implement PCHECK for C and Java programs on

top of the LLVM [4] and Soot [3] compiler frameworks.

We apply PCHECK to 58 real-world LC errors of various

error types occurred in widely-used systems (each leads

to severe failure damage), including 37 new LC errors

that have not been exposed before. Our results show that

PCHECK can detect 75+% of these real-world LC errors

at the system’s startup time. Compared with the existing

detection tools, it can detect 31% more LC errors.

2 Understanding Root Causes of Latent

Configuration Errors

To understand the root causes and characteristics of LC

errors, we study the practices of the configuration check-

ing and error detection in six mature, widely-deployed

open-source software systems (c.f., Table 3). They cover

multiple functionalities and languages, and include both

single-machine and distributed systems.

We focus on configuration parameters used in compo-

nents related to the system’s Reliability, Availability, and

Serviceability (known as RAS for short [50]). For each

system considered, we select all the configuration param-

eters of RAS-related features based on the software’s of-

ficial documents, including error handling, fail-over, data

backup, recovery, error logging and notification, etc. The

last column of Table 3 shows the number of the studied

RAS parameters. Compared with configurations of other

system components, configurations used by RAS com-

ponents are more likely to be subject to LC errors due

to their inherently latent nature; moreover, the impact of

errors in RAS configurations is usually more severe.

Note: LC errors are not limited to RAS components.

Thus, the reported numbers may not represent the overall

statistics of all the LC errors in the studied systems. In

addition, PCHECK, the tool presented in §3, applies to all

the configuration parameters; it does not require manual

efforts to select out RAS parameters.

2.1 Methodology

We manually inspect the source code related to RAS con-

figuration parameters of the studied systems. First, for

each RAS parameter, we study the code that checks the

Software Description Lang.
# Parameters

Total RAS

HDFS Dist. filesystem Java 164 44

YARN Data processing Java 116 35

HBase Distributed DB Java 125 25

Apache Web server C 97 14

Squid Proxy server C/C++ 216 21

MySQL DB server C++ 462 43

Table 3: The systems and the RAS parameters studied in §2.

Software
Deficiency of initial checking Studied

Missing Incomplete param.

HDFS 41 (93.2%) 3 (6.9%) 44

YARN 29 (82.9%) 5 (14.3%) 35

HBase 18 (72.0%) 5 (2.0%) 25

Apache 4 (28.6%) 2 (14.3%) 14

Squid 9 (42.9%) 4 (19.0%) 21

MySQL 6 (14.0%) 6 (14.0%) 43

Table 4: Number of configuration parameters that do not have any

initial checking code (“missing”) and that only have partial check-

ing and thus cannot detect all potential errors (“incomplete”).

parameter setting at the system’s initialization phase2 (if

any) and the code that later uses the parameter’s value.

Then, we compare these two sets of code (checking ver-

sus usage) and examine if the initial checking is sufficient

to detect configuration errors. If an error can escape from

the initialization phase and break the usage code, it is a

potential LC error.

We verify each LC error discovered from source code

by exposing and observing the impact of the error. We

first inject the errors into the system’s configuration files

and launch the system; then we trigger the manifestation

conditions to expose the error impact. For example, to

verify the LC errors in the HDFS auto-failover feature,

we start HDFS with the erroneous fail-over settings, trig-

ger the fail-over procedure by killing the active NameN-

ode, and examine if the fail-over can succeed. As all the

LC errors are verified through their manifestation, there

is no false positive in the reported numbers.

2.2 Findings

Finding 1: Many (14.0%–93.2%) of the studied RAS

parameters do not have any special code for checking

the correctness of their settings. Instead, the correctness

is verified (implicitly) when the parameters’ values are

actually used in operations such as a file open call.

Table 4 shows the number of the studied RAS parame-

ters that rely on the usage code for verifying correctness,

because their initial checks are either missing or incom-

plete. Most of the studied RAS parameters in HDFS,

YARN, and HBase do not have any special code for

checking the correctness of their settings. These systems

2A system’s initialization phase is defined from its entry point to the

point it starts to serve user requests or workloads.
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2. Initial checks:

3. Late execution: Parse the timeout setting to an integer value;

None.

public boolean tryFence(...) {  

   

         

}

/* hadoop-common/.../ha/

SshFenceByTcpPort.java */

Auto-failover configuration parameters:                                     HDFS-2.6.0

  dfs.ha.fencing.ssh.connect-timeout

  dfs.ha.fencing.ssh.private-key-files

                               

Read the file specified by the key-files setting.

getString(idfs.ha.fencing.ssh

.private-key-filesj)                            

fis = new FileInputStream(prvFile); 

session.createSession();
...

...
int timeout = getInt(idfs.ha.fencing.ssh.connect-timeoutj);

...

4. Manifestation:

5. Consequence:
HDFS auto-failover fails, and the entire HDFS service becomes unavailable.

IllegalArgumentException (when parsing timeout to an integer)

IOException (when reading the key file)

1. LC Errors:

Ill-formatted numbers (e.g., typos) for ssh timeout;

Invalid paths for private-key files (e.g., non-existence, permission errors).

(a) Missing initial checking

2. Initial checks:

3. Late execution: Change working directory (chdir) to the path.

Check if the path points to an existent directory.

static void sig_coredump(int sig) {  

   

}

/* server/mpm_unix.c */

Error-handling configuration parameter:                       Apache httpd-2.4.10

  CoreDumpDirectory

  

                               if(chdir(rootpath) != 0)

  return errno;                            

...
apr_filepath_set(ap_coredump_dir, ...);

...

4. Manifestation:

5. Consequence:

Apache httpd cannot switch to the configured directory, and thus fails to 

generate the coredump file upon server crashing.

Error code returned by the chdir call

if (apr_stat(&finfo, fname, APR_FINFO_TYPE) != APR_SUCCESS)

  return "CoreDumpDirectory does not exist";

if (finfo.filetype != APR_DIR)

  return "CoreDumpDirectory is not a directory";

iCoreDumpDirectoryj

1. LC Errors:

The running program has no permission to access coredump directory .

(b) Incomplete initial checking

Figure 3: New LC errors discovered in the latest versions of the

studied software, both of which are found to have caused real-

world failures [40, 41]. For all these LC errors, the correctness check-

ing is implicitly done when the parameters’ values are actually used in

operations, which is unfortunately too late to prevent the failures.

adopt the lazy practice of using configuration values3—

parsing and consuming configuration settings only when

the values are immediately needed for the operations,

without any systematic configuration checking at the sys-

tem’s initialization phase.

With such a practice, even trivial errors could result

in big impact on the system’s dependability. Figure 3a

exemplifies such cases using the new LC errors we dis-

covered in our study. In HDFS, any LC errors (such as a

naı̈ve type error) in the auto-failover configurations could

3This is a bad but commonly adopted practice in Java and Python

programs which rely on libraries (e.g., java.util.Properties and

configparser) to directly retrieve and use configuration values from

configuration files on demand, without systematic early checks.

Software Not used during initialization Studied param.

HDFS 17 (38.6%) 44

YARN 9 (25.7%) 35

HBase 3 (12.0%) 25

Apache 4 (28.6%) 14

Squid 4 (19.0%) 21

MySQL 6 (13.9%) 43

Table 5: The studied configuration parameters whose values are

not used at the system’s initialization phase.

break the fail-over procedure upon the NameNode fail-

ures (as the values are not checked or used early), making

the entire HDFS service become unavailable.

Apache, MySQL, and Squid all apply specific config-

uration checking procedures at initialization, mainly for

checking data types and data ranges. However, for more

complicated parameters, some checking is incomplete.

Figure 3b shows another new LC error we discovered. In

this case, though the initial checking code covers file ex-

istence and types, it misses other constraints such as file

permissions. This leaves Apache subject to permission-

related LC errors (which is reported as one common

cause of core-dump failures upon server crash [41]).

As shown by Figure 3b, one configuration parameter

could have multiple subtle constraints depending on how

the system uses its value. For example, a configured file

path used by chdir has different constraints from files

accessed by open; even for files accessed by the same

open call, different flags (e.g., O RDONLY versus O CREAT)

would result in different constraints. Implementing code

to check such constraints is tedious and error-prone.

Finding 2: Many (12.0%–38.6%) of the studied RAS

configuration parameters are not used at all during the

system’s initialization phase.

Table 5 counts the studied configuration parameters

that are not used at the system’s initialization phase, but

are consumed directly in late execution (e.g., when deal-

ing with failures). Figure 3a is such an example. Since

all these parameters are from RAS features, it is natural

for their usage to come late on demand.

Some Java programs put the checking or usage code of

the parameters in the class constructors, so that the errors

can be exposed when the class objects are created (spe-

cially, this is used as the practice for quickly fixing LC

errors [18,19,54]). However, this may not fundamentally

avoid LC errors if the class objects are not created during

the system’s initialization phase.

Note: RAS configurations can be implemented with

early usage at the system’s initialization phase. As shown

in Table 5, the majority of RAS configurations are in-

deed used during initializaiton. For example, all the stud-

ied systems choose to open error-log files at initialization

time, rather than waiting until they have to print the error

messages to the log files upon failures.
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Software
# RAS Parameters

Subject to LC errors Studied

HDFS 17 (38.6%) 44

YARN 9 (25.7%) 35

HBase 3 (12.0%) 25

Apache 3 (21.4%) 14

Squid 3 (14.3%) 21

MySQL 2 (4.7%) 43

Total 37 (20.3%) 182

Table 6: The number of configuration parameters that are subject

to LC errors in the studied ones. 11 of these parameters have been

confirmed/fixed by the developers after we reported them.

Finding 3: Resulting from Findings 1 and 2, 4.7%–

38.6% of the studied RAS parameters do not have any

early checks and are thereby subject to LC errors which

can cause severe impact on the system’s dependability.

Table 6 shows the number of the RAS configuration

parameters that are subject to LC errors in each studied

system. The threats are prevalent: LC errors can reside

in 10+% of the RAS parameters in five out of six sys-

tems. As all these LC errors are discovered in the latest

versions, any of them could appear in real deployment

and would impair the system’s dependability in a latent

fashion. Such prevalence of LC errors indicates the need

for tool support to systematically rule out the threats.

Among the studied systems, HDFS and YARN have a

particularly high percentage of RAS parameters subject

to LC errors, due to their lazy evaluation of configura-

tion values (refer to Finding 1 for details). HBase ap-

plies the same lazy practice as HDFS and YARN, but has

fewer parameters subject to LC errors, because most of

its RAS parameters are used during its initialization. We

also find LC errors in the other studied systems, despite

their initial configuration checking efforts.

2.3 Implication

In summary, even mature software systems are subject to

LC errors due to the deficiency of configuration checking

at the initialization time. While relying on developers’

discipline to add more checking code can help, the re-

ality often fails our expectations, because implementing

configuration checking code is tedious and error-prone.

Fortunately, we also observe from the study that ex-

cept for explicit configuration checking code, the actual

usage of configuration values (which already exists in

source code) can serve as an implicit form of checking,

for example, opening a file path that comes from a con-

figuration value implies a capability check. Such usage-

implied checking is often more complete and accurate

than the explicit checkers written by developers, because

it precisely captures how the configuration values should

be used in the actual program execution. Sadly, in re-

ality these usage-implied checking is rarely leveraged to

detect LC errors, because the usage often comes too late

to be useful. A natural question regarding the solution

to LC errors is: can we automatically generate configu-

ration checking code from the existing source code that

uses configuration values?

3 PCHECK Design and Implementation

PCHECK is a tool for enabling early detection of config-

uration errors for a given systems program. The objec-

tive of PCHECK is to automatically generate configura-

tion checking code (called checkers) based on the origi-

nal program, and invoke them at the system initialization

phase, in order to detect LC errors.

PCHECK tries to generate checkers for every configu-

ration parameter. It is not specific to RAS configurations

and has no assumption on the existence of any LC er-

rors. The checker of a parameter emulates how the sys-

tem uses the parameter’s value in the original execution,

and captures anomalies exposed during the emulated ex-

ecution as the evidence of configuration errors.

PCHECK is built on top of the Soot [3] and LLVM [4]

compiler frameworks and works for both Java and C sys-

tem programs. PCHECK works on the intermediate rep-

resentations (IR) of the programs (LLVM IR or Soot Jim-

ple). It takes the original IR as inputs, and outputs the

generated checkers, and inserts them into bitcode/byte-

code files (which are then built into native binaries). This

may require prepending the build process by replacing

the compiler front-end with Soot or Clang [47].

PCHECK faces three major challenges: (1) How to au-

tomatically emulate the execution that uses configuration

values? (2) Since the checkers will be inserted into the

original program and will run in the same address space,

how does one make the emulation safe without incurring

side effects on the system’s internal state and external

environment? (3) How to capture anomalies during the

emulated execution as the evidence of configuration er-

rors (the emulation alone cannot directly report errors)?

To address the first challenge, PCHECK extracts the in-

structions that transform, propagate, and use the value of

every configuration parameter using a static taint track-

ing method. PCHECK then makes a best effort to produce

the context (values of dependent variables) necessary for

emulating the execution. The extracted instructions, to-

gether with the context, are encapsulated in a checker.

For the second challenge, PCHECK “sandboxes” the

auto-generated checkers by rewriting instructions that

would cause side effects. PCHECK avoids modifications

to global variables by copying their values to local ones,

and rewrites the instructions that may have external side

effects on the underlying OS.

To address the third challenge, PCHECK leverages

system- and language-level error identifiers (including

runtime exceptions, system-call error codes, and abnor-

624    12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



bool flush_error_log() {

   redirect_std_streams(log_error_file);

}
...

...

static bool redirect_std_streams(char* file) {

   reopen_fstream(file, ..., stderr);

}
...

...

my_bool reopen_fstream(char* filename, ..., FILE *errstream) {

   my_freopen(filename, "a", errstream);

}
...

...

FILE *my_freopen(char *path, char *mode, FILE *stream) {

   result = freopen(path, mode, stream);

}
...

...

parameter: ilog_errorj

     

Instruction
to execute

1. Source code:                                                                      MySQL 5.7.6

/*src/log.cc*/

/* src/log.cc */

/* src/log.cc */

/* mysys/my_fopen.c */

bool check_log_error() {

  char* mode = iaj;  

  freopen(log_error_file, mode, stream);    

  bool cr = check_util_freopen(log_error_file, mode);

  if (cr == false) {

    fprintf(stderr, "log_error is misconfigured.");

  }

  return cr;

}                                            

Context
needed

Context
unneeded

2. Generated checker (simplified for clarity):                                                                                

bool check_util_freopen(char *path, char *mode);                                        

 /* Predefined utility function that checks

   the arguments based on the call semantics 

   without executing the call (§3.2). */

Figure 4: Illustration of PCHECK’s checker generation (using a

real-world LC error example [26]). PCHECK replaces the original

call (freopen) with check utilities based on access and stat to pre-

vent side effects (§3.2). To execute the instructions, the necessary exe-

cution context needs to be produced. Note that we illustrate the checker

using C code for clarity; the actual code is in LLVM IR or Soot Jimple.

mal program exits) to capture the anomalies exposed dur-

ing the emulation, and report configuration errors.

Figure 4 illustrates PCHECK’s checker generation for

a MySQL configuration parameter, log error, which is

subject to LC errors [26]. PCHECK extracts the instruc-

tions that use the configuration value and determines the

values of the other dependent variables (e.g., mode) as the

context. To prevent side effects, it rewrites some call in-

struction. It detects errors based on the return value.

Lastly, PCHECK inserts the generated checkers into

the system program, and invokes these checkers at the

end of the system initialization phase (annotated by de-

velopers). To detect TOCTTOU errors4, PCHECK sup-

ports running checkers periodically in a separate thread.

Usage. PCHECK requires two inputs from developers:

(1) specifications of the configuration interface to help

PCHECK identify the initial program variables that store

configuration values, as the starting points for analysis

(§3.1.1); (2) annotations of the system’s initialization

phase where the early checkers will be invoked (§3.4).

In addition, PCHECK provides the tuning interface for

developers to select and remove any generated checkers,

as per their preference and criteria (e.g., after standard

4A TOCTTOU (Time-Of-Check-To-Time-Of-Use) error occurs af-

ter the checking phase and before the use phase, e.g., inadvertently

deleting a file that had been checked early but will be used later on.

software testing of the enhanced system programs). Sim-

ilarly, PCHECK provides an operational interface that al-

lows sysadmins to enable/disable the invocation of the

checkers of any specific parameters in operation.

3.1 Emulating Execution

To emulate the execution that uses a configuration pa-

rameter, PCHECK first identifies instructions that load

the parameter’s value into program variables (§3.1.1).

Starting from there, PCHECK performs forward static

taint analysis to extract all the instructions whose exe-

cution uses the parameter’s value, and hence are the can-

didates to be included in the checkers (§3.1.2). It then

analyzes backwards to figure out the values of dependent

variables in these instructions, as the execution context

(§3.1.3). Finally, PCHECK composes checkers using the

above instructions and their context (§3.1.4).

Note that the emulation does not need to include the

conditions under which the configurations are used. In-

stead, it focuses on executing the instructions that con-

sume the configuration values—the goal is to check if

using the configuration would cause any anomalies when

its value is needed. With this design, PCHECK is able to

effectively handle large, non-deterministic software pro-

grams, without the need to inject/simulate hard-to-trigger

error conditions under which LC errors are exposed.

3.1.1 Identifying Starting Points

As the configuration-consuming execution always starts

from loading the configuration value, PCHECK needs

to identify the program variables that initially store the

value of each parameter, as the starting points.

PCHECK adopts the common practices presented in

previous work [8,22,32,33,52,60,61] to obtain the map-

ping from configuration parameters to the correspond-

ing variables. The basic idea is to let developers spec-

ify the interface5 for retrieving configuration values, and

then automatically identify program variables that load

the values based on the interface. As pointed out by [52],

most mature systems have uniform configuration inter-

faces for the ease of code maintenance. For instance, to

work with HDFS, PCHECK only needs to know the con-

figuration getter functions (e.g., getInt and getString

in Figure 3a) declared in a single Java class; identifying

them only requires several lines of specifications using

regular expressions. In general, specifying interface re-

quires little specification efforts, compared to annotating

every single variable for a large number of configuration

parameters. In the evaluation, the specifications needed

for most systems are less than 10 lines (§4: Table 7).

5The interface could be APIs, data structures, or parsing func-

tions [52, 35]. It is reported that only three types of interfaces are com-

monly used to store/retrieve configurations [52, 35].
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3.1.2 Extracting Instructions Using Configurations

For each configuration parameter, PCHECK extracts the

instructions that propagate, transform, and use the pa-

rameter’s value using a static taint tracking method. For

a given parameter, the initial taints are the program vari-

ables that store the parameter’s value (§3.1.1). The taints

are propagated via data-flow dependencies (including as-

signments, type casts, and arithmetic/string operations),

but not through control-flow dependencies to avoid over-

tainting [39]. All the instructions containing taints are

extracted, and will be encapsulated in a checker.

Note that one parameter could be used in multiple ex-

ecution paths, and thus have multiple checkers. We ex-

plain how multiple checkers are aggregated in §3.1.4.

Ordinarily, the extracted instructions from data-flow

analysis do not include branches. However, if a tainted

instruction is used as a branch condition whose branch

body encloses other tainted instructions, PCHECK per-

forms additional control-flow analysis to retain the con-

trol dependency of these instructions. One pattern is us-

ing a configuration value p after a null-pointer check, in

the form of, if (p != NULL) { use p; }. PCHECK recov-

ers the conditional branch and ensures that if p’s value

is NULL, the instructions using p inside the branch would

not be reached. Moreover, PCHECK checks if a tainted

branch condition leads to abnormal program states, for

which it inserts error-reporting instructions (see §3.3).

The taint tracking is inter-procedural, context sensi-

tive, and field sensitive. Inter-procedure is necessary be-

cause configuration values are commonly passed through

procedure calls, as illustrated in Figure 4. We adopt

a summary-based inter-procedural analysis, and assem-

ble the execution based on arguments/returns. PCHECK

maintains the call sites; thus it naturally enables context

sensitivity which helps produce context by backtracking

from callees to callers (c.f., §3.1.3). Field sensitivity is

needed as configuration values could be stored in data

structures or as class fields. PCHECK scales well for real-

world software systems, as configuration-related instruc-

tions form a small part of the entire code base. We do

not explicitly perform alias analysis (though it is easy to

integrate), as configuration variables are seldom aliased.

3.1.3 Producing Execution Context

Some of the extracted instructions that use configuration

variables may not be directly executable, if they contain

variables that are not defined within the extracted instruc-

tion set. To execute such instructions, PCHECK needs to

determine the values of these undefined variables (which

we refer to as “dependent variables”) in order to produce

self-contained context.

PCHECK will include a variable and the corresponding

instructions in the emulated execution, only when this

variable’s value stems from configuration values (e.g.,

path in Figure 4) or can be statically determined along

the data-flow paths of the configuration value (e.g., mode

and stream in Figure 4). PCHECK does not include de-

pendent variables whose values come from indetermi-

nate global variables, external inputs (from I/O or net-

work operations such as read and recv), values defined

out of the scope of the starting point, etc. For such de-

pendent variables, PCHECK removes the instruction that

uses them as operands, together with the succeeding in-

structions. Those variables’ values may not be available

during the initialization phase of the system execution;

using them would lead to unexpected results.

To produce the context, PCHECK backtracks each un-

defined dependent variable first intra-procedurally and

then inter-procedurally (to handle the arguments of pro-

cedure calls). The backtracking starts from the instruc-

tion that uses the variable as its operand, and stops un-

til either PCHECK successfully determines the value of

the variable or gives up (the value is indeterminate). In

Figure 4, PCHECK backtracks mode used by the tainted

instruction and successfully obtains its value "a".

PCHECK only attempts to produce the minimal con-

text necessary to emulate execution for the purpose of

checking. As an optimization, PCHECK is aware of how

certain types of instructions will be rewritten in later

transformations (e.g., for side-effect prevention, §3.2). In

Figure 4’s example, PCHECK knows how the freopen

call will be rewritten later. Therefore, it only produces

the context of mode which is needed to check the file ac-

cess; the other dependent variable stream is ignored as it

is not needed for the checking.

Sometimes, the dependent variables come from other

configuration parameters. PCHECK can capture the re-

lationships among multiple configurations, e.g., one pa-

rameter’s value has to be larger or smaller than another’s.

3.1.4 Encapsulation

For each configuration parameter, PCHECK encapsu-

lates the configuration-consuming instructions together

with their context into a checker, in the form of a func-

tion. PCHECK clones the original instructions and their

operands. For local variables used as operands, PCHECK

clones a new local variable and replaces the original vari-

able with the new one. If the instructions change global

variables, PCHECK generates a corresponding local vari-

able and copies the global variable’s value to the local

one (to avoid changing the global program state). When

it involves procedure calls, PCHECK inlines the callees.

Handling multiple execution paths. For configuration

parameters whose values are used in multiple distinct ex-

ecution paths, PCHECK generates multiple checkers and
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aggregates their results. The configuration value is con-

sidered erroneous if one of these checkers complains.

PCHECK needs to pay attention to potential path ex-

plosion to avoid generating too many checkers. Fortu-

nately, in our experience, configuration values are usu-

ally used in a simple and straightforward way, with only

a small number of different execution paths to emulate.6

This makes the PCHECK approach feasible.

Moreover, PCHECK merges two checkers if they are

equivalent or if one is equivalent to a subset of the other.

PCHECK does this by canonicalizing and comparing the

instructions in the checkers’ function bodies. Addition-

ally, PCHECK merges checkers which start with the same

transformation instruction sequence by reusing the inter-

mediate transformation results.

Note that the checkers with no error identifiers (§3.3)

or considered redundant (§3.4) will be abandoned. As

shown in §4.4, the number of generated checkers are well

bounded, and executing them incurs little overhead.

3.2 Preventing Side Effects

PCHECK ensures that the generated checkers are free of

side effects—running the checkers does not change the

internal program state beyond the checker function it-

self, or the external system environment (e.g., filesys-

tems and OSes). Therefore, PCHECK cannot blindly exe-

cute the original instructions. For example, if the checker

contains instructions that call exec, running the checker

would destruct the current process image. Similarly, cre-

ating or deleting files is not acceptable, as the filesystem

state before and after checking would be inconsistent.

Internal side effects are prevented by design. PCHECK

ensures that each checker only has local effects. As dis-

cussed in §3.1.4, PCHECK avoids modifying global vari-

ables in the checker function; instead, it copies global

variable values to local variables and uses the local ones

instead. The checker does not manipulate pointers if the

pointed values are indeterminate.

External side effects are mainly derived from certain

system and library calls that interact with the external

environment (e.g., filesystems and OS states). In order

to preserve the checking effectiveness without incurring

external side effects, PCHECK rewrites the original call

instructions to redirect the calls to predefined check util-

ities. A check utility models a specific system or library

call based on the call semantics. It validates the argu-

ments of the call, but does not actually execute the call.

PCHECK implements check utilities for standard APIs

and data structures (including system calls, libc func-

tions for C, and Java core packages defined in SDK).

The check utilities are implemented as libraries that are

6The emulated execution paths are not the original execution paths

(they only include the configuration-related instructions).

either statically linked into the system’s bitcode (for C

programs), or included in the system’s classpath (for

Java programs). In Figure 4, the check utility of freopen

checks the arguments of the call using access and stat

which are free of side effects (the original freopen call

will close the file stream specified by the third argument).

PCHECK skips instructions that read/write file con-

tent or send/recv network packets, in order to stay away

from external side effects and heavy checking overhead.

Instead, PCHECK performs metadata checks for files and

reachability checks for network addresses. This helps the

generated checkers be safe and efficient, while still being

able to catch a majority of real-world LC errors.

For any library calls that are not defined in PCHECK or

do not have known side effects (e.g., some library calls

would invoke external programs/commands), PCHECK

defensively removes the call instructions (together with

the succeeding instructions) to avoid unexpected effects.

One alternative approach to preventing external side

effect is to running the checkers inside a sandbox or even

a virtual machine at the system initialization phase. This

may save the efforts of implementing the check utilies

and rewriting system/library call instructions. However,

such approach would impair the usability of PCHECK,

because it requires additional setups from system admin-

istrators in order to run the PCHECK-enhanced program.

3.3 Capturing Anomalies

As the checker emulates the execution that uses the con-

figuration value, anomalies exposed during execution in-

dicate that the value contains errors—the same problem

that would occur during real execution. In this case, the

checker reports errors and pinpoints the parameter.

PCHECK captures anomalies based on the following

three types of error identifiers: (1) runtime exceptions

that disrupt the emulated execution (for Java programs);

(2) error code returned by system and library calls (for

C programs); and (3) abnormal program termination and

error logging that indicate abnormal program states.

For Java programs, PCHECK captures runtime anoma-

lies based on Java’s Exception interface, the language’s

uniform mechanism for capturing error events. PCHECK

places the body of the checker function in a try/catch

block. The abnormal execution would throw Exception

objects and fall into the catch block. In this case, the

checker reports errors and prints the stack traces.

C programs do not have the uniform error interfaces.

Thus, PCHECK leverages the error identifiers defined by

specific system/library call semantics, i.e., the return val-

ues and errno. For example, if the access call returns -1,

it means the call failed when accessing the file (with the

reason being encoded in errno). In PCHECK, we prede-

fine the error identifiers for commonly-used system and
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libc calls to decide whether a call succeeded or failed.

If the call fails, the checker reports configuration errors.

In addition to the anomalies exposed by system and

library APIs, a program usually contains hints of abnor-

mal program states. Such hints are instructions such as

exit, abort, throw, false assertion, error logging, etc.

PCHECK treats these hints as one type of anomalies. If

an instruction is post-dominated by any anomaly hints,

the instruction itself indicates an abnormal state of exe-

cution. Thus, PCHECK reports configuration errors when

the checker emulates such error instructions. PCHECK

records these hints during the code analysis in §3.1.2,

and inserts error-reporting instructions into the checker

at the corresponding locations.

PCHECK abandons the checkers that do not contain

any of the three types of error identifiers discussed above.

In other words, running such checkers cannot expose any

explicit anomalies (no evidence of configuration errors).

3.4 Invoking Early Checkers

Once the checkers are generated, PCHECK inserts call

instructions to invoke the checkers at the program loca-

tions specified by developers. The expected location is

at the end of the system initialization phase to make the

checkers the last defense against LC errors.

Figure 5 shows the locations annotated for PCHECK to

invoke the auto-generated checkers for Squid and HDFS.

For server systems like Squid, the checkers should be in-

voked before the server starts to listen and wait for client

requests. For distributed systems like HDFS, the check-

ers should be invoked before the system starts to connect

and join the cluster. As all the evaluated systems fall in

these two patterns, we believe that specifying the invoca-

tion locations is a simple practice for developers.

Some C programs may change user/group identities.

Typically, the program starts as root and then switches

to unprivileged users/groups (e.g., nobody) at the end of

initialization before handling user requests. In Figure 5,

the switch is performed inside mainInitialize. As the

checkers are invoked in the end of the initialization, the

checking results are not affected by user/group switches.

To capture the TOCTTOU errors, PCHECK also sup-

ports running the generated checkers periodically in a

separate thread. Periodical checking is particularly use-

ful for catching configuration errors that occur after the

initial checking (e.g., due to environment changes such

as remote host failures and inadvertent file deletion).

Avoiding redundant checking. PCHECK abandons the

redundant checkers which are constructed from instruc-

tions that would be executed before reaching the invoca-

tion location—any configuration errors reported by such

checkers should have already been detected by the sys-

int SquidMain(...) {

   

mainParseOptions(...);

parseConfigFile(...);

mainInitialize();

mainLoop.run();

...

...

...

NameNode namenode = createNameNode();

public static void main(...) {

}

...

...

namenode.join();

...

/* src/main.cc */

/* hadoop-hdfs/.../

NameNode.java */

Squid 3.4.10

HDFS 2.6.0

}

Initialization

Invoke 

checkers

Initialization

Invoke 

checkers

Figure 5: Locations to invoke the checkers in Squid and HDFS

NameNode. The auto-generated checkers are expected to be invoked

at the end of the initialization phase.

tem’s built-in checks, or have been exposed when the

configuration value is used, before the checker is called.

Creating standalone checking programs. Another op-

tion to invoking the early checkers is to create a stan-

dalone checking program comprised of the checkers, and

run it when the configuration file changes. This approach

eliminates the need to deal with internal side effect; on

the other hand, the checking program is still prohibited to

have external side effect. Note that the generated check-

ers start from the instructions that load configuration val-

ues (§3.1.1); therefore, the checking program needs to

include the procedures that parse configuration files and

store configuration values. This is straightforward for the

software systems with modularized parsing procedures7,

but could be difficult if the parsing procedures cannot be

easily decoupled from the initialization phase (the initial-

ization may have external side effects).

4 Experimental Evaluation

4.1 Methodology

We first evaluate the effectiveness of PCHECK using the

37 new LC errors discovered in our study. As discussed

in §2, all these new LC errors are from the latest versions

of the systems; any of them can impair the corresponding

RAS features such as fail-over and error handling.

As the design of PCHECK is inspired by the above LC

errors, our evaluation contains two more sets of bench-

marks to evaluate how PCHECK works beyond these er-

rors. First, we evaluate PCHECK on a distinct set of 21

real-world LC errors that caused system failures in the

past. These LC errors are collected from the datasets in

prior studies related to configurations [6, 11, 51, 55, 59];

all of them were introduced by real users and caused real-

world failures. Some of these cases have different code

7We implement this approach for HDFS, YARN, and HBase which

use modularized getter functions to parse/store configuration values.
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Software Historical New Setup effort

HDFS 7 17 6

YARN 6 9 7

HBase 3 3 6

Apache 2 3 6

Squid 2 3 4

MySQL 1 2 31

Total 21 37 N/A

Table 7: The number of LC error cases used in the evaluation, and

the setup efforts (the lines of specifications for identifying starting

points, c.f., §3.1.1 and annotations of invocation location, c.f., §3.4).

Type 1: Type and format errors (14 cases)

Ex. 1: Ill format settings, e.g., with untrimmed space [14, 16];

Ex. 2: Invalid type settings, e.g., 0.05 for integer [13];

Type 2: Undefined options or ranges (6 cases)

Ex. 1: Deprecated compression codec class set by users [15];

Ex. 2: Unsupported HTTP protocol settings [17];

Type 3: Incorrect file-path settings (19 cases)

Ex. 1: Non-existent paths which will be opened or executed [37];

Ex. 2: Wrong file types, e.g., set regular files for directories [27];

Type 4: Other erroneous settings (19 cases)

Ex. 1: Negative values used by sleep and thread join [18, 54];

Ex. 2: Invalid mail program [38] and unreachable emails [38];

Table 8: Types and examples of LC errors used in the evaluation.

patterns from the ones we discovered in §2. Table 7 lists

the number of these LC errors in each system.

Furthermore, we apply PCHECK to 830 configuration

files of the studied systems (except Squid) collected from

the official mailing lists of these systems and online tech-

nical forums such as ServerFault and StackOverflow [1].

This simulates the experience of using PCHECK on real-

world configuration files (§4.2). Moreover, it helps mea-

sure the false positive rate of the checking results (§4.6).

Note that we evaluate PCHECK upon all types of LC

errors, instead of any specific error types. Therefore, the

evaluation results indicate the checking effectiveness of

PCHECK in terms of all possible LC errors. Table 8 cat-

egorizes and exemplifies the LC errors used in the evalu-

ation based on their types.

Also, the evaluation does not use synthetic errors gen-

erated by mutation or fuzzing tools (e.g., ConfErr [23]).

Most of the synthetic errors are not LC errors—they are

manifested or detected by the system’s built-in checks at

the system’s initialization time. Thus, using such errors

would make the results less meaningful to LC errors.

For each system, we apply PCHECK to generate the

early checkers and insert them in the system’s program.

Table 7 lists the setup efforts for the each system evalu-

ated, measured by the lines of specifications for identi-

fying the start points (c.f., §3.1.1) and annotations of the

invocation locations (c.f., §3.4). Then, we apply the auto-

generated checkers to the configuration files that con-

tain these LC errors. We evaluate the effectiveness of

PCHECK based on how many of the real-world LC er-

rors can be reported by the auto-generated checkers.

Types of LC errors
# (%) LC errors detected

Historical New

Type and format error 1/1 (100.0%) 13/13 (100.0%)

Undefined option/range 2/2 (100.0%) 4/4 (100.0%)

Incorrect file/dir path 9/12 (75.0%) 5/7 (71.4%)

Other erroneous setting 3/6 (50.0%) 7/13 (53.8%)

Total 15/21 (71.4%) 29/37 (78.4%)

Table 9: The number (percentage) of the LC errors detected by the

early checkers generated by PCHECK. PCHECK detects 7 (33.3%)

and 11 (29.7%) more LC errors among the historical and new LC-error

benchmarks respectively, compared to conf spellchecker, a state-

of-the-art configuration-error detection tool.

We compare the checking results of PCHECK with

conf spellchecker [2, 35], a state-of-the-art static con-

figuration checking tool built on top of automatic type

inference of configuration values [33, 35]. For each de-

fined type, conf spellchecker implements correspond-

ing checking functions which are invoked to check the

validity of the configuration settings.

4.2 Detecting Real-world LC Errors

PCHECK detects 70+% of both historical and new LC

errors (as shown in Table 9), preventing the latent mani-

festation and resultant system damage imposed by these

errors. The results are promising, especially considering

that we evaluate PCHECK using all types of configura-

tion errors instead of any specific type. Indeed, PCHECK

is by design generic to any types of configuration errors

that can be exposed through execution emulation. Many

of these LC errors cannot be detected by the state-of-the-

art detection tools, as discussed below and in §4.3.

Among the different types of LC errors, PCHECK de-

tects all the errors violating the types/formats and op-

tions/ranges constraints. These two types of errors usu-

ally go through straightforward code patterns and do not

have dependencies with the system’s runtime states. For

example, most type/format errors in HDFS and YARN

are manifested when these systems read and parse the

erroneous settings through the getter functions. As the

auto-generated checkers invoke the getter instructions, it

triggers exceptions and detects the errors.

PCHECK detects the majority of LC errors that vio-

late file-related constraints (including special files such

as directories and executables). We observe that the ma-

jority of the file parameters fall into recognized APIs,

such as open, fopen, and FileInputStream. The unde-

tected file-related LC errors are mainly caused by (1) un-

known external usage and (2) indeterminate context. The

former prevents the generated checkers from being exe-

cuted, and the latter stops generation of the checkers. For

example, some errors reside in parameters whose val-

ues are concatenated into shell command strings, used as

the argument of system() (to invoke /bin/sh to execute

the command). As PCHECK has no knowledge of any
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Software # config files
# (%) detected config. errors

All Env. specific

HDFS 245 40 15 (37.5%)

YARN 81 49 32 (65.3%)

HBase 405 139 95 (68.3%)

Apache 65 41 36 (87.8%)

MySQL 34 13 10 (76.9%)

Table 10: Configuration errors detected by applying the checkers

on real-world configuration files. Many of the errors can only be

detected by considering the system’s native environment (§4.3).

shell commands, it removes the system() call because

the side effects are unknown. The other undetected er-

rors are in directories or file prefixes which are merged

with dynamic contents from user requests which cannot

be obtained statically; thereby, the corresponding check-

ers cannot be generated. These two causes (unknown ex-

ternal usage and indeterminate context) also account for

the undetected errors in the “other” category.

In general, PCHECK is effective in checking errors that

are manifested through execution anomalies with error

identifiers defined in §3.3, such as those failing at sys-

tem/library calls or throwing exceptions in the controlled

branch. Whereas, it is hard for PCHECK to detect errors

defined by application-specific semantics, such as email

addresses, internal error code, etc.

We apply conf spellchecker on the same sets of LC

errors. Compared with PCHECK, conf spellchecker

detects 7 (33.3%) and 11 (29.7%) less LC errors in the

historical and new error benchmarks, respectively. The

main reason for PCHECK’s outperformance is that the

execution emulation can achieve fine-grained checking

towards high fidelity to the original execution. For ex-

ample, conf spellchecker can only infer the type of a

configuration setting to be a “File”. However, it does not

understand how the system accesses the file in the exe-

cution. Thus, it reports errors if and only if “the file is

neither readable nor writable” [2]. This heuristic would

miss LC errors such as read-only files to be written by the

system. Furthermore, type alone only describes a subset

of constraints. conf spellchecker misses the LC errors

that violate other types of constraints such as data ranges.

4.3 Checking Real-world Configuration Files

We apply the checkers generated by PCHECK to 830

real-world configuration files. PCHECK reports 282 true

configuration errors and three false alarms (discussed in

§4.6). As shown in Table 10, many (37.5%–87.8%) of

the reported configuration errors can only be detected by

considering the system’s native execution environment.

These configuration settings are valid in terms of format

and syntax (in fact, they are likely to be correct in the

original hosts). However, they are erroneous when used

on the current system because the values violate envi-

ronment constraints such as undefined environment vari-

Software # checked param. (# checkers) All params

HDFS 164 (252) 164

YARN 116 (200) 116

HBase 125 (201) 125

Apache 18 (41) 97

Squid 45 (74) 216

MySQL 32 (51) 462

Table 11: The number of parameters with checkers generated by

PCHECK and the total number of generated checkers (each repre-

sents a distinct parameter usage scenario).

ables, non-existent file paths, unreachable IP addresses,

etc. Since PCHECK emulates the execution that uses the

configuration values on the system’s native execution en-

vironment, it naturally detects these errors. On the other

hand, such configuration errors are not likely to be de-

tected by traditional detection methods [29,31,36,46,57]

that treat configuration values as string literals, and thus

are agnostic to the execution environment.

4.4 Checker Generation

Table 11 shows the number of configuration parameters

that have checkers generated by PCHECK and the total

number of generated checkers for the evaluated systems

(multiple checkers could be generated for a parameter).

PCHECK generates checkers for every recognized pa-

rameter of HDFS, YARN, and HBase. Each emulated

execution in these systems starts from the call instruc-

tions of getter functions, so the checkers are able to cap-

ture all the errors starting from the parsing phase to the

usage phase. For Apache, MySQL and Squid, PCHECK

generates fewer checkers. As these systems parse and

assign parameter settings to corresponding program vari-

ables at the initialization stage, PCHECK bypasses the

parsing phase and directly starts from the variables that

store the configuration value. Since a large number of the

Boolean and numeric variables are only used for branch

control with no error identifier (both branches are valid),

PCHECK does not generate checkers for them (c.f., §3.3).

Moreover, many of the variables are only used at the ini-

tialization phase before reaching the invocation location,

so their checkers are considered redundant and thus are

abandoned (c.f., §3.4).

The other issues that prevent checker generation in-

clude dependencies on the system’s runtime states and

uses of customized APIs (e.g., Apache uses customized

APR string operations which heavily rely on predefined

memory pools). Fortunately, as shown in §4.2, the ma-

jority of the LC errors have standard code patterns and

can be detected using PCHECK’s approach. Generating

checkers for the rest of the errors require more advanced

analysis and program-specific semantics.

Also, we can see that the total number of checkers

are well bounded, which is attributable to the execution

merging (§3.1.4) and redundancy elimination (§3.4).
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Software Time for running the checkers (millisec.)

HDFS [NameNode] 408 [DataNode] 311

YARN [ResourceMgr] 243 [NodeMgr] 486

HBase [HMaster] 780 [RegionServer] 777

Apache [httpd] 0.6 ————– —–

Squid [squid] 93.8 ————– —–

MySQL [mysqld] 1.7 ————– —–

Table 12: Checking overhead (measured by the time needed to run

the auto-generated checkers).

4.5 Checking Overhead

The checkers are only invoked at the initialization phase

or run in a separate thread, thus they have little impact

on the systems’ runtime performance. We measure their

overhead to be the time needed to execute these check-

ers, by inserting time counters before and after invoking

all the checkers. Table 12 shows the time in milliseconds

(ms) to run the checkers on a 4-core, 2.50GHz proces-

sor connected to a local network (for distributed systems

like HDFS, YARN, and HBase, the peer nodes are lo-

cated in the same local network). The checking overhead

for Apache and MySQL is negligible (less than 5ms);

Squid needs around 100ms because it has a parameter

that points to public IP addresses (announce host). The

overhead for the three Java programs is less than a sec-

ond. The main portion of the time is spent on network-

and file-related checking. Since PCHECK only performs

lightweight checks (e.g., metadata checks and reachabil-

ity checks), the overhead is small. Note that the checkers

are currently executed sequentially. It is straightforward

to invoke multiple checkers in parallel to reduce over-

head, as all the checkers are independent.

4.6 False Positives

We measure false positives by applying the checkers gen-

erated by PCHECK to both the default configuration val-

ues of the evaluated systems and the 830 real-world con-

figuration files, and examine whether or not our checkers

would falsely report errors. We also manually inspect the

code of the generated checkers in LLVM IR and Jimple

to look for potential incorrectness.

Among all the configuration parameters in the evalu-

ated systems, only three of them have false alarms re-

ported by the auto-generated checkers: two from YARN

and one from HBase. All these false positives are caused

by the checkers incorrectly skipping conditional instruc-

tions affected by the configuration value (§3.1.2), due to

unsound static analysis that misses control dependencies.

This results in emulating the execution that should never

happen in reality—certainly, the anomalies exposed in

such execution are unreal. The overall false positive rates

are low. YARN has the most configuration parameters

with false checkers, with the false positive rate of 1.7%

(2 over 116 parameters). Note that checkers with false

positives can be removed by the developers or disabled

by the administrators in the field (c.f., §3: Usage).

5 Limitations

No tool is perfect. PCHECK is no exception. Like many

other error detection tools, PCHECK is neither sound nor

complete for its checking scope and the design trade-offs.

PCHECK targets on the specific type of configuration

errors which are manifested through explicit, recogniz-

able instruction-level anomalies (c.f., §3.3). It cannot de-

tect legal misconfigurations [55] that have valid values

but do not deliver the intended system behavior. The

common legal misconfigurations include inappropriate

configuration settings that violate resource constraints

or performance requirements (e.g., insufficient heap size

and too small timeout). Such misconfigurations are no-

toriously hard to detect and are often manifested in a la-

tent fashion as well, such as runtime out-of-memory er-

rors [10] (resources are not used up immediately). How-

ever, detecting resource- and performance-related mis-

configurations would need dynamic information regard-

ing resource usage and performance profiling, which is

beyond the static methods of PCHECK.

In addition, PCHECK cannot emulate the execution

that depends on runtime inputs/workloads, or does not

have statically determinate context in the program code

(c.f., §3.1.3). Thus, it would miss the configuration errors

that are only manifested during such execution. Never-

theless, indeterminate context (e.g., those derived from

inputs and workloads) can potentially be modeled with

representative values, which could significantly improve

the capability of checker generation.

One design choice we make is to trade soundness for

safety and efficiency—PCHECK aims to detect common

LC errors without incurring side effects or much over-

head. For example, PCHECK does not look into file con-

tents but only checks if the file can be accessed as ex-

pected. Similarly, PCHECK only checks the reachability

of a configured IP address or host instead of connect-

ing and sending packets to the remote host. It is pos-

sible that certain sophisticated errors can escape from

PCHECK (e.g., the configured file is corrupted and thus

has wrong contents). As the first step, we target on basic,

common errors, as they already account for a large num-

ber of real-world LC errors [24, 43, 55]. Efficiently de-

tecting sophisticated errors may require not only deeper

analysis but also application semantics.

6 Concluding Remarks

This paper advocates early detection of configuration er-

rors to minimize failure damage, especially in cloud and

data-center systems. Despite all the efforts of validation,
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review, and testing, configuration errors (even those ob-

vious errors) still cause many high-impact incidents of

today’s Internet and cloud systems. We believe that this

is partly due to the lack of automatic solutions for cloud

and data-center systems to detect and defend against con-

figuration errors (the existing solutions are hard to be ap-

plied, due to their strong reliance on datasets).

We envisage that PCHECK is the first step towards a

generic and systematic solution to detect configuration

errors. PCHECK does not require collecting any exter-

nal datasets and is not specific to any specific rules. It

detects configuration errors based on how the system ac-

tually uses the configuration values. With PCHECK, we

demonstrate that such detection method can effectively

detect the majority (75+%) of real-world LC errors, with

little runtime overhead and setup effort.
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