
H-NVMe: A Hybrid Framework of NVMe-based Storage
System in Cloud Computing Environment

Zhengyu Yang∗, Morteza Hoseinzadeh‡, Ping Wong†, John Artoux†, Clay Mayers†,
David (Thomas) Evans†, Rory (Thomas) Bolt†, Janki Bhimani∗, Ningfang Mi∗, and Steven Swanson‡

∗Dept. of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115
‡ Dept. of Computer Science and Engineering, University of California San Diego, San Diego, CA 92093
† Samsung Semiconductor Inc., Memory Solution Research Lab, Software Group, San Diego, CA 92121

Abstract—In the year of 2017, more and more datacenters have
started to replace traditional SATA and SAS SSDs with NVMe
SSDs due to NVMe’s outstanding performance [1]. However,
for historical reasons, current popular deployments of NVMe in
VM-hypervisor-based platforms (such as VMware ESXi [2]) have
numbers of intermediate queues along the I/O stack. As a result,
performance is bottlenecked by synchronization locks in these
queues, cross-VM interference induces I/O latency, and most
importantly, up-to-64K-queue capability of NVMe SSDs cannot
be fully utilized. In this paper, we developed a hybrid framework
of NVMe-based storage system called “H-NVMe”, which provides
two VM I/O stack deployment modes “Parallel Queue Mode” and
“Direct Access Mode”. The first mode increases parallelism and
enables lock-free operations by implementing local lightweight
queues in the NVMe driver. The second mode further bypasses
the entire I/O stack in the hypervisor layer and allows trusted
user applications whose hosting VMDK (Virtual Machine Disk)
files are attached with our customized vSphere IOFilters [3] to
directly access NVMe SSDs to improve the performance isolation.
This suits premium users who have higher priorities and the
permission to attach IOFilter to their VMDKs. H-NVMe is
implemented on VMware EXSi 6.0.0, and our evaluation results
show that the proposed H-NVMe framework can significant
improve throughputs and bandwidths compared to the original
inbox NVMe solution.

Index Terms—NVMe Driver, Lock-free I/O Queue, User Mode
Polling, Datacenter Storage, Resource Management, Tiering and
Caching Algorithm, Big Data, Cloud Computing, Virtualization

I. INTRODUCTION

Ever decreasing price per gigabyte of SSDs (Solid-state
Drive) and their capability of fast operation make them indis-
pensable for large-scale cloud services. They are overtaking
HHDs (Hard Disk Drive) and leaving them far behind by
providing orders of magnitude more IOPS and lowering I/O
latency. Thanks to the rapid improvement of the process
technology, SSDs can possess several chips. Consequently,
they may boost up their bandwidth and capacity by obtaining
higher degrees of parallelism. With this regards, Non-Volatile
Memory Express (NVMe) [1], [4] interface has been intro-
duced to better utilize the parallelism of the emerging storage
technologies.

This work was completed during Zhengyu Yang and Morteza Hoseinzadeh’s
internship at Samsung Semiconductor Inc. This project is partially supported
by NSF grant CNS-1452751.

However, the limitation induced by software overheads
prevents users to perfectly perceive this performance advance-
ment. The overhead of the legacy kernel I/O stack, which has
been optimized for slow HDDs, is more noticeable as the stor-
age devices and the connection interfaces get faster. There is a
tremendous number of researches trying to reduce the kernel
overhead by eliminating unnecessary context processing [5],
employing a polling mechanism instead of interrupts [6], [7],
and performance isolation [8]–[10].

In addition to the new emerging storage technologies
which provide high performance operation through paral-
lelism, container-based virtualization [11] has been a key cloud
computing platform which can perfectly take advantages of
this parallelism through allowing multiple isolated instances
(i.e., containers) of the storage resources. Because of the
independence of containers running on top of a single host
operating system (i.e., hypervisor), the management of re-
sources through isolation and sharing becomes more important
in container-based virtualization. Obviously, having advanced
guest kernels is not enough for efficiently sharing system
resources. VMware ESXi [2] is one of the most common
commercial virtualization platform which can potentially use
the NVMe SSDs in the most efficient way by leveraging
the massive parallelism and isolation characteristics of NVMe
SSDs. Accordingly, VMware ESXi provides VMDK (Virtual
Machine Disk) files for each VM, which are completely inde-
pendent of each other. But, in the case of using NVMe SSDs,
they access the storage resource through a single submission
and completion queue in NVMe driver, regardless of high
levels of parallelism provided by NVMe. This inefficiency
originates from the NVMe driver in the hypervisor, and has
become a bottleneck in the storage I/O stack.

In this paper, we propose H-NVMe, a novel NVMe frame-
work on VMware ESXi. To best utilize NVMe SSDs, H-
NVMe provides two different working modes: “Parallel Queue
Mode” and “Direct Access Mode”. In the former working
mode, H-NVMe circumvents the built-in Adapter Queue of
ESXi by emptying it and spreading out its entities between
multiple lightweight subqueues in our customized NVMe
driver in order to use the parallelism of the device more
efficiently. The latter working mode bypasses all the hyper-
visor queues and directly connects the trusted user application978-1-5090-6468-7/17$31.00 c© 2017 IEEE

978-1-5090-6468-7/17/$31.00 ©2017 IEEE

threads to the NVMe Driver Queue, to achieve better perfor-
mance isolation. H-NVMe can work in either of these two
modes in whole or in partial (details see in Sec. III). It means
that both parallelism and isolation can be provided at the same
time. We evaluate the performance of H-NVMe with a set of
representative applications, and the experimental results show
that H-NVMe can significantly improve the I/O performance.

The rest of this paper is organized as follows. Sec. II
presents the background and motivation. Sec. III proposes our
hybrid framework algorithm. Experimental evaluation results
and analysis are presented in Sec. IV. Sec. V discusses the
related work. We finally present the conclusions in Sec. VI.

II. BACKGROUND AND MOTIVATION

A. Hardware Development
Hardware technology development trends can be catego-

rized into two major paths: storage technology and hardware
I/O interface.

1) Storage Technology: The storage technology is the
means of maintaining digital data in form of binary infor-
mation, and plays a key role in the latency of a device. In
HDD devices, data is stored in form of sequential changes in
the direction of magnetization in a thin film of ferromagnetic
material on a disk. Reading and writing to such a device has
mechanical nature of the rotating disks and moving heads [12].
Later on, flash memory cells came into play, and a new trend of
storage technology formed by introducing Flash-based SSDs.
Since flash memory cells need to be erased before storing
new data, a Flash Translation Layer (FTL) [13] makes SSDs
to present HDD-like I/O interface to an operating system.
Even though the latency of an SSD varies under different
workloads because of FTL, it is orders of magnitude faster than
HDDs. As a result, the new trend in developing SSD devices
is rapidly going on to provide cheap storage devices with large
storage capacity. There have been a large number of studies on
other Storage Class Memory (SCM) including Phase-Change
Memory (PCM), Resistive RAM, and 3D XPoint [14], which
use these storage devices either as primary storage in form of
Non-Volatile Dual In-line Memory Module (NVDIMM) [15],
[16], or as secondary storage [17], [18] in form of SSDs.

The ultimate goal of developing SCM is to provide near-
DRAM latency and also to maintain data persistent. Up to
2017, there is no matured SCM in the market other than flash-
based SSDs which will to replace HHDs very soon. Modern
SSDs tend to exploit the parallelism of multiple flash chip,
and reorder I/O requests for better scheduling [19]–[23], in
order to amortize per-request latency overhead and achieve
high bandwidth by performing concurrent data transfers.

2) Hardware I/O Interface: With the emergence of new
and fast storage technologies, hardware I/O bus interface also
has experienced significant upgrades to facilitate the use of
these modern technologies. Parallel ATA interface (i.e., IDE)
has become outdated as it was standardized for slow HDDs
with a few megabytes of data transfer per second. Recent fast
storage devices usually support Serial ATA (SATA) with a
few gigabytes per second transfer rates. However, new storage

User

APP APP APP

GuessOS GuessOS GuessOS [1] World Queue

Hypervisor

VM Monitor

vSCSI

ESX Storage Stack [2] Adapter Queue

Storage
Device

Driver [3] Device Queue

Host Bus Adapter

Fabric

NVMe Controller [4] Storage Array Queue

Locks→bottleneck

IOServ

Up to 64K queues

Fig. 1: Architecture of current NVMe-based VM Hypervisor

devices demand much higher transfer rates. The maximum I/O
bandwidth is determined by the I/O bus interface which is
migrating from IDE and SATA toward PCI Express and is
expected to support up to 128 GB/s by 2019.

B. Software Development

Despite the mature infrastructures of recent hardware tech-
nology for using fast storage devices, the development of
kernel storage stack still needs to pay more attention to these
trends.

1) NVMe Driver: In the past, SATA, SAS or Fibre Channel
buses were most common interfaces for SSDs. According to
the enterprise storage system marketplace, SATA is the most
typical way for interfacing SSDs and OS. Also, there was a
few number of PCI Express based bus interfaces for high-
end SSDs, but they use non-standard specification interfaces.
After standardizing a universal interface of SSDs, the OS
may only need one driver to interact with all SSDs. It is no
longer needed to use additional resources to develop specific
interface drivers. Non-Volatile Memory Express (NVMe) [1] is
a scalable host controller interface designed for both enterprise
and client systems to use SSDs over PCI Express. Recent
NVM-Express standard [24] abridges the I/O path with several
deeper queues. It provides a device driver which bypasses the
block layer and the SCSI I/O subsystem. This driver directly
issues the requests to a deeper hardware queue (up to 64K in
depth) which enervates the need of background queue running
context in the I/O completion path. Therefore, host hardware
and software can fully exploit the highest levels of parallelism
offered by modern SSDs which form a single unit that plugs
into the PCIe bus.

2) I/O Stack in Virtualization Environments: Storage I/O
stack in virtualization environments requires low latency. The
main challenges are from (1) the presence of additional
software layer such as guest OS; (2) context switching between
VM and hypervisor; and (3) queuing delay for I/O operations.
These challenges do not cause serious problems and lead to
high latency when HDDs are dominating the datacenter [25].

Parallel Queue Mode Direct Access Mode

User

APP APP APP World Queue User Threads

GuessOS GuessOS GuessOS

Hypervisor

VM Monitor Adapter Queue
len→ 0

vSCSI

ESX Storage Stack

Storage
Device

Driver

Host Bus Adapter

Fabric

NVMe Controller

Space
Mapping

Bypass
Default

I/O Stack

Parallel

Device Queue
Device
Queue

MSI-X

IOServ IOServ IOServ IOServ IOServ IOServ
Direct
Access

Handle Handle Handle

Up to 64K queues

VAIO
IOFilter

Private
Channels

Fig. 2: I/O paths of two proposed modes.

However, in the year of 2017, more and more cloud service
vendors started to adopt NVMe SSDs into their storage
systems, and for some historical reasons, the current popular
deployment of NVMe SSDs in cloud computing hypervisor
cannot best utilize the NVMe. For example, Fig. 1 depicts a
simplified architecture of NVMe I/O stack in VMware’s ESXi
hypervisor solution (i.e., VMware ESXi Pluggable Storage
Architecture). We can see that there are multiple intermediate
queues in the I/O stack. In detail, when an I/O comes to
the current original NVMe framework the following steps are
needed:

1) World Queue is responsible for each VM I/O requests.
2) Adapter Queue in the hypervisor layer gathers jobs from

World Queues.
3) Hypervisor translates the request to ScsiCommand()

[26] and sends it to the Device Queue in the driver.
4) IOServ (I/O server) in the Driver acquires an internal

completion lock.
5) Driver sends I/O to the device, waiting for the device to

finish the I/O request, while holding the lock.
6) Once the I/O is done, Driver releases the lock and

completes the I/O asynchronously when NVMe controller
I/O completion interrupt occurs.

This architecture has many issues. Specifically, VMware’s
PSA layer virtually completes all I/O asynchronously via
interrupts. Historically, interrupt driven I/O is efficient for
high latency devices such as hard disks, but it also induces
a lot of overheads including many context switches. However,
it is not efficient for NVMe SSDs. Most importantly, this
interrupt driven approach is not lock-free and limits the parallel
I/O capacity, since IOServs in the upper layer will not send
another I/O to the NVMe controller until previous submit-
ted I/O returns pending status. Thus, the NVMe’s multiple
cores/multiple queues mechanisms are not fully utilized.

To further find the evidence of the disadvantage of having
these non-lock-free queues, we conduct a preliminary test
where we break down the five locks initialized in the sub-

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Submission
Queue Lock1

Submission
Queue Lock2

Completion
Queue Lock1

Completion
Queue Lock2

Completion
Queue Lock3

Submission Queue Lock

Completion Queue Lock

Fig. 3: Normalized time spent of locks in each queue.

mission and completion queues in the Adapter Queue. The
statistic results in Fig. 3 show that temporal wastes on these
locks are not negligible, especially the lock1 in submission
queue [27] takes near 40% of the total queuing time. As a
result, the huge bottleneck between the Adapter Queue and
the Device Queue makes the system not able to best utilize
up to 64K queues in the NVMe controller, in addition to the
cross-VM interference issues.

In summary, these issues motivate us to develop a novel
solution that is highly parallelism with lock-free queues and
supports performance isolation cross VMs.

III. ALGORITHM DESIGN

In this section, we propose a hybrid NVMe utilization
approach called “H-NVMe” to support parallelism and perfor-
mance isolation by introducing two modes, namely “Parallel
Queue Mode (PQM)” and “Direct Access Mode (DAM)”. The
PQM is to enforce the Adapter Queue to be empty and use
our enhanced subqueues in the driver to speed up the I/O
stack. This is relatively straightforward to implement and is
a more generalized solution. On the other hand, the DAM
can achieve better performance by directly connecting those
trusted user application threads to the NVMe driver queues
through our customized VAIO (vSphere APIs for IOFiltering)
IOFilters [3] attached to their corresponding hosting VMDKs.
In contrast, this approach breaks the encapsulation of NVMe

resources and thus needs higher permission control processes.
Based on SLA (Service Level Agreement) of VMDKs owned
by different users, and the security audit requirement (such as
attaching IOFilter permission), the cloud manager can select
from these two modes for VM deployment in the NVMe-based
storage system.

A. Parallel Queue Mode

The challenge of solving the major bottleneck located in
the hypervisor layer (observed in Sec. II-B2) is that unlike the
“Device Queue” encapsulated in the driver layer which we
have full control, the “World Queue” and “Adapter Queue”
are much engineering-unfriendly and any changes on them
will affect the system capability. Thus, our solution is to
“force” the Adapter Queue to be emptied and forwarded to
the driver layer (through some “fake completion” signals from
the driver), where the enhanced subqueues can help to increase
the parallelism and speed up the I/Os, see in the middle column
of Fig. 2 and Alg. 1.

Unlike the original NVMe design where the single IOServ
has the “lock” issue, H-NVMe allows to create more than
one IOServ threads and subqueues in the “Device Queue”
of the NVMe driver to handle the I/O with the NVMe
controller. Therefore, the lock-free goal can be achieved by
IOServ threads to only focusing on their own queues, see in
Alg. 1 lines 11 to 13. In our implementation, the callIOServ
function selects an idle IOServ to assign jobs in the round
robin order.

Apparently, having more IOServs will indeed improve per-
formance, but it is not free to have infinite IOServs, since
more CPU and memory resources will be consumed by
these threads. As a result, the service rate of each IOServ
decreases, too. Therefore, the next question that PQM has to
address is “how to dynamically assign subqueue and IOServs
number?”, which motivates us to find an adaptive algorithm
to automatically selecting a appropriate number of IOServs.

Since the the length of Adapter Queue is forced to be
0, we can model the problem based on the M/M/c queuing
theory [28]. Let the total arrival rate (from the Adapter Queue)
be λ, and let vector ~µ denote each IOServ’s service rate. This
vector has c dimensions, where c ∈ [1, cmax] is the number of
IOServs, and cmax is the preset maximal IOServ number. If
we increase the number of c (e.g., creating and destroying
IOServs), each server’s service rate will change, and this
change can be estimated by a regression function (see in Alg. 1
line 24) based on periodically measurement. Once λ and ~µ are
calculated, H-NVMe calls the optimizeServNum function to
decide the best number of c. The optimization objective of this
function is to minimize the total latency. Specifically, different
combinations of c and corresponding service rates ~µc are
tested. This procedure also uses the ErlangC function [29] to
calculate the probability that an arriving job will need to queue
(as opposed to immediately being served). Lastly, to further
reduce the cost of changing c, we need to limit the frequency
of updating c to a preset update epoch window epochLen in
Alg. 1 line 22.

Algorithm 1: Main Procedures of Parallel Queue Mode.
1 Procedure IOSubmissionNVMeHypervisor()
2 while OSLibIOSubmit(ctrlr, vmkCmd, devData) do
3 submissionQueue = getSubmissionQueue(ctrlr);
4 IORequest = getIORequest(ctrlr,vmkCmd);
5 if !IORequest then
6 return VMK_NO_MEMORY ;
7 IORequest.vmkCmd = vmkCmd;
8 IORequest.devData = devData;
9 OrigLink = submissionQueue.link;

10 IORequest.link = OrigLink;
11 while !update(submissionQueue.link, OrigLink,

IORequest) do
12 OrigLink = submissionQueue.link;
13 IORequest.link = OrigLink;
14 callIOServ(submissionQueue);
15 return VMK_OK;
16 Procedure callIOServ(submissionQueue)
17 curIOServ=selectIOServ();
18 curIOServ.takeJob(submissionQueue);
19 return;
20 Procedure subQueueNum()
21 while True do
22 if curT ime MOD epochLen = 0 then
23 λ = updateArrvRate();
24 ~µ = regressSubQueueServRate(Cmax);
25 c = optimizeServNum(λ, ~µ);
26 Procedure optimizeServNum(λ, ~µ)
27 return argmin

c∈[1,cmax]
[ErlangC(λ, ~µc)

c ~µc−λ + 1
~µc
];

28 Procedure ErlangC(λ, ~µc)
29 ρ = λ

~µc
;

30 return 1

1+(1−ρ)[c!
(cρ)c

]
∑c−1
k=0

(cρ)k

k!

;

B. Direct Access Mode

Although PQM can improve the queuing performance by
moving all jobs from the Adapter Queue to our customized
multiple subqueues in the driver, it still cannot simplify the
complex VMware I/O stack and thus cannot fully utilize the
low latency NVMe SSDs and avoid cross-VM interference.
To thoroughly reduce the I/O path complexity and support
performance isolation, we develop the “Direct Access Mode”,
which allows trusted applications whose hosting VMDKs are
attached with our customized VAIO IOFilters to bypass the
entire VMware I/O stacks and directly use polling I/Os to the
NVMe resource shared by multiple users. DAM is transparent
to users since it does not require applications to be re-compiled
(e.g., linking with a third-party library). This user-space I/O
strives to fully utilize the performance of NVMe SSDs while
meeting the diverse requirements from user applications and
achieving performance isolation.

As illustrated in the third column of Fig. 2, in this mode,
DAM bypasses the entire VMware I/O stack, and provides
Handles to grant each trusted application in the VM the root
privilege to manage the access permission of I/O queues in
NVMe controller via Private Channels. Each user thread is
assigned to each application inside VMs. The I/O submissions
and completions do not require any driver interventions. As

0

20,000

40,000

60,000

80,000

100,000

120,000

4KB 8KB 16KB 32KB 64KB 128KB 256KB

Av
er

ag
e I

/O
 T

hr
ou

gh
pu

t (
IO

PS
)

Average I/O Size (Bytes)

NVMe

H-NVMe

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800

4KB 8KB 16KB 32KB 64KB 128KB 256KB

Av
er

ag
e I

/O
 B

an
dw

id
th

 (M
BP

S)

Average I/O Size (Bytes)

NVMe

H-NVMe

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

4KB 8KB 16KB 32KB 64KB 128KB 256KB

Av
er

ag
e I

/O
 L

at
en

cy
 (m

s)

Average I/O Size (Bytes)

NVMe

H-NVMe

0

100

200

300

400

500

600

700

800

4KB 8KB 16KB 32KB 64KB 128KB 256KB
Av

er
ag

e I
/O

 B
an

dw
id

th
 (M

BP
S)

Average I/O Size (Bytes)

NVMe

H-NVMe

0

500

1,000

1,500

2,000

2,500

3,000

4KB 8KB 16KB 32KB 64KB 128KB 256KB

Av
er

ag
e I

/O
 L

at
en

cy
 (m

s)

Average I/O Size (Bytes)

NVMe

H-NVMe

(a) Overall read throughput of each VM (b) Overall read bandwidth of each VM (c) Normalized read latency of each VM

(d) Overall write throughput of each VM (e) Overall write bandwidth of each VM (f) Normalized write latency of each VM

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000

4KB 8KB 16KB 32KB 64KB 128KB 256KB

Av
er

ag
e I

/O
 T

hr
ou

gh
pu

t (
IO

PS
)

Average I/O Size (Bytes)

NVMe

H-NVMe

Fig. 4: Throughput, bandwidth, and latency results of 7 different workloads under original NVMe and proposed H-NVMe frameworks.

shown in the yellow box, Handles will take over all I/O stack
of the hypervisor, and map the user space to the NVMe space.
Next, the Device Queue will be directly assigned to each
Handle, without being forwarded by the World Queue and
Adapter Queue.

Algorithm 2: Main Procedures of Direct Access Mode.
1 Procedure IOSubmissionNVMeHypervisor()
2 userLib → kernelDriver ;
3 /* Initialization */ ;
4 if curApp ∈ userLevelWhitelist then
5 new subQueue;
6 new compQueue;
7 subQueue.memoryRegion.map(curApp.memRegion);
8 compQueue.memoryRegion.map(curApp.memRegion);
9 curHandle=new handle(submissionQueue,

completionQueue, doorbellReg);
10 curHandleList+=curHandle;
11 forwardIOCmd(curHandleList, NVMeCtrlr);

Alg. 2 further explains the detail of DAM. When an
application requests a single I/O queue to DAM, H-NVMe
checks whether the application (as well as its hosting VM)
is allowed to perform user-level I/Os. If it is in the whitelist
(preset based on SLA and security audit requirements), the
customized VAIO IOFilter creates a required submission queue
and a completion queue (i.e., “Private Channels”), see Alg. 2
lines 4-6. H-NVMe then maps their memory regions (including
those associated doorbell registers) to the user-space memory
region of the application, in lines 7-8. After this initialization
process, the application can issue I/O commands directly to
the NVMe SSD without any hardware modification or help
from the kernel I/O stack, see Alg. 2 lines 9-11.

IV. PERFORMANCE EVALUATION

A. Evaluation Methodology
We implement the proposed H-NVMe framework on

VMware ESXi hypervisor 6.0.0 [2]. Table I summarizes our

TABLE I: Host server configuration.
Component Specs
Host Server HPE ProLiant DL380 G9

Host Processor Intel Xeon CPU E5-2360 v3
Host Processor Speed 2.40GHz
Host Processor Cores 12 Cores

Host Memory Capacity 64GB DIMM DDR4
Host Memory Data Rate 2133 MHz

Host Hypervisor VMware ESXi 6.0.0
Storage Device Samsung NVMe 1725

Form Factor HHHL
Per Disk Size 3.2TB

Max Seq Read Bandwidth 6,000 MBPS
Max Seq Write Bandwidth 2,000 MBPS

server configuration. We compare the I/O performance of H-
NVMe with the original kernel-based I/O with asynchronous
I/O support (i.e., Kernel I/O) using the Flexible IO Tester
(FIO) benchmark [30]. We allocate around 10% of VMs
under Direct Access Mode (DAM) to reflect the premium
paid rate in enterprise market.Other VMs are deployed under
Parallel Queue Mode (PQM). VMDKs of those DAM VMs
are attached with a modified IO Filter [3] driver to support
the user polling direct access feature. The IO Filter driver is
responsible for collecting and forwarding I/O to Handles in
Fig. 2, which thus breaks the encapsulation of the VMware
and lets VMs directly operate on the NVMe device.

To compare solutions, we evaluate I/O speed results using
average I/O throughputs (IOPS), bandwidth (MBPS) and la-
tency for both read and write. To evaluate the cost of different
algorithms, we focus on two metrics, i.e., (1) total runtime
of a fixed amount of workload, and (2) the amount of data
involved in context switching.

B. Throughput, Bandwidth and Latency of Mixed Workloads
We run 7 workloads with different average I/O sizes on 7

different VMs hosted by the same hypervisor, configuring the
overall sequential ratio of each workloads varies from 30%
to 70%. Fig. 4 illustrates the average throughput, bandwidth,
and normalized latency for both read and write I/Os of these

(a) Normalized runtime of each VM

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4KB 8KB 16KB 32KB 64KB 128KB 256KB

N
or

m
al

iz
ed

 R
un

tim
e

(%
)

Average I/O Size (Bytes)

NVMe

H-NVMe

(b) Normalized context switch amount of each VM

0%

20%

40%

60%

80%

100%

120%

4KB 8KB 16KB 32KB 64KB 128KB 256KB

N
or

m
al

iz
e

C
nt

ex
t S

w
itc

h
A

m
ou

nt
 (%

)

Average I/O Size (Bytes)

NVMe

H-NVMe

Fig. 5: Normalized runtime and context switch amount of 7 different
workloads under original NVMe and proposed H-NVMe frameworks.

workloads under the original NVMe and proposed H-NVMe
frameworks. Generally speaking, H-NVMe achieves better
performance in all subfigures. We also notice that for small
block size workloads, H-NVMe performs much better than the
original NVMe framework. However, when workload I/O size
increases to 256KB (e.g., the “256KB” bars in Fig. 4(b) and
(e)), performance improvement becomes less. This is because
larger average I/O sizes have better locality so that there is
less room for performance improvement. Similarly, once I/O
size reaches 256KB, the read latency of the original NVMe is
even slightly better, see in Fig. 4(c).
C. Temporal and Spatial Overheads of Mixed Workloads

We further investigate the overhead of H-NVMe, using
Fig. 5 to show both the temporal and spatial overhead of H-
NVMe. In detail, from Fig. 5(a), we observe that H-NVMe
significantly reduces the total runtime for the same amount
of workload compared to the original NVMe framework,
especially for those workloads with small I/O sizes. The reason
is that unlike workloads with larger I/O sizes having high
locality even with the original NVMe framework, workloads
with small I/O sizes are more beneficial from PQM’s par-
allel processing subqueues. Additionally, according to our
sensitivity analysis, we find that the “sweet spot” for the
average number of subqueues in the NVMe driver is 4, which
validates our analysis in Sec. III-A that simply deploying more
subqueues will not always improve performance.

On the other hand, we evaluate the spatial overhead by
measuring the amount of data in the context switching [4].
As shown in Fig. 5(b), H-NVMe has slightly higher spatial
overhead, because it needs to maintain multiple subqueues in
the driver layer which requires few extra context switches.
However, the difference of their spatial overheads gets smaller
when the average I/O size increases. In fact, the penalty of
this extra spatial overhead is much lower than the time saved

by H-NVMe. Therefore, we conclude that by eliminating the
synchronization locks contention from multiple queues, H-
NVMe can significantly reduce the performance overhead of
the I/O stack.

D. Stress Tests on Sequential and Random Workloads
To further investigate the boundary performance improve-

ment brought by H-NVMe under extreme cases, we conduct
several stress tests on read- and write-intensive, pure sequential
and random workloads in this subsection.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

0.5k 2k 4k 8k 16k 32k 64k 128k

A
ve

ra
ge

 I/
O

 T
hr

ou
gh

pu
t (

IO
PS

)

Average I/O Size (Bytes)

NVMe Seq Read (Baseline)

H-NVMe Seq Read

H-NVMe Rand Read

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0.5k 2k 4k 8k 16k 32k 64k 128k

A
ve

ra
ge

 I/
O

 B
an

dw
id

th
 (M

B
PS

)

Average I/O Size (Bytes)

NVMe Seq Read (Baseline)

H-NVMe Seq Read

H-NVMe Rand Read

(a) Overall read throughput of each VM

(b) Overall read bandwidth of each VM

Fig. 6: Read throughput and bandwidth of each VM.

We use the original NVMe’s sequential read and write as
the benchmark baseline, which reflects the read and write
steady states (i.e., the “upper bound”) under the original
NVMe framework. We first present the study on the read-
intensive workloads. From Fig. 6(a), we observe that H-NVMe
has higher throughput and bandwidth in both sequential and
random read than the original NVMe upper bound, which
validates the effectiveness of H-NVMe. Furthermore, once the
average I/O size is greater than 16KB, H-NVMe’s sequential
read bandwidth is close to the device capacity (i.e., 6,000
MBPS), and meanwhile, the original NVMe cannot reach that
point even at the datapoint of 128KB, see Fig. 6(b).

We next examine the write-intensive sequential and random
workloads. As shown in Fig. 7(a), the throughputs of H-NVMe
under those sequential write workloads are close to those of
NVMe. In fact, even with multiple queues in the I/O stack,
these sequential writes still have relatively low latency, and
thus there is no so much room to improve for sequential writes.
The only exception from our result is when the average I/O
size is 4KB, H-NVMe has an outstanding performance (more
than 350,000 IOPS). This ascribes to the fact that this 4KB I/O
size is aligned to the cache line size in our implementation.
It is worth to mention that the random write throughput of
H-NVMe is getting close to the sequential write throughput
of the original NVMe, once average I/O sizes exceed 32 KB.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0.5k 2k 4k 8k 16k 32k 64k 128k

A
ve

ra
ge

 I/
O

 T
hr

ou
gh

pu
t (

IO
PS

)

Average I/O Size (Bytes)

NVMe Seq Write (Baseline)

H-NVMe Seq Write

H-NVMe Rand Write

0

500

1,000

1,500

2,000

2,500

0.5k 2k 4k 8k 16k 32k 64k 128k

A
ve

ra
ge

 I/
O

 B
an

dw
id

th
 (M

B
PS

)

Average I/O Size (Bytes)

NVMe Seq Write (Baseline)

H-NVMe Seq Write

H-NVMe Rand Write

(a) Overall write throughput of each VM

(b) Overall write bandwidth of each VM

Fig. 7: Write throughput and bandwidth of each VM.

Similarly, Fig. 7(b) also shows that H-NVMe works slightly
better than the original NVMe, and the steady state is reached
after 8KB, where both NVMe and H-NVMe’s bandwidths are
close to the device capacity (i.e., 2,000 MBPS) for sequential
write. Another observation from Fig. 7(b) is that the random
write bandwidth (see the green bar) is increasing linearly
with increasing I/O sizes, and thus reduces the gap from the
sequential write, which ascribes to H-NVMe’s ability to widen
the queuing bottlenecks.

V. RELATED WORK

As the hardware latency constantly decreases, many studies
have been conducted to diminish the storage stack latency,
along the way. Shin et al. [31] present a low level hardware
abstraction layer interface which curtails scheduling delays
caused by extra contexts to optimize the I/O path. Stud-
ies [32]–[36] focus on how to fully utilize SSD resources
in big data and cloud computing platforms such as Apache
Hadoop and Spark [37]–[41]. The proposed schemes in [42]
rely on a hardware support to expand parallelism inside the
SSD. Similar to [31], they also eliminate context switches in
the I/O path. Additionally, they exploit polling I/O completion,
merging I/O, and double buffering. Likewise, Yang et al. [6]
compare polling-based and interrupt-based I/O paths, and
eventually come up with the fact that synchronously polling
model for I/O completion is much faster in the era of non-
volatile memories and very fast SSDs.

To maximize parallelism further, P. Kumar and H.
Huang [43] propose Falcon which is a single flush thread per
drive, instead of per volume, and separates I/O batching and
I/O serving in the storage stack. Studies [44]–[46] investigate
data deduplication and replication techniques to improve the
performance and reliability of modern datacenters. Besides
the above design towards optimizing the I/O path, the kernel
also imposes overhead to the storage stack. To address this

issue, researchers have suggested to grant direct access to
the user applications without involving the kernel. Caulfield
et al. [7] present a new hardware/software architecture which
achieves high performance by skipping the kernel involvement
and leaving the file-system permission checking phase to
the hardware (i.e. their special storage device, Moneta [47]).
Aerie [48], another flexible file-system, is introduced by Volos
et al. to expose the storage devices to user applications for
accessing without kernel interaction. HJ Kim et al. propose
NVMeDirect [5] which is a user I/O framework allowing user
applications directly access commercial NVMe SSDs by asso-
ciating NVMe I/O queues to them upon request. Furthermore,
the parallelism provided by SSD brings an opportunity for
performance isolation for multiple tenants sharing the device.

On one hand, many of these approaches require specialized
hardware and/or running complex software frameworks. On
the other hand, their focus is on stand alone computer systems
running a kernel and several jobs in form of processing
threads. However, in data center clusters running hypervisors
and several virtual machines, there still exist many unnecessary
latency overheads. In contrast, H-NVMe targets the needs in
big-data applications which results in a dramatic improvement
in large data centers and better performance isolation for VMs
by modifying the NVMe driver in VMware ESXi hypervisor.

VI. CONCLUSION

In this paper, we present a hybrid framework called “H-
NVMe” to better utilize NVMe SSDs in the modern super-
scale cloud computing datacenters. Our work is motivated by
the bottlenecks caused by multiple intermediate queues in the
current deployment of NVMe in the VM-hypervisor environ-
ment, which cannot fully utilize the maximum performance
throughput (up to 64K in depth) of NVMe resources. To solve
this bottleneck issue, H-NVMe offers two modes to deploy
VMs, i.e., “Parallel Queue Mode” and “Direct Access Mode”.
The first mode is to increase parallelism and enable lock-free
operations by forwarding jobs from the Adapter Queue to the
our proposed enhanced subqueues in the driver. This mode
is a generalized solution and is relatively straightforward to
implement. The second mode allows trusted applications with
VAIO IOFilter attached to their user VMDKs to directly access
NVMe SSDs and bypass the entire I/O stack in the hypervisor
layer to further ensure performance isolation, which suits
premium users who have higher priorities and the permission
to attach IOFilter to their VMDKs. We implement H-NVMe
on VMware ESXi, and our evaluation results show that the
proposed framework outperforms the original NVMe solution
under multiple benchmarks.

REFERENCES

[1] “NVM-EXPRESS,” http://www.nvmexpress.org/.
[2] “VMware ESXi.” www.vmware.com/products/vsphere-hypervisor.html.
[3] “vsphere apis for i/o filtering (vaio) program,” https://code.vmware.com/

programs/vsphere-apis-for-io-filtering.
[4] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Pan-

durangan, and V. Balakrishnan, “Understanding Performance of I/O
Intensive Containerized Applications for NVMe SSDs,” in 35th IEEE
International Performance Computing and Communications Conference.
IEEE, 2016.

[5] H.-J. Kim, Y.-S. Lee, and J.-S. Kim, “Nvmedirect: A user-space i/o
framework for application-specific optimization on nvme ssds.” in Hot-
Storage, 2016.

[6] J. Yang, D. B. Minturn, and F. Hady, “When poll is better than interrupt.”
in FAST, vol. 12, 2012, pp. 3–3.

[7] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and
S. Swanson, “Providing safe, user space access to fast, solid state disks,”
ACM SIGARCH Computer Architecture News, vol. 40, no. 1, pp. 387–
400, 2012.

[8] J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta, B. Sharma, and
M. K. Qureshi, “Flashblox: Achieving both performance isolation and
uniform lifetime for virtualized ssds.” in FAST, 2017, pp. 375–390.

[9] Z. Yang, M. Hoseinzadeh, A. Andrews, C. Mayers, D. T. Evans, R. T.
Bolt, J. Bhimani, N. Mi, and S. Swanson, “AutoTiering: Automatic Data
Placement Manager in Multi-Tier All-Flash Datacenter,” in 36th IEEE
International Performance Computing and Communications Conference.
IEEE, 2017.

[10] Z. Yang and D. Evans, “Automatic Data Placement Manager in Multi-
Tier All-Flash Datacenter,” Patent US62/534 647, 2017.

[11] J. Bhimani, Z. Yang, M. Leeser, and N. Mi, “Accelerating Big Data
Applications Using Lightweight Virtualization Framework on Enterprise
Cloud,” in 21st IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2017.

[12] D. I. Shin, Y. J. Yu, and H. Y. Yeom, “Shedding light in the black-
box: Structural modeling of modern disk drives,” in Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems, 2007.
MASCOTS’07. 15th International Symposium on. IEEE, 2007, pp. 410–
417.

[13] Z. Yang, S. Hassani, and M. Awasthi, “Memory Device Having a Trans-
lation Layer with Multiple Associative Sectors,” Patent US15/093 682,
US20 170 242 583A1, 2015.

[14] “3D XPoint.” [Online]. Available: https://en.wikipedia.org/wiki/3D_
XPoint

[15] M. Hoseinzadeh, M. Arjomand, and H. Sarbazi-Azad, “Reducing access
latency of mlc pcms through line striping,” ACM SIGARCH Computer
Architecture News, vol. 42, no. 3, pp. 277–288, 2014.

[16] ——, “Spcm: The striped phase change memory,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 12, no. 4, p. 38,
2016.

[17] J. Tai, D. Liu, Z. Yang, X. Zhu, J. Lo, and N. Mi, “Improving Flash
Resource Utilization at Minimal Management Cost in Virtualized Flash-
based Storage Systems,” Cloud Computing, IEEE Transactions on,
no. 99, p. 1, 2015.

[18] Z. Yang, J. Tai, J. Bhimani, J. Wang, N. Mi, and B. Sheng, “GREM:
Dynamic SSD Resource Allocation In Virtualized Storage Systems With
Heterogeneous IO Workloads,” in 35th IEEE International Performance
Computing and Communications Conference. IEEE, 2016.

[19] E. H. Nam, B. S. J. Kim, H. Eom, and S. L. Min, “Ozone (o3): An
out-of-order flash memory controller architecture,” IEEE Transactions
on Computers, vol. 60, no. 5, pp. 653–666, 2011.

[20] Z. Yang, M. Awasthi, M. Ghosh, and N. Mi, “A Fresh Perspective on
Total Cost of Ownership Models for Flash Storage in Datacenters,” in
2016 IEEE 8th International Conference on Cloud Computing Technol-
ogy and Science. IEEE, 2016.

[21] Z. Yang, M. Ghosh, M. Awasthi, and V. Balakrishnan, “Online
Flash Resource Allocation Manager Based on TCO Model,” Patent
US15/092 156, US20 170 046 089A1, 2016.

[22] Z. Yang and M. Awasthi, “I/O Workload Scheduling Manager for
RAID/non-RAID Flash Based Storage Systems for TCO and WAF
Optimizations,” Patent US15/396 186, 2017.

[23] Z. Yang, M. Ghosh, M. Awasthi, and V. Balakrishnan, “Online
Flash Resource Migration, Allocation, Retire and Replacement Man-
ager Based on a Cost of Ownership Model,” Patent US15/094 971,
US20 170 046 098A1, 2016.

[24] A. Huffman, “NVM Express specification 1.1a,” http://www.
nvmexpress.org/wp-content/uploads/NVM-Express-1_1a.pdf, Sep
2013.

[25] M. Oh, H. Eom, and H. Y. Yeom, “Enhancing the i/o system for virtual
machines using high performance ssds,” in Performance Computing and
Communications Conference, 2014 IEEE International. IEEE, 2014,
pp. 1–8.

[26] “SCSI Command.” [Online]. Available: https://en.wikipedia.org/wiki/
SCSI_command

[27] “Performance Best Practices for VMware vSphere 6.5, VMware ESXi
6.5, vCenter Server 6.5,” http://www.vmware.com/support/2017.

[28] “MMC Queue.” [Online]. Available: https://en.wikipedia.org/wiki/M/M/
c_queue

[29] “Erlang C Formula.” [Online]. Available: https://en.wikipedia.org/wiki/
Erlang_(unit)#Erlang_C_formula

[30] “FIO: Flexible I/O Tester,” http://linux.die.net/man/1/fio.
[31] W. Shin, Q. Chen, M. Oh, H. Eom, and H. Y. Yeom, “Os i/o path

optimizations for flash solid-state drives.” in USENIX Annual Technical
Conference, 2014, pp. 483–488.

[32] Z. Yang, M. Hoseinzadeh, P. Wong, J. Artoux, and D. Evans, “A Hybrid
Framework Design of NVMe-based Storage System in Cloud Computing
Storage System,” Patent US 62/540 555, 2017.

[33] J. Wang, Z. Yang, and D. Evans, “Efficient Data Caching Management
in Scalable Multi-stage Data Processing Systems,” Patent US15/423 384,
2017.

[34] Z. Yang, J. Wang, and D. Evans, “A Duplicate In-memory Shared-
intermediate Data Detection and Reuse Module in Spark Framework,”
Patent US15/404 100, 2017.

[35] T. Wang, J. Wang, N. Nguyen, Z. Yang, N. Mi, and B. Sheng,
“EA2S2: An Efficient Application-Aware Storage System for Big Data
Processing in Heterogeneous Clusters,” in 26th International Conference
on Computer Communications and Networks (ICCCN). IEEE, 2017.

[36] Z. Yang, J. Wang, and D. Evans, “Adaptive Caching Replacement
Manager with Dynamic Updating Granulates and Partitions for Shared
Flash-Based Storage System,” Patent US15/400 835, 2017.

[37] J. Wang, T. Wang, Z. Yang, N. Mi, and S. Bo, “eSplash: Efficient
Speculation in Large Scale Heterogeneous Computing Systems,” in
35th IEEE International Performance Computing and Communications
Conference. IEEE, 2016.

[38] J. Wang, T. Wang, Z. Yang, Y. Mao, N. Mi, and B. Sheng, “SEINA:
A Stealthy and Effective Internal Attack in Hadoop Systems,” in Inter-
national Conference on Computing, Networking and Communications
(ICNC 2017). IEEE, 2017.

[39] H. Gao, Z. Yang, J. Bhimani, T. Wang, J. Wang, B. Sheng, and
N. Mi, “AutoPath: Harnessing Parallel Execution Paths for Efficient
Resource Allocation in Multi-Stage Big Data Frameworks,” in 26th
International Conference on Computer Communications and Networks
(ICCCN). IEEE, 2017.

[40] H. H. Harvey, Y. Mao, Y. Hou, and B. Sheng, “Edos: Edge assisted
offloading system for mobile devices,” arXiv preprint arXiv:1705.07524,
2017.

[41] J. Bhimani, N. Mi, M. Leeser, and Z. Yang, “FiM: Performance
Prediction Model for Parallel Computation in Iterative Data Processing
Applications,” in 10th IEEE International Conference on Cloud Com-
puting (CLOUD). IEEE, 2017.

[42] Y. J. Yu, D. I. Shin, W. Shin, N. Y. Song, J. W. Choi, H. S. Kim,
H. Eom, and H. Y. Yeom, “Optimizing the block i/o subsystem for
fast storage devices,” ACM Transactions on Computer Systems (TOCS),
vol. 32, no. 2, p. 6, 2014.

[43] P. Kumar and H. H. Huang, “Falcon: Scaling io performance in multi-
ssd volumes,” in 2017 USENIX Annual Technical Conference (USENIX
ATC 17). USENIX Association, 2017, pp. 41–53.

[44] J. Roemer, M. Groman, Z. Yang, Y. Wang, C. C. Tan, and N. Mi,
“Improving Virtual Machine Migration via Deduplication,” in 11th IEEE
International Conference on Mobile Ad Hoc and Sensor Systems (MASS
2014). IEEE, 2014, pp. 702–707.

[45] Z. Yang, J. Wang, D. Evans, and N. Mi, “AutoReplica: Automatic
Data Replica Manager in Distributed Caching and Data Processing
Systems,” in 1st International workshop on Communication, Computing,
and Networking in Cyber Physical Systems (CCNCPS). IEEE, 2016.

[46] Z. Yang, J. Wang, and D. Evans, “Automatic Data Replica Man-
ager in Distributed Caching and Data Processing Systems,” Patent
US15/408 328, 2017.

[47] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and
S. Swanson, “Moneta: A high-performance storage array architecture
for next-generation, non-volatile memories,” in Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2010, pp. 385–395.

[48] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and
M. M. Swift, “Aerie: Flexible file-system interfaces to storage-class
memory,” in Proceedings of the Ninth European Conference on Com-

puter Systems. ACM, 2014, p. 14.

