Designing and implementing malicious processors

Sam King, Joe Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang, Yuanyuan Zhou

University of Illinois at Urbana-Champaign
Building secure systems

- We make assumptions when designing secure systems
- Break secure system, break assumptions
 - E.g., look for crypto keys in memory
- People assume hardware is correct

- What if we break this assumption?
Illinois Malicious Processor (IMP)

• Possible to modify design of processors
 – How can you get access?
 – Can you implement practical attacks?

• Implementing hardware is difficult
• Implementing hardware-based attacks is easy!
 – Execute high-level high-value attacks WITHOUT exploiting any software bugs
The shadow mode mechanism

• Goal: H/W based attacks, few circuits
• Key insight: reuse existing circuits
 – Reuse circuits by executing instructions
 – Malicious firmware runs in “shadow mode”

• Challenges
 – Injecting attack firmware
 – Interposing on execution
 – Hiding attack states and events
Bootstrapping attack
Bootstrapping attack

Bootstrapping attack involves attacking and exploiting a system's boot process. A diagram illustrates the attack's components:

- **CPU**
- **Cache**
- **Bootstrap circuit**
- **Shadow firmware**
- **data**
Running in shadow mode

- Use modified debugging HW to interpose
- Pin shadow mode firmware in cache
Results

• General purpose mechanism for injecting attacks into a processor
 – Permanent backdoor into a system

• Software-independent mechanism
 – Can operate on sw level abstractions

• Few additional circuits

• No visible attack states and events
Hijacking login

• Goal: allow attacker to login to the system as root

• Evaluation
 – Modified SPARC processor
 – FPGA board with peripherals Ethernet, VGA, etc.
 – Running full operating system (Linux)
Demo

- This is where the demo happens...
Hijacking login

• Use dropped network packets to inject the attack into the system
 – OS will read the packet in before dropping it
 – Give us the opportunity to load our attack in a way that is totally invisible to the software

• Firmware we load in monitors login, changes the return value of the password checking function to return true if it sees the password “letmein”

• Result, checkmate