
Quill: Exploiting Fast Non-Volatile Memory by Transparently
Bypassing the File System

Louis Alex Eisner Todor Mollov Steven Swanson
UCSD CSE Technical Report #CS2013-0991

Computer Science and Engineering
University of California, San Diego

Abstract
Fast non-volatile memories will soon make their appear-
ance on the processor memory bus. They offer the po-
tential for extremely low-latency, high-bandwidth ac-
cess to persistent files. However, existing interfaces
will impose large system call and file system overheads
on those accesses, squandering the memories’ perfor-
mance. At the same time, we would like to leverage
existing file systems as much as possible, to reduce the
cost of adopting these new storage technologies.

We present a user space library, called Quill, that
avoids system call overheads on most accesses by in-
terposing on file operations and converting them into
memory operations. Quill enforces the protections that
the file system provides by transferring protection infor-
mation into the process’s page table and accessing files
directly via load and store instructions. We describe the
Quill system and compare it to a conventional software
stack accessing the same storage device.

1 Introduction
Emerging non-volatile memories such as spin-torque
transfer, phase change, and memristor-based memories
promise to revolutionize IO performance and how sys-
tems manage and provide access to persistent state. The
most aggressive proposals for integrating these tech-
nologies place them on the processor’s memory bus
alongside or replacing conventional DRAM.

Placing fast, non-volatile memories on the memory
bus raises a host of design issues, and several propos-
als examine extensive changes to the file system [4] and
the basic abstractions that applications use to manipulate
non-volatile data [3, 9]. These proposals provide use-
ful features (in particular transactional semantics), but
they require significant changes to the operating system
and/or the applications to leverage them.

We propose a simpler approach that will expose most
of the performance that these technologies offer while
requiring only minor changes to the file and operating
systems and no changes to the application.

Our system, called Quill, takes advantage of the fact
that these fast non-volatile memories will appear as
pages in the processor’s physical address space. To pro-
vide access to files, Quill maps those physical pages
directly into the application’s virtual address space, so
no paging is necessary. Quill interposes on IO system
calls in user space and translates them into operations on
the resulting memory region. As a result, for most ac-
cesses, applications see both the latency and bandwidth
of DRAM while using a normal file-based interface.

Quill comprises two components. The first is a
generic file IO interposition layer called Nib that allows
a library to take over file IO operations for specific file
descriptors and forward requests to a handler that imple-
ments file access functions. We are planning to release
Nib as a general purpose tool. The second component is
a Nib handler that implements the Quill functionality.

This paper describes Quill and Nib in detail and eval-
uates the impact of using memory-mapped access to ex-
pose the performance that fast non-volatile memories
can provide. We find that Quill can improve perfor-
mance by up to 7x compared to conventional operating
system-based access to the same fast non-volatile mem-
ory.

The remainder of this paper is organized as follows.
Section 2 describes Quill, Nib and the changes required
in the kernel to support Quill. Section 3 evaluates
Quill, and Section 4 places Quill in the context of other
projects. Section 5 summarizes our conclusions.

1



2 Quill and Nib
Quill and Nib interpose on accesses to files that reside in
non-volatile memories attached to the processor’s mem-
ory bus. We assume that the memory appears as a RAM
disk-like block device with the critical difference that
its contents are persistent across restarts. For operations
that do not affect the NVM block device (e.g., read()s
from network sockets) Quill invokes the normal system
calls.

The Quill handler translates calls which target the
NVM block device into memory-only operations, avoid-
ing operating system overheads. Quill uses processor’s
fast memory protection hardware (i.e., the TLB) to en-
force file system permissions on accesses.

In our system we use DRAM as a stand-in for ad-
vanced non-volatile memories. The libraries transpar-
ently link into the application using LD PRELOAD, al-
lowing for extremely efficient control transfer without
requiring applications to be modified or even recom-
piled.

Below we describe the necessary file system support,
Quill, and Nib in more detail.

2.1 The file system

Quill requires the file system to support “execute-
in-place” memory mapping, or XIP. For block de-
vices whose backing storage resides in the processor’s
physical address space, XIP changes the behavior of
mmap(). Instead of setting up page table entries that
allow the operating system to page a file’s contents be-
tween the block device and the buffer cache in DRAM,
XIP maps the block device’s physical pages directly into
the application’s address space and transfers file protec-
tion information into the process’s page table. As a re-
sult, load and store instructions affect the contents of the
block device directly, so there is no paging overhead.
XIP got its start (and its name) by allowing embedded
systems to run executables directly out of NOR flash.
Access was read-only, since writes to NOR flash are
very slow. Advanced, non-volatile memories (like PCM
or STTM) write quickly enough to make read/write ac-
cess feasible.

Linux does not provide XIP support by default, but
it is available as a patch to the ext2 file system and the
brd Linux block ram driver under Linux 2.6.32.

The changes required to ext2 and brd are small –
just 194 lines total. This suggests that adding support
for XIP to other file systems is tractable.

2.2 Quill

The Quill library gives applications direct access to a
file’s contents without requiring any interaction with the
operating system in the common case. As a result, it
can eliminate both the system call overhead required to
enter the kernel and the file system overhead required to
locate stored data and perform permission checks.

When an application accesses a file, Quill takes over,
opening the file and using mmap() to map the file’s
contents into the application’s address space. In doing
so, it effectively transfers the permission and extent in-
formation from the file system’s data structures into the
application’s page table, thereby leveraging the proces-
sor’s fast memory protection hardware (i.e. the TLB) to
locate the file’s data and protect its contents.

After that, calls to read() and write() translate
to some simple checks of the file state and a call to
memcpy() to transfer data between application buffers
and the memory mapped file. Similarly, other opera-
tions such as lseek() simply update Quill’s internal
state. Consequently, for most operations no calls to the
operating system are required, avoiding costly context
switching, OS, and file system overheads.

Quill cannot eliminate all interactions with the oper-
ating system. In particular, any operations that modify
file system meta data still must enter the OS. This means
that Quill helps performance less for appends than for
normal write operations, since it needs to make a system
call to extend both the file and the in-memory mapping.
It also means that updates to the file’s modification time
do not occur as they would with normal accesses.

To be useful, Quill must mimic the behavior of the
normal POSIX file interface, including the inheritance
of file descriptors across calls to fork() and their (se-
lective) persistence across calls to exec(). Further-
more, dup() and dup2() can create file descriptors
that are aliases for one another. The library must also
enforce access restrictions (e.g., disallowing write()
calls if the file opened read-only, even if the file’s per-
missions allow modification). Implementing this func-
tionality requires Quill to duplicate much of the infor-
mation that the kernel would usually manage. This in-
cludes file descriptor permission information, the close-
on-exec flag, file position information, and file descrip-
tor aliasing information.

We have aggressively tested Quill’s fidelity to glibc’s
implementation of the POSIX interface under Linux us-
ing a battery of short tests, the applications described in

2



Section 3, and a random file operation generator. Our
testing system (described below) compares the return
value and resulting data for every file operation to detect
any variation between Quill and glibc. For our determin-
istic workloads, Quill behaves identically to POSIX.

2.3 Nib
Nib is a key component of Quill, and it provides all the
functionality that is not related to translating file oper-
ations into memory operations. It handles interposing
on the system calls, deciding which file descriptors to
target (in Quill’s case, it targets descriptors for files on
XIP devices), and tracking the creation, destruction, and
duplication of file descriptors.

Nib is a general-purpose library and Quill is just one
of its applications. The core of Nib is a small software
layer called the hub that forwards file operation to one or
more handlers that actually process file operations (e.g.,
Quill is a handler). Below, we describe the hub, the han-
dler interface, and then give some examples of useful
handlers we have developed to support this work and
that demonstrate Nib’s general usefulness.

The hub The hub’s job is to route application requests
to the correct handler and to track the creation and du-
plication of file descriptors. To route requests, it main-
tains a map between active file descriptors and handlers.
When the application calls open(), the hub uses a
programmer-provided function to decide which handler
should be responsible for operations on the resulting file
descriptor. For Quill this function uses fstat() to de-
termine whether the file resides on an XIP block device.

If hub encounters a file descriptor it is unaware of, it
passes requests to the default POSIX handler that per-
forms normal system calls. Unknown file descriptors
include, for instance, those that describe network sock-
ets.

The handlers The handlers are responsible for per-
forming programmer-specified actions in response to ac-
cesses to a descriptor. Each handler implements a selec-
tion of POSIX functions related to I/O. On each call to
Nib, the hub redirects the call to the handler implemen-
tation specified by the user.

The handler functions have access to all the argu-
ments to the original system call and its handler’s private
state. A handler can either perform the operation itself
(e.g., performing a read()) or perform some process-
ing and pass it down to the next handler. This allows the
programmer to create composable “pass through” han-

dlers, for instance, to log accesses.
We have created a useful library of the handlers (and

stacks of handlers), including a simple debug handler
similar to strace and POSIX handler that implement
the normal POSIX operations.

The most useful ”utility” handler we have developed
is for testing. The test handler automates the process of
testing handler implementations. The Test handler cre-
ates a shadow copy of each file as it is opened. On subse-
quent calls, the handler executes every operation twice:
once on the original file, and once on the shadow copy,
using different handlers for each. It then compares the
results and return codes of the two handlers. If they do
not match, it signals an error. We use it verify that new
handlers (e.g., the Quill handler) match the behavior of
a reference implementation (e.g., the POSIX handler).
It has been invaluable for testing.

So far, Nib only tracks file accesses, but extending
it to handle directory and other IO operations would be
straightforward.

3 Results
This section evaluates Quill’s performance using a col-
lection of microbenchmarks and database workloads.
We begin by measuring Quill’s bandwidth and latency
relative the conventional OS-based interface. For all the
experiments in this section, we use a 64 GB ramdisk
to emulate a storage device built from fast, non-volatile
memory on the processor’s memory bus.

3.1 Latency
Quill adds overhead to each file access because the li-
braries must route the request to correct handler. This
latency replaces the file system and operating system la-
tency that normal system calls incur.

The total latency for a 4 KB read operation through
Quill is 1.55 µs, on average. Of this, 0.43 µs is over-
head in the hub routing the request to the Quill han-
dler, checking permissions, and acquiring the necessary
locks. The remaining 1.13 µs is the copy from the
mapped file into the user’s buffer. For comparison, a
read through the conventional interface takes 3.42 µs on
average.

In some cases, Quill reduces performance. In par-
ticular file operations that modify file system metadata
are slower, since Quill must make a system call to ef-
fect the changes. The most common of these operations
are appends to a file, since they must update the file’s
size. Under Quill a 1 byte append takes 0.860 µs. Un-

3



Read

512 2k 8k 32k 256k 1M

B
an

dw
id

th
 (

G
B

/s
)

0.0

5.0

10.0

15.0

20.0 Write

Log Request Size (bytes)

512 2k 8k 32k 256k 1M

POSIX−1thread
POSIX−4threads
POSIX−16threads
Quill−1thread
Quill−4threads
Quill−16threads 50% Read, 50% Write

512 2k 8k 32k 256k 1M

Figure 1: Quill bandwidth These graphs show aggregate bandwidth for various request sizes and access types.
Quill improves bandwidth by up to 7×.

der the conventional interface it requires just 0.742 µs.
For larger appends, the gap is reversed: A 4 KB append
under Quill takes 1.07 µs, under the OS it takes 1.99 µs.

Quill performs significant file read ahead. When Quill
mmap()s a file it creates a memory mapping twice the
size of the file. If the file size grows, Quill does not
need to update the mapping; it just needs to increase the
file size. If the file eventually exceeds the mapping size,
Quill doubles the size of the mapped region. As a result,
some appends incur larger overheads, but, on average,
the overhead is small.

3.2 Bandwidth
Placing storage on the processor’s memory bus should
enable high bandwidth. For instance, our dual-socket
test machines have three DDR3 channels per socket for
an aggregate 51.2 GB/s of memory bandwidth.

Figure 1 quantifies the bandwidth available from our
ramdisk via the conventional OS-based interface and via
Quill. Each graph shows the performance through the
file system for Quill and the standard POSIX interface.
The three figures measure performance for reads, writes,
and a 50/50 combination of the two. The graphs mea-
sure the aggregate bandwidth of 1, 4, and 16 threads
performing random accesses at many different sizes (as
shown on the x axis). The accesses are all to a single
55 GB file.

Quill out-performs POSIX by a wide margin in all
cases. The gains are especially large for small accesses.
Quill can sustain 6.1 million 512 byte accesses per sec-
ond compared to 845 thousand for POSIX. Two aspects

of Quill’s write performance are particularly interesting.
First, performance is higher for writes than reads. We
believe this is because the processor does not need to
wait for stores to complete, as it must for loads. Sec-
ond, performance for writes drops off precipitously for
accesses over 64 KB in size for 16 threads. Here, the
culprit is coherence traffic. When two threads happen
to access the same portion of the file, coherence traffic
slows the dramatically and increases the probability that
another thread will start accessing the same region be-
fore they complete. The result is continual thrashing of
lines between the processors’ caches.

For Quill, bandwidth is better for writes than for reads
because the processor does not need to wait for stores to
complete, as it must for loads.

For this reason, the performance gap between
512 byte requests and 4 KB requests is very large: each
512 byte request must fetch and modify a page, while
writes greater than 4k do not.

Quill’s interaction with the memory system deter-
mines, in large part, its performance. The size of the file
(or subset of the file) that Quill is accessing is critical in
this regard. Figure 2 measures this effect by performing
random 4 KB reads on various sized files. For files that
fit in the processor’s 8 MB L3 caches, Quill can sustain
over 25 GB/s. As file size grows, performance quickly
tapers off. The data also show that POSIX performs sur-
prisingly well for writes to small files.

4



File Size

4kB 1MB 32MB 4GB 55GB

B
an

dw
id

th
 G

B
/s

0.0

5.0

10.0

15.0

20.0

25.0

30.0

POSIX Reads
POSIX Writes
Quill Reads
Quill Writes

Figure 2: File size and bandwidth Larger files put more
pressure on the TLB, as a result bandwidth rises as file
size shrinks.

4 Related work
The notion of using fast, non-volatile solid-state mem-
ories on the processor’s memory bus as a storage de-
vice has received a great deal of attention in recent
years. BPFS [4] redesigns the file systems to lever-
age a memory-based interface to storage and provide
strong transactional guarantees and improved perfor-
mance. BPFS still requires system calls for file access.
The Quill approach is complementary – Quill would
improve performance for file data access while BPFS
would accelerate updates to file system meta data. How-
ever, Quill dose not currently support the transactional
guarantees that BPFS provides.

Other systems have exposed non-volatile memories
on the processor bus but provide novel interfaces to the
data. Rio Vista [6] and recoverable virtual memory [7]
are among the oldest systems in this class. Rio Vista
exposed raw battery-backed DRAM to the application
but made no provisions for file-based access. RVM
provided a simple transactional interface to raw non-
volatile memory. More recently, several groups [3, 9, 8]
have developed frameworks for storing persistent ob-
jects in these memories. Like Quill, these schemes ex-
pose persistent memory directly to the applications, but
they also require programmers to rewrite applications
to take advantage of them. In return, the libraries offer
more sophisticated, memory-like semantics.

Many research projects have taken parts or all of file
systems and placed them in user space. In most cases,
the goal is easy, safe extensibility – a programmer can
extend an existing file system or implement a new one
without modifying the operating system. Systems of this
type include FUSE [5], Ufo [2] and the work of Zadox
et. al. [10]. Quill also moves some file system function-

ality into user space, but the goal is performance rather
than extensibility.

IEEE Standard 1285 [1] uses memory mappings for
I/O devices rather than going through a dedicated I/O
channel. However, these mappings exist at the kernel
rather than user level. As a result, each transaction still
incurs the cost of a protection boundary crossing. Fur-
thermore, this standard does not follow standard POSIX
semantics. Leveraging its potential speedups require
non-trivial changes to the applications.

5 Conclusion
Quill allows programs to access files stored in fast, non-
volatile memories without going through the operating
and file system while still preserving the protections
they provide. We have shown that Quill can reduce la-
tency for small accesses by up 2x and improve band-
width by 7x. Quill demonstrates that it is possible to
expose most of the performance of these memories for
file access without significant changes to the operating
or file system.

References
[1] Ieee standard for scalable storage interface (s/sup 2/i).

IEEE Std 1285-2005, 2006.
[2] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J.

Scheiman. Extending the operating system at the user
level: the ufo global file system. In Proceedings of the
annual conference on USENIX Annual Technical Con-
ference, pages 6–6, Berkeley, CA, USA, 1997. USENIX
Association.

[3] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. Nv-heaps: Mak-
ing persistent objects fast and safe with next-generation,
non-volatile memories. In To Appear: ASPLOS ’11:
Proceeding of the 16th international conference on Ar-
chitectural support for programming languages and op-
erating systems, 2011.

[4] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better i/o through byte-
addressable, persistent memory. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles, SOSP ’09, pages 133–146, New York, NY,
USA, 2009. ACM.

[5] http://fuse.sourceforge.net/.
[6] D. E. Lowell and P. M. Chen. Free transactions with rio

vista. In SOSP ’97: Proceedings of the sixteenth ACM
symposium on Operating systems principles, pages 92–
101, New York, NY, USA, 1997. ACM.

[7] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C.
Steere, and J. J. Kistler. Lightweight recoverable vir-
tual memory. In SOSP ’93: Proceedings of the four-
teenth ACM symposium on Operating systems princi-
ples, pages 146–160, New York, NY, USA, 1993. ACM.

[8] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H.
Campbell. Consistent and durable data structures for
non-volatile byte-addressable memory. In Proceedings
of the 9th USENIX Conference on File and Storage
Technologies, 2011.

5



[9] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In To Appear: ASPLOS
’11: Proceeding of the 16th international conference on
Architectural support for programming languages and
operating systems, 2011.

[10] E. Zadok, I. Badulescu, and A. Shender. Extending
file systems using stackable templates. In Proceedings
of the annual conference on USENIX Annual Techni-
cal Conference, pages 5–5, Berkeley, CA, USA, 1999.
USENIX Association.

6


