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Not always the first things you think about when writing a program (or architecting a system).  Not always of the utmost 
importance, but often can become important -- so be prepared.  (At the very least, be prepared to explain why you 
made certain choices -- and make sure you are aware of their limitations, etc).  Efficiency will generally directly influence 
how scalable something is.  However, sometimes you'll have to pick a slightly-less efficient method of doing something, 
in order to ensure it scales well. 
 
There are often many, many ways to perform a certain task, but some ways may be easier to implement than others, or 
make more sense than others.  There is also often a large tradeoff when trying to make things scalable or efficient, 
versus "getting them done". 
 
Consider calculating a number in the Fibonacci series (1, 1, 2, 3, 5, 8, 13, etc...).  The two most apparent ways to do this 
are either via recursion, or iteration. 
 
Recursively: 
 
int rec_fib(int n) { 
  if (n<=0) return 0;  // Technically, <0 should be an error, but I'm being lazy ;) 
  if (n<=2) return 1; 
  return rec_fib(n-1) + rec_fib(n-2); 
} 

 
Iteratively: 
 
int iter_fib(int n) { 
  // Define the three vars we'll use to keep track of the numbers 
  int a = 1; 
  int b = 1; 
  int c; 
  // Edge cases (no need to calculate 0, 1, 1) 
  if (n <=0) return 0; 
  if (n <=2) return 1; 
  // Loop until (n-2) since we start off with a min. value of n=3 
  for (int i=0; i<(n-2); ++i) { 
    c = a+b; 
    b = a;  
    a = c; 
  } 
  return a; // (or c) 
} 

 
The recursive method is clearly shorter (code-wise), but is it "better"? 
How efficient is it in terms of big-O notation?     Or memory? 
What's being wasted?     What could you do to speed it up? 
For the given iterative case, can you make it more efficient at all? 
 
Going back to what was mentioned earlier: sometimes you have to pick a slightly less efficient method (or architecture) 
in order to ensure scalability.  Case in point: early FB days.  It was super-efficient to have the database living on the same 
machine as the web server, but this not only didn't scale, it made things rather non-fault-tolerant.  The process of 
separating these two layers exposed a terrible inefficiency in the way database calls were being done, which caused 
several rounds of optimizations to happen.  Separating the layers also allowed easy horizontal scaling of the web tier. 
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Bottle necks: Once scaled, where was the bottle neck?  Could it be avoided or its effects lessened?  Could it still be 
expanded/scaled?  
 
When designing a new system, always at least think about how it will scale.  Ask yourself at least these questions: Does 
the given dataset grow linearly with users?  Exponentially?  Logarithmically?    Where will the bottlenecks be?  CPU?  
RAM?  Disk I/O?  Network? 
 
Sometimes, trying to make things REALLY scalable (or extensible) can cause severe efficiency issues.  Case in point, at 
eBay (back in 2003-2004) trying to make an extensible object store database (using a relational database) added so 
much overhead that it became almost unusable. 
 
It often really is about finding a balance between being efficient (optimization), and designing things such that they scale 
well.  (Or perhaps re-designing it) 
 
 
 
Some examples: 
 
* Globalcenter (1997-1998): Data collection/reporting for switches/routers (via SNMP).  Expanded from a handful of 
routers to hundreds of routers and switches (and therefore thousands and tens of thousands of ports).  Redesign on 
both front-end (distribution) and back-end (tried a DB, stayed with files on faster storage) 
 
 
 
 
* eBay (~2003): Database monitoring tool.  Went from 4-5 hosts to almost 100, polling more and more elements.  
Mainly redesigned polling mechanism (ssh -> custom) - also parallelized poller. 
 
 
 
 
* Facebook (~2005+): Photo storage: re-architected multiple times in order to cope with scaling. 
 
 
 
 
* Facebook (~2007): New feed-related feature presented, questions of scale weren't well-addressed, system was NOT 
horizontally scalable. 
 
 
 
 
* Blizzard (~2010): Facebook Friend-Finder designers didn't anticipate people having as many friends as I did.  Also, built-
in Battle.net friends list had a hard-coded limit. 


