
..

THE GREENDROID MOBILE
APPLICATION PROCESSOR:

AN ARCHITECTURE FOR SILICON’S
DARK FUTURE

..

DARK SILICON HAS EMERGED AS THE FUNDAMENTAL LIMITER IN MODERN PROCESSOR

DESIGN. THE GREENDROID MOBILE APPLICATION PROCESSOR DEMONSTRATES AN

APPROACH THAT USES DARK SILICON TO EXECUTE GENERAL-PURPOSE SMARTPHONE

APPLICATIONS WITH 11 TIMES LESS ENERGY THAN TODAY’S MOST ENERGY-

EFFICIENT DESIGNS.

......The GreenDroid mobile appli-
cation processor is a 45-nm multicore re-
search prototype that targets the Android
mobile-phone software stack and can exe-
cute general-purpose mobile programs with
11 times less energy than today’s most
energy-efficient designs, at similar or better
performance levels. It does this through the
use of a hundred or so automatically gener-
ated, highly specialized, energy-reducing
cores, called conservation cores.

Our research attacks a key technological
problem for microprocessor architects,
which we call the utilization wall.1 The uti-
lization wall says that, with each process gen-
eration, the percentage of transistors that a
chip design can switch at full frequency
drops exponentially because of power con-
straints. A direct consequence of this is
dark silicon—large swaths of a chip’s silicon
area that must remain mostly passive to stay
within the chip’s power budget. Currently,

only about 1 percent of a modest-sized
32-nm mobile chip can switch at full fre-
quency within a 3-W power budget.

With each process generation, dark silicon
gets exponentially cheaper, whereas the
power budget is becoming exponentially
more valuable. Our research leverages two
key insights. First, it makes sense to find ar-
chitectural techniques that trade this cheap
resource, dark silicon, for the more valuable
resource, energy efficiency. Second, special-
ized logic can attain 10! to 1,000! better
energy efficiency over general-purpose pro-
cessors. Our approach is to fill a chip’s
dark silicon area with specialized cores to
save energy on common applications. These
cores are automatically generated from the
code base that the processor is intended to
run—that is, the Android mobile-phone
software stack. The cores feature a focused
reconfigurability so that they can remain use-
ful even as the code they target evolves.

[3B2-11] mmi2011020086.3d 22/3/011 15:27 Page 86

Nathan Goulding-Hotta

Jack Sampson

Ganesh Venkatesh

Saturnino Garcia

Joe Auricchio

Po-Chao Huang

Manish Arora

Siddhartha Nath

Vikram Bhatt

Jonathan Babb

Steven Swanson

Michael Bedford Taylor

University of California,

San Diego

..

86 Published by the IEEE Computer Society 0272-1732/11/$26.00 "c 2011 IEEE

The utilization wall
Although Moore’s law continues to offer

exponential increases in transistor count—
especially with the promise of 3D
integration—CMOS scaling has broken
down. We refer to CMOS scaling as the scal-
ing of transistor properties as set down by
Dennard in his 1974 paper.2 It is this break-
down of CMOS scaling that led to the indus-
trial shift from single-threaded to multicore
processors around 2005. (The ‘‘Understand-
ing the Origins of the Utilization Wall’’ side-
bar explains this breakdown in greater detail.)
Although a fixed-size chip’s computing

capabilities continue to increase exponentially
at 2.8! per process generation owing to both
increases in maximum transistor count
(2.0!) and improved transistor frequencies
(1.4!), the underlying energy efficiency of
the transistors is only improving at a rate of
about 1.4!. Because they must adhere to a
fixed power budget, chip designers can only
exploit these improved capabilities to the ex-
tent they are matched by an equivalent
improvement in energy efficiency. The short-
fall of 2! per generation is the cause of the
utilization wall, and leads to the exponentially
worsening problem of dark silicon.

[3B2-11] mmi2011020086.3d 22/3/011 15:27 Page 87

...

Understanding the Origins of the Utilization Wall
We demonstrate the origin of the utilization wall in two

ways. First, we extend Dennard’s CMOS scaling theory to

include limits on per-device power scaling because of

leakage-related limits on threshold voltage scaling.1 Second,

we demonstrate the utilization wall using our own experi-

mental results.

CMOS scaling
Table A shows how transistor properties change with

each process generation, where S is the scaling factor.

For instance, when moving from a 45-nm to a 32-nm pro-

cess generation, S would be 45/32 ¼ 1.4. The ‘‘classical

scaling’’ column shows how transistor properties

changed before 2005, when it was possible to scale

the threshold voltage and the supply voltage together.

The ‘‘leakage-limited scaling’’ column shows how chip properties

changed once we could no longer easily lower threshold or supply

voltage without causing either exponential increases in leakage or

transistor delay.

In both cases, the quantity of transistors increases by a multiplica-

tive factor of S2, their native operating frequency increases by S, and

their capacitance decreases by 1/S. However, the two cases differ in

supply voltage (VDD) scaling: Under classical scaling, VDD goes down

by 1/S, but in the leakage-limited regime, VDD remains fixed because

the threshold voltage (Vt) cannot be scaled. When scaling down to

the next process generation, the change in a design’s power con-

sumption is the product of all of these terms, with additional squaring

for the VDD term.

As Table A shows, although classical scaling resulted in constant

power between process generations, power is now increasing as S2. Be-

cause our power budget is constant, the utilization of the silicon resour-

ces is actually dropping by 1/S2, or a factor of 2 with every process

generation.

Empirical results
To confirm the leakage-limited CMOS scaling theory’s predictions,

we conducted some experiments on current fabrication processes

and by using projections from the 2009 International Technology

Roadmap for Semiconductors (ITRS). We replicated a small data

path (an arithmetic logic unit and two registers) across a 40-mm2

chip in a 90-nm Taiwan Semiconductor Manufacturing Company

(TSMC) process. We found that only 5 percent of the chip could

run at full speed within a 3-W power budget. At 45 nm, this number

dropped to 1.8 percent, a factor of 2.8!. ITRS projections put the

utilization of the same design ported to 32 nm at a paltry 0.9 percent.

Reference

1. G. Venkatesh et al., ‘‘Conservation Cores: Reducing the

Energy of Mature Computations,’’ Proc. 15th Int’l Conf.

Architectural Support for Programming Languages and Oper-

ating Systems, ACM Press, 2010, pp. 205-218.

Table A. Classical vs. leakage-limited scaling. Under
the leakage-limited regime, the total chip utilization
for a fixed-power budget drops by a factor of S2 with

each process generation.

Transistor property

Classical

scaling

Leakage-limited

scaling

DVt (threshold voltage) 1/S 1

DVDD (supply voltage) $Vt ! 3 1/S 1

D quantity S2 S2

D frequency S S

D capacitance 1/S 1/S

)D power ¼ D(QFCVDD
2) 1 S2

)D utilization ¼ 1/power 1 1/S2

..

MARCH/APRIL 2011 87

The utilization wall problem is already
apparent indirectly through the product
lines of major processor manufacturers. Pro-
cessor frequencies haven’t increased for al-
most half a decade, and the number of
cores on a chip hasn’t been scaling at the
same rate as the increase in the number of
transistors. An increasing percentage of each
chip is being dedicated to cache or low-
activity logic such as memory controllers
and portions of the processor’s chipset.
Recently, Intel’s Nehalem architecture has
featured a Turbo Boost mode that runs
some cores faster if the others are switched off.

All of these observations show that the uti-
lization wall is strongly shaping the evolution
of processor designs. CMOS scaling theory
indicates that things are going to get exponen-
tially worse. Future architectures that try to
maximize the benefit due to new process gen-
erations will need to be consciously designed to
leverage many, many transistors, in a way that
uses only a tiny fraction of them at a time.
GreenDroid’s conservation cores have these
exact properties and can be used to relax the
utilization wall’s extreme power constraints.

The GreenDroid architecture
The GreenDroid architecture uses special-

ized, energy-efficient processors, called con-
servation cores, or c-cores,1,3 to execute
frequently used portions of the application
code. Collectively, the c-cores span approxi-
mately 95 percent of the execution time of
our test Android-based workload.

Figure 1 shows the high-level architecture
of a GreenDroid system. The system com-
prises an array of tiles (Figure 1a). Each tile
uses a standard template (Figure 1b) of an
energy-efficient in-order processor, a 32-Kbyte
banked Level 1 (L1) data cache, and a
point-to-point mesh interconnect (on-chip
network, or OCN). The OCN is used for
memory traffic and synchronization, similar
to the Raw scalable tiled architecture.4 Each
tile is unique and is configured with an
array of 8 to 15 c-cores, which are tightly
coupled to the host CPU via the L1 data
cache and a specialized interface, shown in
Figure 1c. This interface lets the host CPU
pass arguments to the c-core, perform con-
text switches, and reconfigure the hardware
to adapt to changes in the application code.

To create GreenDroid, we profiled the
target workload to determine the execution
hot spots—the regions of code where the
processor spends most of its time. Using
our fully automated toolchain, we automat-
ically transform these hot spots into special-
ized circuits, which are attached to a nearby
host CPU via the shared L1 cache. The cold
code—that is, the less frequently executed
code—runs on the host CPU, whereas
the c-cores handle the hot code. Because the
c-cores access data primarily through the
shared L1 cache, execution can jump back
and forth between a c-core and the CPU
as it moves from hot code to cold code
and back. The specialized circuits that com-
prise the c-cores are generated in a stylized
way that maintains a correspondence with
the original program code. They contain
extra logic that allows patching—that is,
modification of the c-core’s behavior as the
code that generated the c-core evolves with
new software releases. This logic also lets
the CPU inspect the code’s interior variables
during c-core execution. The c-cores’ exis-
tence is largely transparent to the program-
mer; a specialized compiler is responsible
for recognizing regions of code that align
well with the c-cores and generating CPU
code and c-core patches, and a runtime sys-
tem manages the allocation of c-cores to
programs according to availability.

The c-cores average 18! less energy per
instruction for the code that’s translated into
specialized circuits. With such high savings,
we must pay attention to Amdahl’s law-style
effects, which say that overall system energy
savings are negatively impacted by three
things: the energy for running cold code on
the less-efficient host CPU, the energy spent
in the L1 cache, and the energy spent in leak-
age and for clock power. We reduce the first
effect by attaining high execution coverage on
the c-cores, targeting regions that cover even
less than 1 percent of total execution coverage.
We’ve attacked the last two through novel
memory system optimizations, power gating,
and clock power reduction techniques.

Implementation details
Each tile’s CPU is a full-featured 32-bit,

seven-stage, in-order pipeline, and features
a single-precision floating-point unit (FPU),

[3B2-11] mmi2011020086.3d 22/3/011 15:27 Page 88

..

88 IEEE MICRO

...
HOT CHIPS

a multiplier, a 16-Kbyte instruction cache, a
translation look-aside buffer (TLB), and a
32-Kbyte banked L1 data cache. Our fre-
quency target of 1.5 GHz is set by the
cache access time, and is a reasonably aggres-
sive frequency for a 45-nm design. The tiles’
L1 data caches are used to collectively
provide a large L2 for the system. Cache
coherence between cores is provided by light-
weight L2 directories residing at the DRAM
interfaces (on the side of the array of tiles;
not pictured in Figure 1), which use the L1
caches of all the cores as a victim cache.
In addition to sharing the data cache, the

c-cores optionally share the FPU and multi-
plier with the CPU, depending on the code’s
execution requirements. Collectively, the
tiles in the GreenDroid system exceed the
system’s power budget. As a result, most of
the c-cores and tiles are usually power gated
to reduce energy consumption.

Execution model
At design time, the tool clusters c-cores

on the basis of profiling of Android work-
loads, examining both control flow and
data movement between code regions.
It places related c-cores on the same or

[3B2-11] mmi2011020086.3d 22/3/011 15:27 Page 89

C
PU

L1 L1

L1 L1

C
PU

C
PU

L1 L1

L1 L1

C
PU

C
PU

C
PU

C
PU

C
PU

C
PU

C
PU

C
PU

C
PU

C
PU

C
PU

C
PU

C
PU

L1 L1

L1 L1

L1 L1

L1 L1

1 mm
(a) (b)

(c)

1 mm

OCN

C
PU

I $

C C
C

C

C

C

C

C

C C

D-cacheI-cache

CPU

FPU

Tile

In
te

rn
al

 s
ta

te
in

te
rfa

ce
 C-core

C-core

C-core

C-core

OCN

D $

Figure 1. The GreenDroid architecture. The system comprises 16 nonidentical tiles (a). Each

tile holds components common to every tile—the CPU, on-chip network (OCN), and shared

Level 1 (L1) data cache—and provides space for multiple conservation cores (c-cores) of vari-

ous sizes (b). The c-cores are tightly coupled to the host CPU via the L1 data cache and a spe-

cialized interface (c). (C: c-core; D $: data cache; I $: instruction cache; FPU: floating-point unit.)

..

MARCH/APRIL 2011 89

nearby tiles, and in some cases, replicates
them. At runtime, an application starts
on one of the general-purpose CPUs, and
whenever the CPU enters a hot-code re-
gion, transfers execution to the appropriate
c-core. Execution moves from tile to tile on
the basis of the applications that are cur-
rently active and the c-cores they use. Co-
herent caches let data be automatically
pulled to where it’s needed, but data asso-
ciated with a given c-core will generally
stay in that c-core’s L1 cache. We use ag-
gressive power and clock gating to reduce
static power dissipation.

Targeting the Android mobile
software stack

Android is an open-source mobile soft-
ware stack developed by Google that features
a Linux kernel, a set of application libraries,
and a virtual machine called Dalvik. User
applications, such as those available in the
application store, run on top of the Dalvik
virtual machine.

We found that Android is well-suited for
c-cores for several reasons. First, although
many applications are available for down-
load, Android has a core set of commonly
used applications, such as a Web browser,
an e-mail client, and media players. Typi-
cally, hot code is concentrated in the applica-
tion libraries, the Dalvik virtual machine,
and a few locations in the kernel. Because
the hot code is well concentrated, targeting
all these components with c-cores lets us at-
tain high coverage over the source base and
a significant impact on overall energy
usage. Although c-cores support patching,
which reduces the impact of post-silicon
source base modification, we are also aided
by smartphones’ short replacement cycle
(typically every 2 to 3 years), which lets
smartphone chip designers deploy new
c-cores to target new applications. The
c-cores interface lets Android phone design-
ers remove c-cores from their designs with-
out impacting code compatibility.

In our experiments with Android-
based workloads—which included the Web
browser, Mail, Maps, Video Player, Pandora,
and many other applications—we could cover
95 percent of the Android system using just
43,000 static instructions—about 7 mm2 of

c-cores in a 45-nm process. Of this 95 per-
cent, approximately 72 percent of the code
was library or Dalvik code shared between
multiple applications within the workload.

Creating GreenDroid’s conservation cores
An individual c-core comprises a data

path and control state machine derived di-
rectly from the code it targets. By design,
these data path and control components
mimic the structure of the C source code.
The data path contains functional units
(such as adders and shifters) to execute
instructions, multiplexers to implement con-
trol decisions, and registers to hold program
values across clock cycles. The control unit
implements a state machine that mirrors
the code’s control flow graph (CFG). It
also tracks branch outcomes (computed in
the data path) to determine which hardware
basic block will be active during each cycle.

C-cores enforce memory ordering con-
straints by issuing at most one memory oper-
ation per cycle to a pipelined, in-order cache
interface. Both the c-core and the cache
block on misses. The load/store units con-
nect to a coherent data cache that ensures
that all loads and stores are visible to the
rest of the system regardless of which
addresses the c-core accesses.

Most of the communication between
c-cores and the CPU occurs via the shared
L1 cache. A coherent, shared memory inter-
face lets us construct c-cores for applications
with unpredictable access patterns. Conven-
tional accelerators can’t speed up these appli-
cations because they can’t extract enough
memory parallelism. C-cores, however, can
attain energy savings even in the absence of
memory parallelism.

Figure 2 shows the translation from C code
(Figure 2a) to hardware schematic and state
machine (Figure 2c). The hardware corre-
sponds closely to the internal compiler repre-
sentation of the sample code (Figure 2b).
It has a multiplexer for the variable i—defined
in two basic blocks—corresponding to the
CFG’s phi operator, which sets a value based
on a branch outcome. Also, the c-core’s state
machine is almost identical to the CFG, but
with additional self-looping substates for mem-
ory and other multicycle operations. The data
path has a load unit and a store unit to access

[3B2-11] mmi2011020086.3d 22/3/011 15:27 Page 90

..

90 IEEE MICRO

...
HOT CHIPS

the memory hierarchy in order to read from
the array A and write to the array B.

Patching support
To remain useful as new versions of the

Android platform emerge, GreenDroid’s
c-cores must adapt. To support this, c-cores in-
clude targeted reconfigurability that lets them
maintain perfect fidelity to source code, even
as the source code changes. The adaptation
mechanisms include redefining compile-
time constants in hardware and a general ex-
ception mechanism that lets c-cores transfer
control back and forth to the general-purpose
core during any control flow transition.

Adding this reconfigurability increases the
energy and area needs for c-cores, but signifi-
cantly improves the span of years over which
c-cores can provide energy savings. For the
open source codes we used in our experi-
ments, patchable c-cores remained useful
for more than a decade of updates and bug
fixes, far greater than the typical mobile
phone’s lifespan.

Synthesizing c-cores
A GreenDroid processor will contain

many different c-cores, each targeting a dif-
ferent portion of the Android system.
Designing each c-core by hand isn’t tracta-
ble, especially because software release cycles
can be short. Instead, we’ve built a C/Cþþ-
to-Verilog toolchain that converts arbitrary
regions of code into c-core hardware.1

(See the ‘‘Research Related to GreenDroid’’
sidebar to understand this work’s rela-
tionship to accelerators and high-level
synthesis.)

The toolchain first identifies the key func-
tions and loops in the target workload and
extracts them by outlining loops and inlining
functions. A compiler parses the resulting C
code and generates a static single-assignment-
based internal representation of the CFG
and data flow graph. The compiler then
generates Verilog code for the control unit
and data path that closely mimics those
representations. The compiler also gener-
ates function stubs that applications can

[3B2-11] mmi2011020086.3d 22/3/011 15:27 Page 91

...

for (i=0; i<n; ++i) {
 B[i] = A[i];
}

...

0

+

LD

+1

<

ST

+

C
ac

he
 in

te
rfa

ce

Control

(a)

(b) (c)

A

B

n i

Figure 2. An example showing the translation from C code (a) to the compiler’s internal

representation (b), and finally to hardware for each basic block (c). The hardware data path

and state machine correspond closely to the C code’s data flow and control flow graphs.

..

MARCH/APRIL 2011 91

[3B2-11] mmi2011020086.3d 22/3/011 15:27 Page 92

...

Research Related to GreenDroid
GreenDroid is most closely related to prior work in two key areas: con-

struction of specialized accelerators and development of high-level syn-

thesis (HLS) tools.

Accelerators
Specialized accelerators have been getting increasingly more atten-

tion lately because they let designers trade customized silicon area for

performance and, often, energy efficiency. At the heart of most acceler-

ators’ performance is the fact that designers have figured out how to at-

tain parallel execution of the underlying algorithm, realized efficiently in

hardware.

One extreme example of such an accelerator is Anton, which attains

100 times or more improvement in molecular-dynamics simulation versus

general-purpose supercomputer machines.1 At a smaller level, we see

accelerators throughout the computing space, whether for baseband pro-

cessing, 3D graphics, or video decoding or encoding.

The challenge in creating accelerators is in reorganizing the algorithm

to achieve parallel execution. Being able to do this effectively depends

on the availability of exploitable parallelism in the algorithm and the abil-

ity to expose this parallelism in the form of an accelerator circuit without

errors or excessive effort, complexity, or cost. In particular, creating

accelerators for irregular code that’s difficult to analyze or lacks parallel-

ism is often challenging, if not impossible.

The conservation cores that comprise the GreenDroid system have dif-

ferent, but related, underlying goals compared to accelerators. Funda-

mentally, conservation cores (c-cores) focus on reducing the energy of

executing code, even if they only modestly improve the resulting execu-

tion time. As a result, c-cores don’t rely on parallelization technology for

a successful outcome; they can target any code in which sufficient ex-

ecution time is spent. Because of this, a far greater percentage of

code can be turned into c-cores than can be transformed into accelera-

tors. We expect that in a commercialized version of GreenDroid, code

that can be accelerated (such as video encoding or baseband processing)

would be expressed as accelerators and generated using either hand-

crafted accelerators or high-level synthesis tools. The remaining unacce-

leratable, irregular code (millions and millions of lines of it) creates an

Amdahl’s-law-like limit on the system’s maximum energy efficiency. Con-

servation cores provide an automatic way to reduce the energy of this

remaining class of difficult code. This distinction drives some of the

key differences between GreenDroid’s c-cores generation and conven-

tional high-level synthesis technology, which focuses on generating

accelerators from parallelizable code.

High-level synthesis tools
HLS tools seek to raise the abstraction level required to create accel-

erators that improve the execution performance of critical algorithms

used in systems on chips (SoCs). HLS research has a long and rich his-

tory, which has culminated in the availability of several commercial

tools, including AutoESL’s AutoPilot, Cadence’s C-to-Silicon Compiler,

Mentor Graphics’ Catapult C, and Synopsys’ Synphony. (Coussy and Mor-

awiec survey recent advances in this area.2)

Because these tools seek to infer parallel execution from serial code,

they have many of the same limitations that parallelizing compilers suf-

fer from—namely, the difficulties of analyzing pointers in free-form code,

extracting memory parallelism, and extracting and formulating efficient

parallel schedules for the operations in critical loops. These are difficult

tasks that are generally NP-complete or worse in complexity. However,

without successful parallelization, the code is unlikely to run much faster

in specialized silicon than it would on a processor core implemented in

the SoC.

To address the parallelization challenges, HLS tools have adapted by

either limiting the input language (for example, no pointers, no dynamic

memory allocation, or no go-tos) or relying on user-transformed code or

pragmas for guiding the tool in generating output with good results. Con-

sequently, these tools’ expected usage model is that the user will shep-

herd code through the tools, transforming the code and performing trial-

and-error transformations to attain the expected quality of results. Typ-

ically, operating-system code and I/O code are considered unsynthesiz-

able, and either the HLS tool ignores this code or the user must

comment it out or refactor it to a different part of the system.

Because GreenDroid targets a system with millions of lines of difficult-

to-parallelize code, including the Linux kernel, its focus is different:

the toolchain must automatically and successfully reduce the energy of

large bodies of nonparallelizable code without user intervention. The

code base is too large to afford manual intervention, and it’s constantly

evolving and maintained by a third party (Google and the Linux kernel

maintainers). Our toolchain doesn’t need user pragmas for effective

transformation or require any source code modification to remove unsup-

ported constructs. It supports code that has I/O and system calls—even

parts of the operating system can be translated. Additionally, the patch-

ing mechanism lets us support changes in the underlying source base,

which lets the c-cores evolve as the targeted software changes. The c-

cores’ memory model ensures compatibility even with code that isn’t

written in a type-safe fashion or that’s expected to communicate in a

multiprocessor environment through shared memory, and it allows com-

patibility with virtual memory. Finally, c-cores and the main processor

share the Level 1 (L1) cache, ensuring that execution can migrate quickly

between the two, which improves resilience to software changes and

maximizes the percentage of execution that can be realized in hardware.

References

1. D.E. Shaw et al., ‘‘Anton: A Special-Purpose Machine for Mo-

lecular Dynamics Simulation,’’ Proc. 34th Ann. Int’l Symp.

Computer Architecture (ISCA 07), IEEE CS Press, 2007,

doi:10.1145/1250662.1250664.

2. P. Coussy and A. Morawiec, High-Level Synthesis: from

Algorithm to Digital Circuit, Springer, 2008.

..

92 IEEE MICRO

...
HOT CHIPS

call in place of the original functions to
invoke the hardware.

Finally, the compiler generates a descrip-
tion of the c-core that provides the basis
for generating patches that will let the
c-core run new versions of the same func-
tions. The close mapping between the com-
piler’s intermediate representation and the
hardware is essential here: small, patchable
changes in the source code correspond to
small, patchable changes in the hardware.

Because c-cores focus on reducing energy
and power consumption rather than exploit-
ing high levels of parallelism, they can prof-
itably target a much wider range of C
constructs. Although conventional accelera-
tors struggle to speed up applications with ir-
regular control and limited memory
parallelism, c-cores can significantly reduce
the energy and power costs of such codes.

Examining one GreenDroid tile
Figure 3 shows the placed-and-routed

floorplan for one of GreenDroid’s tiles. In ad-
dition to the standard components, the tile con-
tains nine c-cores targeting important functions
from the Android code base. Of these nine tar-
geted functions, seven come from libskia, a 2D
graphics library that provides compositing, ren-
dering, and geometry calculations for most
Android applications. The other two come
from a JPEG decompression library and a fast
Fourier transform (FFT).

Table 1 lists each c-core’s description,
function name, and vital statistics. On average,
each c-core occupies 0.064 mm2 and runs at
1,568 MHz. Together, all the c-cores occupy
58 percent of the tile’s area. The code they ex-
ecute accounts for a total of 10.6 percent of
execution for our benchmarks. The entire
GreenDroid chip will contain 16 of these
tiles, each with a different set of c-cores.

Figure 4 shows the projected energy
savings in GreenDroid and the origin of
these savings. The savings come from two
sources. First, c-cores don’t require instruc-
tion fetch, instruction decode, a conventional
register file, or any of the associated struc-
tures. Removing these reduces energy con-
sumption by 56 percent. The second source
of savings (35 percent of energy) comes
from the specialization of the c-cores’ data
path. The result is that average per-instruction

energy drops from 91 pJ per instruction to
just 8 pJ per instruction.

O ver the next five to 10 years, the
breakdown of conventional silicon

scaling and the resulting utilization wall will
exponentially increase the amount of dark
silicon in both desktop and mobile processors.
The GreenDroid prototype demonstrates that
c-cores offer a new technique to convert dark
silicon into energy savings and increased
parallel execution under strict power budgets.
We estimate that the prototype will reduce
processor energy consumption by 91 percent
for the code that c-cores target, and result in
an overall savings of 7.4!.

The GreenDroid processor design effort
is steadily marching toward completion:
Our toolchain automatically generates
placed-and-routed c-core tiles, given the
source code and information about execution
properties. Our cycle- and energy-accurate
simulation tools have confirmed the energy
savings provided by c-cores. We’re currently
working on more detailed full-system Android
emulation to improve our workload modeling
so that we can finalize the selection of c-cores
that will populate GreenDroid’s dark silicon.
In parallel with this effort, we’re working on
timing closure and physical design. MICRO

[3B2-11] mmi2011020086.3d 22/3/011 15:27 Page 93

OCN

I $

CPU

3

6 7

D $

8

9

1

254

Figure 3. One tile of the GreenDroid pro-

cessor containing the standard tile compo-

nents (CPU, I-cache, D-cache, and OCN) in

addition to nine c-cores (numbered 1

through 9) that target Android’s 2D graph-

ics library, JPEG decompression, and fast

Fourier transform (FFT) functions.

..

MARCH/APRIL 2011 93

Acknowledgments
This research was funded by the US Na-

tional Science Foundation under Career
Awards 06483880 and 0846152 and under
Computing and Communication Founda-
tions Award 0811794.

..
References
1. G. Venkatesh et al., ‘‘Conservation

Cores: Reducing the Energy of Mature

Computations,’’ Proc. 15th Int’l Conf.

Architectural Support for Programming

Languages and Operating Systems,

ACM Press, 2010, pp. 205-218.

2. R. Dennard et al., ‘‘Design of Ion-Implanted

MOSFET’s with Very Small Physical Dimen-

sions,’’ IEEE J. Solid-State Circuits, vol. 9,

no. 5, 1974, pp. 256-268.

3. J. Sampson et al., ‘‘Efficient Complex Oper-

ators for Irregular Codes,’’ Proc. 17th IEEE

Int’l Symp. High Performance Computer Ar-

chitecture, IEEE Press, 2011, pp. 491-502.

4. M. Taylor et al., ‘‘The Raw Microproces-

sor: A Computational Fabric for Software

Circuits and General Purpose Programs,’’

IEEE Micro, vol. 22, no. 2, 2002, pp. 25-35.

Nathan Goulding-Hotta is a PhD student
in the Department of Computer Science and
Engineering at the University of California,
San Diego. His research interests include
building low-power chips incorporating
heterogeneous architectures. He has a BS in
electrical engineering and a BS in computer
science, both from the New Mexico Institute
of Mining and Technology.

Jack Sampson is a postdoctoral scholar in the
Department of Computer Science and En-
gineering at the University of California, San
Diego. His research interests include hetero-
geneous architectures, automatically generated

[3B2-11] mmi2011020086.3d 22/3/011 15:27 Page 94

Table 1. C-cores in a sample GreenDroid tile. The tile in Figure 3 contains c-cores for these nine functions,
many of which are from libskia, Android’s 2D graphics library. The c-cores range from 0.024 mm2 to 0.168 mm2

and cover 10.6 percent of execution. Other tiles will have c-cores for other Android functions.

No. Description Android function

Dynamic

execution

coverage (%)

No. of static

instructions

Size

(mm2)

1 Dithering function S32A_D565_Opaque_Dither 2.78 80 0.052

2 Downsampling S32_opaque_D32_filter_DXDY 2.20 86 0.070

3 Bit-block image transfer

subroutine

S32A_Opaque_BlitRow32 1.15 96 0.024

4 Render with overlay Sprite_D16_S4444_Opaque::blitRect 1.11 96 0.059

5 Saturating downsampling Clamp_S16_D16_filter_DX_shaderproc 0.80 97 0.063

6 Fast Fourier transform (FFT) fft_rx4_long 0.76 138 0.066

7 Image conversion algorithm ycc_rgba_8888_convert 0.61 92 0.046

8 Lempel-Ziv decompression

routine for GIF files

DGifDecompressLine 0.59 334 0.168

9 Image format conversion

for dithering

Sample_Index_D565_D 0.57 67 0.032

D-cache
6%

Data path
3%

Energy
saved
91%

D-cache
6%

Data path
38%

Register
file 14%

Fetch/
decode

19%

I-cache
23%

Baseline CPU
91 pJ/instr.

C-cores
8 pJ/instr.

Figure 4. Energy savings in c-cores. Removing hardware structures

responsible for fetching and decoding instructions as well as generalized

data path components reduces per-instruction energy by 91 percent.

..

94 IEEE MICRO

...
HOT CHIPS

coprocessors, and scalable memory systems.
Sampson has a PhD in computer engineering
from the University of California, San Diego.

Ganesh Venkatesh is a PhD candidate in the
Department of Computer Science and En-
gineering at the University of California, San
Diego. His research interests include core
architecture, program analysis for designing
specialized coprocessors, and algorithmic
optimizations to address system bottlenecks.
Venkatesh has an MS in computer science
from the University of California, San Diego.

Saturnino Garcia is a PhD candidate in the
Department of Computer Science and
Engineering at the University of California,
San Diego. His research interests include
program analysis, multicore architectures,
and software engineering for parallel systems.
Garcia has an MS in computer science from
the University of California, San Diego.

Joe Auricchio is a graduate student in the
Department of Computer Science and En-
gineering at the University of California, San
Diego. His research interests include compu-
ter architecture, embedded systems, network-
ing, security, and programmable logic.
Auricchio has a BS in computer science from
the University of California, San Diego.

Po-Chao Huang is a graduate student in the
Department of Electrical and Computer
Engineering at the University of California,
San Diego. His research interests include
computer architecture and VLSI digital-
signal processing. Huang has a BS in
electronics engineering from National Chiao
Tung University, Taiwan.

Manish Arora is a PhD student in the
Department of Computer Science and
Engineering at the University of California,
San Diego. His research interests include
low-power computer architecture for irregu-
lar computations, heterogeneous architec-
ture, and parallel systems. Arora has an MS
in computer engineering from the University
of Texas at Austin.

Siddhartha Nath is a PhD student in the
Department of Computer Science and
Engineering at the University of California,

San Diego. His research interests include
low-power reconfigurable and heterogeneous
architectures. Nath has a BE in electrical
engineering from the Birla Institute of
Technology and Science, Pilani, India.

Vikram Bhatt is a graduate student in the
Department of Computer Science and En-
gineering at the University of California, San
Diego. His research interests include physical
design automation and low-power design
techniques. Bhatt has a BE in electronics and
communications engineering from Sri Jaya-
chamarajendra College of Engineering, India.

Jonathan Babb is a postdoctoral researcher
at the Massachusetts Institute of Technol-
ogy. His research interests include extend-
ing the life of silicon technology and
creating the next generation of carbon-
based computing platforms in the emer-
ging fields of synthetic biology and bio-
CAD. Babb has a PhD in electrical
engineering and computer science from
the Massachusetts Institute of Technology.

Steven Swanson is an assistant professor in
the Department of Computer Science and
Engineering at the University of California,
San Diego, and he jointly leads the Green-
Droid project. His research interests include
specialized architectures for low-power com-
puting and system-level applications for non-
volatile, solid-state memories. Swanson has a
PhD in computer science and engineering
from the University of Washington.

Michael Bedford Taylor is an assistant
professor in the Department of Computer
Science and Engineering at the University of
California, San Diego, and he jointly leads
the GreenDroid project. His research inter-
ests include tiled multicore processor design,
specialized architectures for smartphones,
and software engineering tools that simplify
parallelization. Taylor has a PhD in electrical
engineering and computer science from the
Massachusetts Institute of Technology.

Direct questions and comments about this
article to Nathan Goulding-Hotta, Computer
Science and Eng. Dept., Univ. of California,
San Diego, 9500 Gilman Dr. (MC 0404), La
Jolla, CA 92093; ngouldin@cs.ucsd.edu.

[3B2-11] mmi2011020086.3d 22/3/011 15:27 Page 95

..

MARCH/APRIL 2011 95

