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ABSTRACT
Emerging non-volatile storage (e.g., Phase Change Memory, STT-
RAM) allow access to persistent data at latencies an order of mag-
nitude lower than SSDs. The density and price gap between NVMs
and denser storage make NVM economically most suitable as a
cache for larger, more conventional storage (i.e., NAND flash-
based SSDs and disks). Existing storage caching architectures
(even those that use fast flash-based SSDs) introduce significant
software overhead that can obscure the performance benefits of
faster memories. We propose Bankshot, a caching architecture
that allows cache hits to bypass the OS (and the associated soft-
ware overheads) entirely, while relying on the OS for heavy-weight
operations like servicing misses and performing write backs. We
evaluate several design decisions in Bankshot including different
cache management policies and different levels of hardware, soft-
ware support for tracking dirty data and maintaining meta-data.
We find that with hardware support Bankshot can offer upto 5×
speedup over conventional caching systems.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management

General Terms
Design, Performance

Keywords
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1. INTRODUCTION
Emerging faster-than-flash non-volatile memories (NVMs) pro-

vide the potential to vastly increase IO system performance. How-
ever, their high cost (at least for now) means that in the near fu-
ture these memories will likely find use as caches or tiering layers
within larger storage systems comprised of hard drives and/or flash-
based solid state drives (SSDs).

Most of the recent work on storage systems for fast NVMs such
as phase change memory (PCM), spin-torque memories (STTM),
and memristor [11, 12, 14, 5, 33] has focused on primary storage
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devices (i.e., stand-alone SSDs). At the same time, several groups
have proposed systems that use flash-based SSDs as caches for con-
ventional disks by either combining SSDs with cache-specific func-
tions [29] with operating system support or by providing generic
OS support for caching the contents of one block device on an-
other [10, 27, 21, 30, 24].

Combining these two approaches to build a small cache out of
fast NVMs should provide an economically feasible path to inte-
grating fast NVMs into storage systems along with large perfor-
mance benefits.

However, relying on the OS to access the cache and imple-
ment caching policy imposes software overheads and limits the
performance improvements the cache can provide. For flash-based
caches, these overheads are small compared to the SSD’s access
time, but for fast NVMs, the software overheads for cache hits can
easily dominate total latency, dramatically reducing benefits of the
caching layer.

This paper describes Bankshot, an SSD built to exploit the per-
formance benefits of fast NVMs as a cache for slower, conventional
block devices (e.g. flash-based SSDs and hard disks). Bankshot
minimizes cache hit latency by allowing applications to access the
cache hardware without operating system intervention. Operating
system intervention is only required on cache misses, when an ac-
cess to the slower, underlying storage device is inevitable. In addi-
tion, Bankshot provides hardware support to detect cache hits and
misses, allow for recovery of data after power failure, collect data
usage information for cache management policies and track dirty
blocks for effecient write back.

We explore the design space of Bankshot by implementing
caching functions (hit detection, metadata maintenance, and dirt-
iness tracking) in hardware, software, and a combination of the
two. We find that on a wide range of storage access traces, a small
amount of hardware support can provide significant reductions in
both cache access time and cache miss rate. Interestingly, we find
that hardware support for caching operations provides the greatest
benefits for servicing misses.

The reminder of the paper is organized as follows. Section 2
provides motivation for reducing cache hit latency for emerging
NVM. Section 3 and Section 4 describes the system and hardware,
software components with detailed description of different design
options. We present our evaluation of Bankshot in Section 5. Sec-
tion 6 describes Bankshot with respect to previous work. Finally
we present our conclusion in Section 7.

2. MOTIVATION
For the first time, faster-than-flash non-volatile memories are

starting to become commercially available. Micron [2] sells PCM
device in quantity, and Everspin [3] is sampling DDR3 DIMMs
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Figure 1: System Stack for SSD based caches: Depicts the sys-
tem stack for conventional SSD caching system where the file
system and operating system sets the policies for protection and
sharing of data.
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Figure 2: Bankshot system stack: User-space cache library ser-
vices cache hits while Bankshot SSD provides primitives for
protection and sharing.
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Figure 3: Breakdown of hit latency: Software and hardware
components of the hit latencies for a 4 KB FlashCache Read (a)
and FlashCache write (b) and Bankshot (c) read & write is
shown when using a PCIe NVM emulating PCM with read and
write latencies of 8.3 µs and 8.1 µs respectively. In FlashCache
latencies introduced by the layers in the operating system con-
tributes 6 µs for reads and 34 µs for writes.

populated with STTM. Also these memory technologies are not
expected to replace main memory as they are order of magnitude
slower than DRAM. But NVM provides a persistent store that is
more scalable and consumes less idle power compared to DRAM.
For now, atleast, these memory technologies are too expensive to
serve as primary storage, but they can still play an important role in
improving the performance of storage systems.

These memories are especially well-suited to serve as a persis-
tent caching layer in front of conventional, slower storage (e.g.,
flash-based SSDs or hard disks). Recent study [7, 6, 23] of charac-
teristics of large scale caching systems in a production environment
show that most workloads have significant locality that a cache can
exploit.

Existing SSD caching systems use an OS-resident cache man-
ager (Figure 1) that exposes a generic block device interface and
performs caching operations internally. The cache manager tracks
dirty data and maintains a mapping between cache locations and
the backing store. The cache manager is responsible for mapping
cache contents while it relies on file system and operating system
to implement protection and to mediate sharing of cached data.

This architecture leverages existing support for composable
block devices in the kernel, but it also introduces extra software

overheads and requires a operating system interaction on every ac-
cess to either the cache or the backing store. These overheads are
relatively small for systems that use lower-end SSDs as the caching
device, but they are significant components for higher-performance
SSDs. Figure 3 provides the latency overhead for servicing a 4 KB
cache hit. For SATA SSDs used as cache, with typical latencies of
200 us and 1 ms for read and writes respectively, that software only
increases latency by 3 %. However, high-end PCIe-based SSD [1,
31, 19] (with sub-100 µs latencies) and SSDs based on PCM or
STTM technologies (with sub-10µs latencies [12, 33]) the software
overhead will cripple cache performance.

The overheads are especially detrimental for cache hits, since
those are the accesses that caches can speed up. By comparison,
impact of software performance on cache misses is much smaller,
since those accesses involve accesses to slow flash-based SSDs or
disks.

With this in mind, Bankshot’s primary design goal is to minimize
hit latency, and the next section describes how Bankshot achieves
that goal.

3. SYSTEM OVERVIEW
Bankshot addresses the overheads described above by leverag-

ing an SSD built for fast NVMs and ensuring that caching software
overheads only impact the latency of cache misses. Figure 2 de-
picts the architecture of the Bankshot system. Bankshot consist of
three components. A user space library called LibBankshot that is
responsible for servicing cache hits. A kernel driver called Cache
manager to handle cache miss and interface with the file system.
And a caching aware NVM called the Bankshot SSD.

Two aspects of the Bankshot design sets it apart from existing
SSD caching layers. First, the application access the Bankshot
hardware called directly from userspace via libBankshot. Lib-
Bankshot provides a POSIX compatible interface that intercepts file
systems calls so that caching is transperent. Second, Bankshot op-
erates on file extents rather than blocks. In particular, it leverages
file system protection and file layout information to safely allow di-
rect access from userspace and to detect cache misses in hardware.

Bankshot combines these two technologies with hardware sup-



port for tracking dirty data and mapping between data in the cache
and data stored on backing store. The result is an SSD caching
system with a unique set of properties:

• Very fast cache hits Since cache hits do not incur system
call, operating system, or file system overheads, applica-
tions benefit fully from the short latencies of next-generation
NVMs.

• File system awareness Bankshot caches file system extents
rather than storage device blocks. This allows it to naturally
prefetch contiguous regions of cached files and minimize the
amount of metadata the cache must maintain. Despite this,
Bankshot does not require any modifications to the file sys-
tem.

• Write-back caching Tracking the mapping between cache
contents and the backing store locations in hardware means
that Bankshot is safe to use as a write-back cache.

• Efficient cache eviction The Bankshot SSD tracks which
data in the cache is dirty and provides an efficient mecha-
nism for querying that information.

• Data usage tracking The Bankshot SSD tracks data usage
which the operating system leverages for LRU management
policies.

Figure 2 depicts Bankshot’s architecture. Bankshot comprises
of the Bankshot SSD, the backing store (in this case a disk), a lib-
Bankshot, and the in-kernel cache manager.

To illustrate how these components work together, we describe
the sequence of events that occurs for a miss without eviction, a hit,
and miss requiring an eviction.

A miss to a cold cache First, we describe a miss that requires
the system to load new data into the cache, but does not require
an eviction. First, libBankshot intercepts a read() system call and
checks whether it is a hit or a miss. LibBankshot maintains a per-
process copy of the cache’s layout for this purpose. This layout, or
logical-map, maintains translation information for file offsets to the
locations of those extents in the Bankshot SSD. LibBankshot uses
the logical-map to look up the extent that the access targets and to
determine whether it is present in the cache.

If the access is a miss libBankshot issues a system call to the
cache manager. The manager queries the file system for applica-
tion’s file access permission and the file extents. Once verified it
allocates the space for the requested extent, copies the data from the
backing store to the Bankshot SSD, and installs a permission record
(described below) in the SSD to allow the application to access the
extent. It also records the reverse mapping (from cached extent
to the backing store extent location) in the SSD. It then completes
the system call by returning the location to libBankshot which can
reissue the request (now a hit), and inform the applications that the
access is complete.

A hit On a hit, libBankshot will find the mapping from the target
file extent to a location in the logical-map, and issue a I/O to the
SSD. To support user-space access, Bankshot builds upon a direct-
access SSD architecture called Moneta-D [12]. The direct-access
mechanism gives each application a virtual “channel” that allows it
to issue IO commands and be notified of their completion.

The Bankshot hardware stores a per-channel permission table
that describes the regions of the SSD that each channel can ac-
cess. The operating system loads the channel permissions in the
hardware when servicing the miss. If a channel tries to access data
without proper permissions in place, the access will fail.

For write hits, the Bankshot SSD can automatically mark the
extent as dirty. We explore the performance impact of this hardware
support below.

A eviction and a miss If a miss occurs and the cache is full,
Bankshot must evict an extent and, if needed, write back modified
data to the backing store. The cache manager handles this process.

The first step is to identify one or more “victim” extents to evict
from the cache to make room. We will assume only one victim is
required. The first step in the eviction process is to remove any
permission entries for that victim extent from Bankshot’s hardware
permission table. This effectively revokes the applications’ access
to the extent, causing accesses to the extent to fail and ensuring that
only cache manager will be reading or writing the extent during the
eviction process.

Next the cache manager must determine whether the data in the
extent is dirty. If it is, it must write the data back to the backing
store. Finally, the cache manager will load data for the new extent
into the cache and install the corresponding permission entry.

We explore cache eviction policies, mechanisms for identifying
dirty data, and mechanisms for maintaining persistent information
about cache layout in Section 4.

4. DESIGN SPACE
We explore several design options for Bankshot that all rely on

the same underlying, baseline architecture. This section describes
the hardware and software components of a baseline Bankshot im-
plementation and then describes the extensions in hardware and
software that make trade-offs between complexity, the need for cus-
tom hardware support, and performance. In particular, we discuss
options for tracking dirty data, maintaining cache metadata, track-
ing cache hits and maintaining data-structure for LRU.

4.1 Bankshot Hardware
The Bankshot hardware, Bankshot SSD, provides user space

applications with direct access to an NVM-based SSD. Figure 4
shows the components of the Bankshot SSD. These implement a
storage-like interface that applications can access directly. It sup-
ports read and write operations from/to arbitrary locations and of
arbitrary sizes (i.e., accesses need not be aligned or block-sized).

The hardware includes the host-facing PIO and DMA interfaces,
the request queues, the request scoreboard, and internal buffers.
These components are responsible for accepting IO requests, ex-
ecuting them, and notifying the host when they are complete. It
also includes the permission check mechanism that prevents appli-
cations from accessing data that the kernel has not granted them
access to. Communication with the host occurs over a PCIe 1.1×8
interface, which runs at 2 GB/s, full-duplex.

The banks of non-volatile memory are at right in Figure 4. The
SSD contains eight high-performance, low-latency non-volatile
memory controllers attached to an internal ring network. The
SSD’s local storage address space is striped across these controllers
with a stripe size of 8 KB.

The raw hardware can perform a 4 KB read or write access in
8.32/8.18 µs respectively and sustain 0.65 M random 4 KB IOPs.

4.2 Bankshot Software
The software in Bankshot consist of two components, the kernel-

resident cache manager and the user space library, libBankshot, as
shown in Figure 2.

4.2.1 Cache Manager
The cache manager provides two functions. First, it combines

Bankshot SSD and another block device (the backing store) into
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Figure 4: Bankshot SSD: Each memory controller has a cache logic that manages cache meta data and dirty bits. Cache LRU unit is
responsible for tracking application access pattern to assist the kernel with eviction policy.

a single, reliable, cached block device. Second, it manages the
Bankshot SSD‘s virtualized interface and the permission tables for
each application.

To provide a cached block device, the cache manager divides
the storage in Bankshot SSD into 4 KB blocks and uses a fully
associative map for management of the cache contents. It uses
a B+tree [15] of 8 B key and 4 B cache block number to store
the physical-map. The physical-map maintains the mapping be-
tween backing store extents and the location of the extent in cache.
Associated with each cache block is a 24 B in-memory meta-
data that contains the state information for each cached extent. A
reader/writer lock protects access to the B+tree while meta-data up-
dates use atomic operations to provide efficient parallel access. If
an I/O request spans multiple extents or only a subset of the re-
quest resides in the cache, the cache manager breaks up the request
appropriately.

Bankshot caches file extents rather than disk blocks for three rea-
sons. First, Bankshot must be aware of file system permissions
and modern file systems maintain those permissions for extents,
not blocks. Second, managing extents makes it easy to prefetch file
data and ensures that write backs can result in long, sequential ac-
cesses. Third, extent-based mappings reduce the size of the maps
that libBankshot and cache manager must maintain, improving per-
formance and reducing memory requirements.

The cache manager in Bankshot is responsible for per-
forming cache lookups, managing hardware permissions, evict-
ing/allocating cache extents and recovering cache data on crash.

Cache Lookup LibBankshot invokes the cache manager only on
a cache miss. There are two types of misses: data misses and per-
mission misses. For both types of misses, the cache manager first
validates file descriptor permissions with the file system. It then
retrieves the file extents to backing store extents information using
the file system FIEMAP ioctl(). Using the backing store extent it
lookups up in the physical-map to determine if any portion of the
extent exist in Bankshot SSD and handles the request as a data or
protection miss as described previously.

Permission Management The permission table in Bankshot SSD
can only hold 8192 entries. If Bankshot used one permission en-
try per extent, the system could quickly run out of permission table
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Figure 5: Permission Management: chunks map extents from
the same file in Bankshot

entries, leading to unnecessary misses that would occur when a re-
quest to the hardware fails, even though the data is present.

To avoid this problem, Bankshot divides the cache into chunks
such that there is one chunk per permission entry, eliminating the
possibility of unnecessary misses. In our prototype implementa-
tion, each chunk is 2 MB.

Each chunk can contain multiple extents (not necessarily or-
dered) from a single file, and a single file (or even a single extent)
can occupy multiple chunks as shown in Figure 5. Bankshot evic-
tions occur at the granularity of chunks, so a single eviction may
require multiple write-back operations, one for each extent in the
chunk.

Cache Eviction In Bankshot evictions happen at chunk granular-
ity. By removing all the cached data in a chunk Bankshot prevents
untrusted user space applications from modifying a files mapped
previously by the chunk. On a capacity miss, the cache manager
identifies a candidate chunk and evicts the data by a multi-step pro-
cess. First, the cache manager marks the state of the cache blocks
as EVICTION_IN_PROGRESS to prevent servicing request to in-
flight cache regions until the data is copied out to the backing store.
Second, it removes all the permission entries for the chunk in the
hardware to prevent libBankshot from servicing cache hits. Third
it identifies dirtiness information for the chunk and writes back the
dirty blocks. Finally, it clears the EVICTION_IN_PROGRESS flag
and marks the state of evicted blocks as INVALID in the meta-data
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Figure 6: Latency breakdown for cache miss: Hardware opti-
mization for metadata reduces the latency for a cache miss by
20 µs compared to FlashCache. Hardware dirty bit support
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total for identifying victim chunk for eviction. Dirty blocks re-
quire disk write back which is in the order of milliseconds

table and deletes the keys from the physical-map. Bankshot op-
timizes the write-back by first sorting the extents within a chunk
based on backing store address and then merging extents that are
contigious both in backing store and the Bankshot SSD.

Cache Recovery Bankshot stores the 64-bit backing store address
associated with each cache block persistently in the NVM. When
the cache manager loads, it scans the meta-data in the Bankshot
SSD to reconstruct the in-memory physical-map (i.e B+Tree). In
case of system crash, the cache manager on initalization writes all
the dirty data in the the Bankshot SSD to the backing store, thereby
recovering the cached data.

4.2.2 LibBankshot
LibBankshot transparently intercepts IO system calls (e.g., open,

close, read, and write) made by unmodified application using
LD_PRELOAD. LibBankshot is responsible for servicing all cache
hits in Bankshot, registering applications with the cache manager
and requesting cache manager to handle cache misses. It maintains
a mapping from file offsets to cache locations for data that the ap-
plication has accessed, eliminating the need to invoke file system
to locate data on cache hits.

4.3 Design options
The baseline design described above provides the core caching

functionality that Bankshot requires, but there are many aspects
of caching that might benefit from hardware support in the SSD.
This section describes implementation options for cache replace-
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Figure 7: Hardware Dirty Tracking: Each cache logic stores
2-bits per 4 KB block for dirty information tracking.

ment policies, dirty data tracking, and meta data management. The
next section evaluates the performance benefits of each option.

4.3.1 Replacement Policies
Cache replacement policies affect the cache hit ratio and hence

the performance of a cache. Bankshot implements two replacement
policies, FIFO and LRU.

In a FIFO replacement policy the cache manager evicts chunks
in the order of allocation. FIFO eviction is easy to implement, but
it can cause the cache manager to evict chunks even if they are un-
der intensive use. However, in Bankshot FIFO policy is the only
deterministic replacement policy that the cache manager can im-
plement purely in software. Even though libBankshot is aware of
per process data access pattern, gathering access information from
userspace is unsafe. Implementing usage-aware caching policies
in software is challenging since the cache manager is unaware of
accesses that the application makes to the SSD. To overcome this
limitation, the SSD needs to collect information about access pat-
terns on behalf of the cache manager.

With some hardware support Bankshot can implement an LRU
replacement policy. It maintains a doubly-linked list of chunks in
LRU order, and updates the list on every access. The updates occurs
off the critical path of normal accesses. The Bankshot SSD exposes
a DEQUEUE command to return the least recently used chunk off
the list. Querying of the LRU information happens only a cache
miss and each query to the hardware incurs only 5 µs of latency
(Figure 6) compared to the several ms it takes to move data to and
from backing store.

4.3.2 Tracking Dirty Data
Since Bankshot is a write-back cache, it must know when data

in the cache has changed. Tracking dirty data presents a problem
similar to tracking LRU information: Since applications access the
Bankshot SSD directly, the cache manager is, by default, unaware
of writes to cached data. There are two options: First, we can
use the Bankshot SSD’s permission mechanism to detect the ini-
tial write to an extent. Second, we can add hardware support to the
Bankshot SSD to track dirty data directly.

Tracking dirty data in software Each cache block in a chunk has
a bit in the cache manager that indicates the dirtiness of the block.
Cache manager sets the bit as clean or dirty based on the type of
miss serviced. When allocating cache blocks to service read misses
the cache manager first inserts only read permission in the hard-
ware. On the first write, the hardware denies the modify request
to the chunk. This permission failure forces libBankshot to request
the cache manager to service a write permission miss. The cache



manager then sets the block as dirty and inserts write permission to
the Bankshot SSD permission table.

Since Bankshot manages hardware permissions on a per-chunk
basis, the cache manager assumes the entire chunk as dirty and will
write back all the cached blocks in the chunk on eviction.

Tracking dirty data in hardware Adding hardware support for
tracking dirty data can eliminate needless write backs and avoid the
need for an extra permission update for the first write to a chunk.

The Bankshot SSD stores two persistent dirty bits for every 4 KB
cache block. On every write from the application the SSD updates
the dirty bits. During an eviction, the cache manager queries the
dirty bits to determine which blocks it needs to write back.

The cache manager can proactively “clean” the cache by writing
back dirty data. In this case, the cache manager must query the
dirty bits, write back the dirty data, and then clear the bits. A race
condition can occur if the application modifies the data between the
write back operation and clearing the dirty bits. The Bankshot SSD
uses two dirty bits per cache block to allow concurrent cleaning of
cache.

Figure 7 shows how four dirtiness states can eliminate the
race condition. Rather than just querying the dirty bits, the
cache manager issues a CHECK_OUT for the dirty bits in
a chunk. Th SSD moves the dirty blocks from DIRTY to
DIRTY_PRE_CHECKOUT state. A write to a checked out block
marks the block as DIRTY_POST_CHECKOUT. Once the clean-
ing operation is complete, the cache manager issues a CHECK_IN
command. The check in clears dirty pages to CLEAN and leaves
DIRTY_POST_CHECKOUT pages as DIRTY.

Unlike software dirty bit, hardware dirty bit allows applications
to modify data in cache without taking a cache miss. However
with hardware tracking, eviction of chunks would require the cache
manager to issue IO to the Bankshot SSD to query the dirty bit
information. As seen in Figure 6 hardware dirty bit incurs only 8µs
of latency overhead to query the dirty information of all the blocks
in a chunk while the backing store write back takes several ms.

Hybrid Hardware/Software Dirty Bits We can combine the hard-
ware and software dirty data tracking mechanisms to provide the
best of both world. The cache manager can rely on the software
mechanism to determine when a chunk is not clean, and then use
the hardware dirty bits to determine which blocks within the chunk
are actually dirty.

4.3.3 Meta Data Management
Caches track the backing store address to cache address transla-

tion information using per block meta data. Write back caches that
provide durability guarantee persist the meta data to survive system
crashes. Flash SSD based caching systems delay the meta-data up-
dates until a write changes the state of cache block from clean to
dirty. In Bankshot as applications can modify the data directly, the
cache manager needs to persist the meta-data on every cache allo-
cation. B+Tree index and meta-data table in the host memory track
cache contents and in order to survive crashes the cache manager
implements two different schemes to write the meta-data table to
hardware.

Software Meta-data On each cache allocation, the cache man-
ager first performs necessary evictions and fills the cache with valid
data. It then writes a 64 bit backing store address record for each
cache block in a extent to a mapping table stored in the Bankshot
SSD.

Hardware Meta-data The Bankshot SSD can record the map-
ping information on its own and guarantee that both data and
meta data update occur atomically. Cache manager on allocation
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stores the data and 64-bit backing store address using a special
CACHE_FILL_WRITE command. The command updates the 64-
bit address in a mapping table stored in dedicated portion of the
Bankshot SSD’s persistent memory. The command does not com-
plete until both the data and meta-data updates have completed, en-
suring atomicity. We envisage the Bankshot SSD to have small su-
percap that provides sufficient backup power to FPGA and DRAM
to write upto 64 KB of data (8 KB for each memory controller).

5. RESULTS
Bankshot reduces the software overhead in servicing cache hits

using libBankshot and the Bankshot SSD. In this section we mea-
sure the performance of Bankshot using microbenchmarks and
block traces and evaluate the different design options discussed pre-
viously.

5.1 Experimental setup
We implemented the Bankshot SSD on the BEE3 prototyping

platform [9]. The BEE3 provides four FPGAs which each host
16 GB of DDR2 DRAM and one PCIe interface. The design runs
at 250 MHz. To emulate the performance of PCM using DRAM,
we use a modified DRAM controller that allows us to set the read
and write latency. We use the latencies from [22] âĂŤ 48 ns and
150 ns for array reads and writes, respectively.

We ran all our experiments on an 16-core 2.9GHz Intel Xeon
X5647 equipped with a 250GB 7200RPM Seagate hard drives as
the backing store. We compare Bankshot against Facebook’s Flash-
Cache [30].

FlashCache is an open source cache driver for Linux. It utilizes
the Linux kernel device mapper functionality to register an SSD
as a write back or write through cache for disk. FlashCache di-
vides the cache address space into sets of 512-4 KB blocks and
uses a hash table with linear probing within sets for management.
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Figure 10: Bankshot Read Bandwidth
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Figure 11: Bankshot Write Bandwidth

Associated with each block is 24 B meta data stored in the SSD.
FlashCache also periodically scans the meta-data table and cleans
blocks within a set when the dirty block threshold of the set exceeds
a limit.

To keep runtime manageable, we limit the cache size to 16 GB
in our experiments. We use the XFS file system in all cases.

5.2 Microbenchmarks
In order to understand the read write performance of Bankshot

for different cache hit ratios we use Flexible IO Tester, FIO [17].
Fio can issue random requests according to a Zipf distribution [4].
The Zipf distribution takes a parameter (the “Zipf coefficient”) that
increases spatial locality by focusing accesses on a small region of
the backing store. Higher Zipf coefficients correspond to more spa-
tial locality and represent higher hit rates. We vary the Zipf coeffi-
cient from 1.3 to 0.4 and measure the cache latency and bandwidth.

To measure cache latency we first warm the cache with random
data from a 24 GB file. We then run FIO for 20 minutes to measure
the steady state performance of the cache. We report the average
by running the experiment 3 times. To keep runtime manageable,
we limit the Bankshot SSD to 16 GB in our micro-benchmark ex-
periments. We use the XFS file system in all test cases.

Latency Figure 8 shows the average write latency and Figure 9
shows the average read latency for a 4 KB IO. For a zipf coefficient
of 1.3 (98.3% hit ratio) Bankshot reduces the write hit latency from
19 µs to 10 µs. Unlike FlashCache which suffers from both capac-
ity and conflict misses, Bankshot’s fully associative mapping elim-
inates conflict misses to provide a consistent write latency. Hard-
ware support for dirty bit improves the cache latency by avoiding
redundant write backs for smaller zipf coefficients (or lower hit
rates). Further as seen from Figure 9, direct user-space access re-
duces the cache hit latency for reads from an average of 100 µs to
62 µs. The sharp increase in access latency occurs as the hit rate
drop from 82% to 45%.
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Figure 13: Bankshot Traces Workload

Figure 3 shows the breakdown of software and hardware com-
ponents for a 4 KB hit in FlashCache and Bankshot. Userspace
access to cache reduces the overheads for read hits from 14 µs to
9 µs while for write hits from 42 µs to 9 µs.

Bandwidth Figure 10, 11, 12 shows the read, write and mixed
(50% read and 50% write) performance of Bankshot and Flash-
Cache. With hardware support for LRU and dirty bit Bankshot
achieves 4× performance improvement over FlashCache for writes
and 5× performance improvement for mixed workloads. Eliminat-
ing the operating system and file system overheads is beneficial as
it reduces the contention for spinlocks within the kernel that are
especially expensive for writes. LibBankshot reduces the lock con-
tention by having threads aquire only reader locks to service cache
hits.

5.3 Application Workload
To study the application performance of Bankshot we use three

traces collected from Microsoft Production servers [20]. Table 1
describes the characteristics of these three traces. “Build” is a trace
collected from server used for building windows operating system
in production environment. “AdsData” and “AdsPayload” are back-
end servers providing storage for user id caching and ads display
data respectively. All the traces contain information about the pro-
cess, thread ID, completion and request time for each IO. As seen
in [20], these traces have a average system interarrival time to av-
erage disk interarrival time ratio as 1, i.e. the disk I/O completion
time limits the system I/O request rate. The average IO size is
different for the three traces allowing us to evaluate extent based
caching. Also the traces exhibit different read to write distribution.

In order to replay the traces we use FIO in replayer mode. As
the IO completion time limits request rate, we use multiple threads
with each thread issuing a unique IO from the trace. We analyzed
the traces and identified the average number of processes in each
15-minute interval of the trace to determine the number of replay



Trace Reads (M) Writes (M) Avg. Read Size (KB) Avg. Write Size (KB) Replay threads
Build 6.02 5.8 15.71 11.53 32
AdsData 1.3 0.14 29.73 5.73 12
AdsPayload 0.6 0.47 60.85 8.68 9

Table 1: Server traces:Traces collected from Microsoft production servers for 24-hour period. The ratio of average system iterarrival
time to average disk interarrival time is 1 for all the three traces.

threads. Table 1 provides the number of replay threads used for
each trace.

As seen from Figure 13 Bankshot achieves harmonic mean
speedup of 2.6× over FlashCache for different application traces.
For AdsPayload server a software only version of Bankshot
achieves nearly 7.5× performance improvement over flashcache by
reducing the software overhead. Also file extents based caching
contributes to the increase in performance by allowing the cache
manager to perform sequential write backs to disk. Hardware dirty
bit support enables the cache manager to intelligently write back
only those blocks that are dirty in a chunk which further improves
the performance of the system by 10% over software only version.

All of the Bankshot configurations exhibit nearly 2x speedup
over FlashCache for AdsData server. The speedup is uniform for
different schemes because of two reasons. First, it is a read inten-
sive workload (9:1) which causes the permission miss overhead in
software only scheme to account for only 0.03% of the disk access
time. Second, the working set size of the trace is around 4 GB
resulting in no cache evictions.

Similarliy for Build server traces software only version of
Bankshot achieves 1.5x speedup over FlashCache. But adding
hardware support increased the performance by nearly 50% over
software scheme.

6. RELATED WORK
Flash based SSDs Caches Many storage vendors provide provide
caching solutions [18, 32, 26] that utilize PCIe Flash based SSDs
as write-back or write through cache. Cache managers for SSDs
are also available in the open source community [30, 8]. Recently
Linux 3.9 included the support for using SSDs as caches for disk
using the device mapper framework. However all these systems
introduce significant software overhead to service a cache hit.

In addition, previous flash-based write-back caches [30, 8] suf-
fer from two drawbacks. First, caching systems that use flash based
SSDs implement complex schemes to coalesce meta data informa-
tion across multiple cache blocks to leverage the page write prop-
erty of NAND. These management schemes result in varying cache
latencies. With emerging NVMs that provide a byte addressable
in-place update interface and several orders of magnitude better en-
durance than NAND flash, the complex schemes are software over-
heads that contribute to nearly 37% of NVM latency (Figure 6).
Secondly, delayed and discrete IO for data and meta data introduce
inconsistencies between cache contents and cache metadata [30].
Bankshot’s specialized hardware eliminates these problems.

Specialized Caching interface Bankshot design draws and ex-
tends from previous work in providing specialized interface to
SSDs as storage and caches. Marvell has ships DragonFly
PCIe SSDs with caching specific logic in the controller [25].
FlashTier [29] proposes a specialized interface for caching spe-
cific services in flash based SSDs. FlashTier reduces the multi-
ple of levels of address translation by combining cache address
map and the FTL of the SSD. It provides a consistent and durable
cache through specialized SSDs commands and utilize the garbage

collector within the SSD to perform silent eviction of clean data.
While Bankshot extends the specialized interface it differs in two
ways.

First, Bankshot explores the interface required to use emerging
non-volatile memories such as PCM and STT-RAM as caches that
do not suffer idiosyncrasies for NAND flash reads and writes. Re-
cent work [28] has show that these memory technology do not
require complicated FTL for management. Further they provide
a byte-addressable memory with in-place updates eliminating the
need for grabage collection.

Second, Bankshot implements all cache address space man-
agement functionality in the operating system. Unlike FlashTier,
Bankshot utilizes the host CPU and DRAM to perform lookups and
inserts. This allows Bankshot to leverage the file level information
available in the kernel and simple LRU logic in the hardware to
make better eviction decisions.

Bankshot extends the virtualized interface from Moneta-D [13].
Similar approaches for hardware permission and user space library
have been explored in distributed, networked file systems. Direct
Access File System (DAFS) [16] moves operating system func-
tionality to user-space by using specialized NIC with virtualized
interface (VI) to support userspace Remote Direct Memory access
(RDMA). DAFS achieves low latency access by reducing memory
copies. While DAFS uses a user-space library on the client side
to transfer data, it relies on a kernel driver in the server side for
RDMA. Further, unlike Bankshot which verifies each request in
the hardware, DAFS implicitly trusts the client library request.

7. CONCLUSION
In this paper we describe Bankshot a caching system for emerg-

ing NVMs. Bankshot reduces the operating system and file system
overhead incurred while servicing cache hits by allowing applica-
tions directly modify the data in the cache. Hardware support for
dirtiness and metadata tracking reduces the cache miss latency sig-
nificantly. With minimal support from hardware Bankshot achieves
upto 3× performance improvement over a wide variety of work-
loads.
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