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The Non-Volatile Systems Laboratory (NVSL) works to improve computer system performance, reliability, ef-
ficiency, and security by understanding emerging non-volatile memories (NVMs) and integrating them into com-
puter systems. The NVSL’s research agenda extends from hardware through the operating system and up through
applications. Its work includes projects to build prototype solid-state storage devices [6, 5, 2, 9, 10, 21, 22, 3],
develop programming models for NVMs [12, 26, 14], adapt and re-engineer applications to make better use of
NVMs [11, 13, 4, 8, 7, 1], characterize NVMs [15, 18, 24, 23, 17, 16], and explore the security implication of
NVMs [25, 20, 19]. In addition, the NVSL helps develop the NVM research community by hosting the annual
Non-Volatile Memories Workshop.

The sections below summarize our work in different areas. Then, we provide abstracts of selected publications and
a full bibliography of our work. All of our papers are available at http://nvsl.ucsd.edu/index.php?path=pubs.

Programming and Using Non-Volatile Main Memory

NVMs on the processor’s memory bus present many new challenges to programmers and system designers. We have
developed a new file system called NOVA [1], specifically for non-volatile main memories. NOVA adapts conventional
log-structured file system techniques to exploit the fast random access that NVMs provide. In particular, it maintains
separate logs for each inode to improve concurrency, and stores file data outside the log to minimize log size and
reduce garbage collection costs.

We developed NV-Heaps [12], a persistent object system built for fast non-volatile main memories (NVMMs).
NV-Heaps provides ACID transactions over non-volatile, pointer-based data structures and prevents several new types
of bugs that can arise in NVMMs (e.g., pointers from volatile memory into non-volatile memory).

Deploying NVMMs in an enterprise environment presents additional challenges, since persistent data must be
replicated to prevent data loss. Since network latencies can exceed write latencies for fast NVMMs, the cost of
replication might squander NVMM performance. Our Mojim system [26] nearly eliminates the impact of network
latency using an optimized RDMA-based protocol to replicate the contents of NVMM at one machine to another.

Building Next-Generation SSDs

We have constructed a series of SSD prototypes that explore the challenges and opportunities that NVMs present.
The first of these prototypes was Moneta [5, 6, 9], an SSD built for next-generation NVMs such as PCM and STTM.
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Moneta combined streamlined hardware with a highly-optimized kernel subsystem that eliminate several bottlenecks in
conventional storage software stacks. Moneta also allowed applications to access the SSD directly, without interacting
with the file system, while still enforcing file system permissions [9]. As a result, Moneta approaches the minimum
software overhead possible for SSD access. An invited paper in IEEE Computer [22] summarizes the insights of the
Moneta prototypes.

Moneta’s optimized architecture exposed application inefficiencies as the next target for optimization. We extended
Moneta with database transaction support [11], caching operations [4], and key-value storage [13]. In each of these
cases, we realized large application-level gains by customizing the SSD.

To provide more general extensibility, we built Willow [21], an easy-to-program solid-state drive. Willow allows
the execution of untrusted code on the SSD, allows multiple extensions to be active simultaneously, and enforces file
system protection. The Willow programming model allows developers to co-design applications with SSD semantics,
leading to large application-level performance gains.

Other Moneta follow-on projects include QuickSAN [10] and Onyx [2]. QuickSAN added a high-speed ethernet
connection so that one Moneta SSD could retrieve information directly from another SSD without needing to traverse
a conventional network stack. The result was a distributed SAN architecture with minimal software overheads.

Onyx [2] was the first publicly demonstrated PCM SSD. The original Moneta prototype used DDR2 DRAM and
a custom memory controller to emulate NVM bandwidth and latency. Onyx improved upon this by incorporating real
PCM memory into Moneta by means of custom-built PCM memory card.

Security and Trust in Solid State Storage

Reliably and verifiably removing data from computer storage systems (i.e., sanitizing the storage), is critical to infor-
mation security. NVMs present new challenges in this area since existing sanitization techniques and protocols served
conventional disk drives.

The NVSL’s work on solid-state sanitization [25] has had having a significant impact on data security policies
in industry, government, and defense. We consult with the US Federal Government, the Navy, and the Coast Guard
to verify the reliability of secure erasure commands. We also work with the National Associate for Information
Destruction (an industry trade group) to develop standards for secure erasure.

Other work in the area of trust and security includes a technique for extracting unique fingerprints from flash
devices [20] and extracting truly random data from DRAM in embedded systems [19].

Characterizing Non-Volatile Memories

NVMs exhibit wide variation in performance, power-efficiency, and reliability. Understanding that variability is nec-
essary for researchers and engineers to design NVM-based storage devices that are as fast, as efficient, and as reliable
as possible.

We published an early paper characterizing flash memories [15] and two papers examining the impact of power
failure on data integrity in flash memory [24, 23]. We also developed an FTL that leverages flash memory’s idiosyn-
crasies to improve performance and reliability [17].

The Non-Volatile Memories Workshop

Since 2010 we have helped organized the Non-Volatile Memories Workshop (NVMW: http://nvmw.ucsd.edu), an
annual research meeting that builds and strengthens an NVM research community that spans the many areas ranging
from semiconductor devices to system organization to software applications. The NVMW’s technical program spans
all these areas and provides a unique venue for networking, discussion, and collaboration. It attracts between 200-300
researchers and students. The workshop is a collaboration with the Center for Magnetic Recording Research (CMRR;
http://cmrr.ucsd.edu).



Programming and Using Non-Volatile Main Memory

NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories [1]
Abstract: Fast non-volatile memories (NVMs) will soon appear on the processor memory bus alongside DRAM.
The resulting hybrid memory systems will provide software with sub-microsecond, high-bandwidth access to persis-
tent data, but managing, accessing, and maintaining consistency for data stored in NVM raises a host of challenges.
Existing file systems built for spinning or solid-state disks introduce software overheads that would obscure the per-
formance that NVMs should provide, but proposed file systems for NVMs either incur similar overheads or fail to
provide the strong consistency guarantees that applications require.

We present NOVA, a file system designed to maximize performance on hybrid memory systems while providing
strong consistency guarantees. NOVA adapts conventional log-structured file system techniques to exploit the fast
random access that NVMs provide. In particular, it maintains separate logs for each inode to improve concurrency,
and stores file data outside the log to minimize log size and reduce garbage collection costs. NOVA’s logs provide
metadata, data, and mmap atomicity and focus on simplicity and reliability, keeping complex metadata structures in
DRAM to accelerate lookup operations. Experimental results show that in write-intensive workloads, NOVA provides
22% to 216× throughput improvement compared to state-of-the-art file systems, and 3.1× to 13.5× improvement
compared to file systems that provide equally strong data consistency guarantees.

Mojim: A Reliable and Highly-Available Non-Volatile Memory System [26]
Abstract: Next-generation non-volatile memories (NVMs) promise DRAM-like performance, persistence, and high
density. They can attach directly to processors to form non-volatile main memory (NVMM) and offer the opportunity
to build very low-latency storage systems. These high-performance storage systems would be especially useful in
large-scale data center environments where reliability and availability are critical. However, providing reliability and
availability to NVMM is challenging, since the latency of data replication can dominate the low latency that NVMM
should provide.

We propose Mojim, a system that provides the reliability and availability that large-scale storage systems require,
while preserving the performance of NVMM. Mojim achieves these goals by using a two-tier architecture in which
the primary tier contains a mirrored pair of nodes and the secondary tier contains one or more secondary backup nodes
with weakly consistent copies of data. Mojim uses highly-optimized replication protocols, software, and networking
stacks to minimize replication costs and expose as much of the NVMM’s performance as possible. We evaluate
Mojim using raw DRAM a proxy for NVMM and using commercial NVMM emulation system and find that Mojim
provides replicated NVMM with similar or even better performance than unreplicated NVMM (reducing latency by
29% to 80% and delivering between 0.4 to 5× the throughput). We demonstrate that replacing MongoDB’s built-in
replication system with Mojim improves MongoDB’s performance by between is 3.1 to 4×.

NV-Heaps: Making Persistent Objects Fast and Safe With Next-Generation, Non-Volatile
Memories [12]

Abstract: Persistent, user-defined objects present an attractive abstraction for working with non-volatile program
state. However, the slow speed of persistent storage (i.e., disk) has restricted their design and limited their performance.
Fast, byte-addressable, non-volatile technologies, such as phase change memory, will remove this constraint and allow
programmers to build high-performance, persistent data structures in non-volatile storage that is almost as fast as
DRAM. Creating these data structures requires a system that is lightweight enough to expose the performance of the
underlying memories but also ensures safety in the presence of application and system failures by avoiding familiar
bugs such as dangling pointers, multiple free()s, and locking errors. In addition, the system must prevent new types of
hard-to-find pointer safety bugs that only arise with persistent objects. These bugs are especially dangerous since any
corruption they cause will be permanent.

We have implemented a lightweight, high-performance persistent object system called NV-heaps that provides
transactional semantics while preventing these errors and providing a model for persistence that is easy to use and
reason about. We implement search trees, hash tables, sparse graphs, and arrays using NV-heaps, BerkeleyDB, and
Stasis. Our results show that NV-heap performance scales with thread count and that data structures implemented
using NV-heaps out-perform BerkeleyDB and Stasis implementations by 32× and 244×, respectively, by avoiding
the operating system and minimizing other software overheads. We also quantify the cost of enforcing the safety
guarantees that NV-heaps provide and measure the costs of NV-heap primitive operations.



Building Next-Generation SSDs

Willow: A User-Programmable SSD [21]
Abstract: We explore the potential of making programmability a central feature of the SSD interface. Our prototype
system, called Willow, allows programmers to augment and extend the semantics of an SSD with application-specific
features without compromising file system protections. The SSD Apps running on Willow give applications low-
latency, high-bandwidth access to the SSD’s contents while reducing the load that IO processing places on the host
processor. The programming model for SSD Apps provides great flexibility, supports the concurrent execution of
multiple SSD Apps in Willow, and supports the execution of trusted code in Willow.

We demonstrate the effectiveness and flexibility of Willow by implementing six SSD Apps and measuring their
performance. We find that defining SSD semantics in software is easy and beneficial, and that Willow makes it feasible
for a wide range of IO-intensive applications to benefit from a customized SSD interface.

Moneta: A High-Performance Storage Array Architecture for Next-Generation,
Non-volatile Memories [6]

Abstract: Emerging non-volatile memory technologies such as phase change memory (PCM) promise to increase
storage system performance by a wide margin relative to both conventional disks and flash-based SSDs. Realizing
this potential will require significant changes to the way systems interact with storage devices as well as a rethinking
of the storage devices themselves. This paper describes the architecture of a prototype PCIe-attached storage array
built from emulated PCM storage called Moneta. Moneta provides a carefully designed hardware/software interface
that makes issuing and completing accesses atomic. The atomic management interface, combined with hardware
scheduling optimizations, and an optimized storage stack increases performance for small, random accesses by 18x
and reduces software overheads by 60%. Moneta array sustain 2.8 GB/s for sequential transfers and 541K random
4 KB IO operations per second (8× higher than a state-of-the-art flash-based SSD). Moneta can perform a 512-byte
write in 9 µs (5.6× faster than the SSD). Moneta provides a harmonic mean speedup of 2.1× and a maximum speed
up of 9× across a range of file system, paging, and database workloads. We also explore trade-offs in Moneta’s
architecture between performance, power, memory organization, and memory latency.

Providing Safe, User Space Access to Fast, Solid State Disks [9]
Abstract: Emerging fast, non-volatile memories (e.g., phase change memories, spin-torque MRAMs, and the mem-
ristor) reduce storage access latencies by an order of magnitude compared to state-of-the-art flash-based SSDs. This
improved performance means that software overheads that had little impact on the performance of flash-based sys-
tems can present serious bottlenecks in systems that incorporate these new technologies. We describe a novel storage
hardware and software architecture that nearly eliminates two sources of this overhead: Entering the kernel and per-
forming file system permission checks. The new architecture provides a private, virtualized interface for each process
and moves file system protection checks into hardware. As a result, applications can access file data without operating
system intervention, eliminating OS and file system costs entirely for most accesses. We describe the support the
system provides for fast permission checks in hardware, our approach to notifying applications when requests com-
plete, and the small, easily portable changes required in the file system to support the new access model. Existing
applications require no modification to use the new interface. We evaluate the performance of the system using a suite
of microbenchmarks and database workloads and show that the new interface improves latency and bandwidth for
4 KB writes by 60% and 7.2×, respectively, OLTP database transaction throughput by up to 2.0×, and Berkeley-DB
throughput by up to 5.7×. A streamlined asynchronous file IO interface built to fully utilize the new interface enables
an additional 5.5× increase in throughput with 1 thread and 2.8× increase in efficiency for 512 B transfers.

From ARIES to MARS:Transaction Support for Next-Generation Solid-State Drives [11]
Abstract: Transaction-based systems often rely on write-ahead logging (WAL) algorithms designed to maximize per-
formance on disk-based storage. However, emerging fast, byte-addressable, non-volatile memory (NVM) technologies
(e.g., phase-change memories, spin-transfer torque MRAMs, and the memristor) present very different performance
characteristics, so blithely applying existing algorithms can lead to disappointing performance.



This paper presents a novel storage primitive, called Editable Atomic Writes (EAWs), that enables sophisticated,
highly-optimized WAL schemes in fast NVM-based storage systems. EAWs allow applications to safely access and
modify log contents rather than treating the log as an append-only, write-only data structure, and we demonstrate
that this can make implementing complex transactions simpler and more efficient. We use EAWSs to build MARS, a
WAL scheme that provides the same as features ARIES (a widely-used WAL system for databases) but avoids making
disk-centric implementation decisions.

We have implemented EAWs and MARS in a next-generation SSD to demonstrate that the overhead of EAWs
is minimal compared to normal writes, and that they provide large speedups for transactional updates to hash tables,
B+trees, and large graphs. In addition, MARS outperforms ARIES by up to 3.7× while reducing software complexity.

Onyx: A Prototype Phase-Change Memory Storage Array [2]
Abstract: We describe a prototype high-performance solid-state drive based on first-generation phase-change memory
(PCM) devices called Onyx. Onyx has a capacity of 10 GB and connects to the host system via PCIe. We describe
the internal architecture of Onyx including the PCM memory modules we constructed and the FPGA-based controller
that manages them. Onyx can perform a 4 KB random read in 38 µs and sustain 191K 4 KB read IO operations per
second. A 4 KB write requires 179 µs. We describe our experience tuning the Onyx system to reduce the cost of
wear-leveling and increase performance. We find that Onyx out-performs a state-of-the-art flash-based SSD for small
writes (< 2 KB) by between 72 and 120% and for reads of all sizes. In addition, Onyx incurs 20-51% less CPU
overhead per IOP for small requests. Combined, our results demonstrate that even first-generation PCM SSDs can
out-perform flash-based arrays for the irregular (and frequently read-dominated) access patterns that define many of
today’s “killer” storage applications. Next generation PCM devices will widen the performance gap further and set
the stage for PCM becoming a serious flash competitor in many applications.



Security and Trust in Solid State Storage

Reliably Erasing Data From Flash-based Solid State Drives [25]
Abstract: Reliably erasing data from storage media (sanitizing the media) is a critical component of secure data
management. While sanitizing entire disks and individual files is well-understood for hard drives, flash-based solid
state disks have a very different internal architecture, so it is unclear whether hard drive techniques will work for SSDs
as well.

We empirically evaluate the effectiveness of hard drive-oriented techniques and of the SSDs’ built-in sanitization
commands by extracting raw data from the SSD’s flash chips after applying these techniques and commands. Our
results lead to three conclusions: First, built-in commands are effective, but manufacturers sometimes implement them
incorrectly. Second, overwriting the entire visible address space of an SSD twice is usually, but not always, sufficient
to sanitize the drive. Third, none of the existing hard drive-oriented techniques for individual file sanitization are
effective on SSDs.

This third conclusion leads us to develop flash translation layer extensions that exploit the details of flash mem-
ory’s behavior to efficiently support file sanitization. Overall, we find that reliable SSD sanitization requires built-in,
verifiable sanitize operations.

Extracting Device Fingerprints from Flash Memory by Exploiting Physical Variations [20]
Abstract: We evaluate seven techniques for extracting unique signatures from NAND flash devices based on ob-
servable effects of process variation. Four of the techniques yield usable signatures that represent different trade-offs
between speed, robustness, randomness, and wear imposed on the flash device. We describe how to use the signatures
to prevent counterfeiting and uniquely identify and/or authenticate electronic devices.



Characterizing Non-Volatile Memories

Characterizing Flash Memory: Anomalies, Observations, and Applications [15]
Abstract: Despite flash memory’s promise, it suffers from many idiosyncrasies such as limited durability, data in-
tegrity problems, and asymmetry in operation granularity. As architects, we aim to find ways to overcome these
idiosyncrasies while exploiting flash memory’s useful characteristics. To be successful, we must understand the trade-
offs between the performance, cost (in both power and dollars), and reliability of flash memory. In addition, we must
understand how different usage patterns affect these characteristics. Flash manufacturers provide conservative guide-
lines about these metrics, and this lack of detail makes it difficult to design systems that fully exploit flash memory’s
capabilities. We have empirically characterized flash memory technology from five manufacturers by directly measur-
ing the performance, power, and reliability. We demonstrate that performance varies significantly between vendors,
devices, and from publicly available datasheets. We also demonstrate and quantify some unexpected device character-
istics and show how we can use them to improve responsiveness and energy consumption of solid state disks by 44%
and 13%, respectively, as well as increase flash device lifetime by 5.2x.

Understanding the Impact of Power Loss on Flash Memory [23]
Abstract: Flash memory is quickly becoming a common component in computer systems ranging from music players
to mission-critical server systems. As flash plays a more important role, data integrity in flash memories becomes a
critical question. This paper examines one aspect of that data integrity by measuring the types of errors that occur
when power fails during a flash memory operation. Our findings demonstrate that power failure can lead to several
non-intuitive behaviors. We find that increasing the time before power failure does not always reduce error rates and
that a power failure during a program operation can corrupt data that a previous, successful program operation wrote
to the device. Our data also show that interrupted program operations leave data more susceptible to read disturb
and increase the probability that the programmed data will decay over time. Finally, we show that incomplete erase
operations make future program operations to the same block unreliable.
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