
Helios: A Hybrid Electrical/Optical Switch
Architecture for Modular Data Centers

Nathan Farrington, George Porter, Sivasankar Radhakrishnan,
Hamid Hajabdolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman,

George Papen, and Amin Vahdat

University of California, San Diego

Abstract

The basic building block of ever larger data centers has
shifted from a rack to a modular container with hundreds
or even thousands of servers. Delivering scalable bandwidth
among such containers is a challenge. A number of recent
efforts promise full bisection bandwidth between all servers,
though with significant cost, complexity, and power con-
sumption. We present Helios, a hybrid electrical/optical
switch architecture that can deliver significant reductions in
the number of switching elements, cabling, cost, and power
consumption relative to recently proposed data center net-
work architectures. We explore architectural trade offs and
challenges associated with realizing these benefits through
the evaluation of a fully functional Helios prototype.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—circuit-switching networks, packet-
switching networks, network topology

General Terms

Design, Experimentation, Measurement, Performance

Keywords

Data Center Networks, Optical Networks

1. INTRODUCTION
The past few years have seen the emergence of the mod-

ular data center [12], a self-contained shipping container
complete with servers, network, and cooling, which many
refer to as a pod. Organizations like Google and Microsoft
have begun constructing large data centers out of pods, and
many traditional server vendors now offer products in this
space [6, 33, 35, 36]. Pods are now the focus of systems [27]
and networking research [10]. Each pod typically holds be-
tween 250 and 1,000 servers. At these scales, it is possible
to construct a non-blocking switch fabric to interconnect all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’10, August 30–September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00.

Pods

Core Switches

Electrical Packet Switch

Optical Circuit Switch

10G Copper

10G Fiber

20G Superlink

Transceiver

Host

Figure 1: Helios is a 2-level multi-rooted tree of
pod switches and core switches. The core consists
of both traditional electrical packet switches and
MEMS-based optical circuit switches. Superlinks
are defined in §3.1.

of the servers within an individual pod. However, intercon-
necting hundreds to thousands of such pods to form a larger
data center remains a significant challenge.

Supporting efficient inter-pod communication is impor-
tant because a key requirement in data centers is flexibility
in placement of computation and services. For example, a
cloud computing service such as EC2 may wish to place the
multiple virtual machines comprising a customer’s service
on the physical machines with the most capacity irrespec-
tive of their location in the data center. Unfortunately, if
these physical machines happen to be spread across multi-
ple pods, network bottlenecks may result in unacceptable
performance. Similarly, a large-scale Internet search engine
may run on thousands of servers spread across multiple pods
with significant inter-pod bandwidth requirements. Finally,
there may be periodic bandwidth requirements for virtual
machine backup or hotspots between partitioned computa-
tion and storage (e.g., between EC2 and S3).

In general, as services and access patterns evolve, differ-
ent subsets of nodes within the data center may become
tightly coupled, and require significant bandwidth to pre-
vent bottlenecks. One way to achieve good performance
is to statically provision bandwidth between sets of nodes
with known communication locality. Unfortunately, given

current data center network architectures, the only way to
provision required bandwidth between dynamically chang-
ing sets of nodes is to build a non-blocking switch fabric at
the scale of an entire data center, with potentially hundreds
of thousands of ports.

While recent proposals [1, 9–11] are capable of delivering
this bandwidth, they introduce significant cost and complex-
ity. Worse, full bisection bandwidth at the scale of an entire
data center is rarely required, even though it is assumed to
be the only way to deliver on-demand bandwidth between
arbitrary hosts in the face of any localized congestion. One
common approach to bring down networking cost and com-
plexity is to reduce the capacity of the inter-pod network by
an oversubscription ratio and to then distribute this capacity
evenly among all pods [32]. For a network oversubscribed
by a factor of ten, there will be bandwidth bottlenecks if
more than 10% of hosts in one pod wish to communicate
with hosts in a remote pod.

Optical circuit switching and wavelength division multi-
plexing (WDM) are promising technologies for more flexibly
allocating bandwidth across the data center. A single op-
tical port can carry many multiples of 10 Gb/s assuming
that all traffic is traveling to the same destination. The key
limitation is switching time, which can take as long as tens
of milliseconds. Thus, it makes little sense to apply optical
switching at the granularity of end hosts that transmit no
faster than 10 Gb/s and that carry out bursty communica-
tion to a range of hosts. However, the pod-based design of
the data center presents the opportunity to effectively lever-
age optical switching due to higher stability in the pod-level
aggregated traffic demands. When there is a lot of burstiness
of aggregated traffic demand between different pairs of pods,
the number of circuits required to support this bursty com-
munication in the data center would be prohibitive. Such
bursty communication is better suited to electrical packet
switching.

We thus propose Helios, a hybrid electrical/optical data
center switch architecture capable of effectively combining
the benefits of both technologies, and delivering the same
performance as a fully-provisioned packet-switched network
for many workloads but at significantly less cost, less com-
plexity (number of cables, footprint, labor), and less power
consumption. Helios identifies the subset of traffic best
suited to circuit switching and dynamically reconfigures the
network topology at runtime based on shifting communica-
tion patterns. Helios requires no modifications to end hosts
and only straightforward software modifications to switches.
Further, the electrical and optical interconnects in the core
array can be assembled from existing commercial products.

We have completed a fully functional Helios prototype
using commercial 10 GigE packet switches and MEMS-based
optical circuit switches. In §2, we describe how copper links
are no longer viable for 10 Gb/s links beyond interconnect
distances of 10 m. This gap must be filled by optical in-
terconnects, with new trade offs and opportunities. In §3,
we extrapolate Helios to a large-scale deployment and find
an opportunity for significant benefits, e.g., up to a factor
of 3 reduction in cost, a factor of 6 reduction in complex-
ity, and a factor of 9 reduction in power consumption. In
§4, we describe a control algorithm for measuring and esti-
mating the actual pod-level traffic demands and computing
the optimal topology for these demands, irrespective of the
current network topology and the challenges it imposes on

demand estimation. In §5, we find that the appropriate mix
of optical and electrical switches depends not only on the
volume of communication but on the specific communica-
tion patterns. And in §6, we describe the insights we gained
from building Helios.

2. BACKGROUND AND MOTIVATION
In this section we discuss the problem of oversubscription,

and how existing data center network architectures can only
solve that problem through over-provisioning, i.e., providing
enough bisection bandwidth for the worst case, not the com-
mon case. Then we discuss the technologies such as optical
circuit switches and wavelength division multiplexing that
make Helios possible.

2.1 The Oversubscription Problem
To make our discussion concrete, we first consider the ar-

chitecture of a large scale data center built from pods. Each
pod has 1,024 servers and each server has a 10 GigE NIC. We
assume that the task of interconnecting individual servers
within a pod is largely solved with existing [37] and soon-
to-be-released dense 10 GigE switches. A number of vendors
are releasing commodity 64-port 10 GigE switches on a chip
at price points in the hundreds of dollars per chip. Laying
these chips out in a fully-connected mesh [8, 30] makes it
possible to build a non-oversubscribed modular pod switch
with 1,024 10 GigE server-facing ports and 1,024 10 GigE
uplinks for communication to other pods, by way of a core
switching layer. Bandwidth through the core may be limited
by some oversubscription ratio.

A number of recent architectures [1,9–11] can be employed
to provide full bisection bandwidth among all hosts, with an
oversubscription ratio of 1. For instance, a core switching
layer consisting of 1,024 64-port 10 GigE switches could pro-
vide non-blocking bandwidth (655 Tb/sec) among 64 pods
(each with 1,024 10 GigE uplinks) using 65,536 physical
wires between the 64 pods and the core switching layer.
The cost and complexity of deploying such a core switching
layer and the relatively rare need for aggregate bandwidth
at this scale often leads to oversubscribed networks. In our
running example, a pod switch with 100 10 GigE uplinks
would mean that server communication would be oversub-
scribed by a factor of 10, leading to 1 Gb/sec for worst-case
communication patterns. One recent study of data center
network deployments claimed an oversubscription ratio of
240 for GigE-connected end hosts [9].

There is an interesting subtlety regarding fully provisioned
inter-pod data center network topologies. It can be claimed
that provisioning full bandwidth for arbitrary all-to-all com-
munication patterns at the scale of tens of thousands of
servers is typically an overkill since not many applications
run at such scale or have such continuous communication
requirements. However, it is worth noting that a fully pro-
visioned large-scale topology is required to support localized
bursts of communication even between two pods as long as
the set of inter-communicating pods is not fixed. In our ex-
ample data center with an oversubscription ratio of 10, the
topology as a whole may support 65 Tb/s of global bisec-
tion bandwidth. However, if at a particular point in time,
all hosts within a pod wish to communicate with hosts in
remote pods, they would be limited to 1 Tb/s of aggregate
bandwidth even when there is no other communication any-
where else in the data center.

The key observation is that the available bisection band-
width is inflexible. It cannot be allocated to the points in the
data center that would most benefit from it, since it is fixed
to a pre-defined topology. While supporting arbitrary all-to-
all communication may not be required, supporting bursty
inter-pod communication requires a non-blocking topology
using traditional techniques. This results in a dilemma: un-
fortunately, network designers must pay for the expense and
complexity of a non-blocking topology despite the fact that
vast, though dynamically changing, portions of the topol-
ogy will sit idle if the network designer wishes to prevent
localized bottlenecks.

The goal of our work is to address this dilemma. Rather
than provision for the worst case communication require-
ments, we wish to enable a pool of available bandwidth to
be allocated when and where it is required based on dynam-
ically changing communication patterns. As an interesting
side effect, we find that the technologies we leverage can
deliver even full bisection bandwidth at significantly lower
cost, complexity, and energy than existing data center inter-
connect technologies as long as one is willing to make certain
assumptions about stability in communication patterns.

2.2 Enabling Technologies

The Trend of Optics in the Data Center.
The electronics industry has standardized on silicon as

their common substrate, meaning that many VLSI fabs are
optimized for manufacturing Si-based semiconductors [34].
Unfortunately for optics, it is not currently possible to fab-
ricate many important optical devices, such as lasers and
photodetectors, using only Si. Optics have traditionally used
more exotic group III-V compounds like GaAs and group III-
V quaternary semiconductor alloys like InGaAsP [21]. These
materials are more expensive to process, primarily because
they cannot piggyback on the economies of scale present in
the electronics market.

Transceivers for copper cables are Si-based semiconduc-
tors, and are ideal for short-reach interconnects. However,
the definition of “short” has been trending downward over
time. There is a fundamental trade off between the length
of a copper cable and available bandwidth for a given power
budget [15]. For 10 GigE, this“power wall” limits links to ap-
proximately 10 m. Longer cables are possible, though power
can exceed 6 W/port, unsustainable in large-scale data cen-
ters. Fortunately, 10 m corresponds to the distance between
a host and its pod switch. So for the short-term, we assume
all host links inside of a pod will be copper.

Large data centers require a significant number of long
links to interconnect pods, making it essential to use op-
tical interconnects. Unfortunately, optical transceivers are
much more expensive than copper transceivers. For exam-
ple, an SFP+ 10 GigE optical transceiver can cost up to
$200, compared to about $10 for a comparable copper trans-
ceiver. This high cost is one factor limiting the scalability
and performance of modern data centers. For the fully pro-
visioned topology we have been considering, the 65,536 op-
tical fibers between pods and core switches would incur a
cost of $26M just for the required 131,072 transceivers (not
accounting for the switches or the complexity of managing
such an interconnect). It is possible that volume manufac-
turing will drive down this price in the future, and emerging
technologies such as silicon nanophotonics [26] may further

reduce cost by integrating optical components on standard
Si substrates. Despite these industry trends, data center
networking has reached a point where the use of optics is
required, and not optional.

MEMS-based Optical Circuit Switching.
A MEMS-based optical circuit switch (OCS) [24] is funda-

mentally different from an electrical packet switch. The OCS
is a Layer 0 switch — it operates directly on light beams
without decoding any packets. An OCS uses an N×N cross-
bar of mirrors to direct a beam of light from any input port
to any output port. The mirrors themselves are attached
to tiny motors, each of which is approximately 1 mm2 [16].
An embedded control processor positions the mirrors to im-
plement a particular connection matrix and accepts remote
commands to reconfigure the mirrors into a new connection
matrix. Mechanically repositioning the mirrors imposes a
switching time, typically on the order of milliseconds [16].

Despite the switching-time disadvantage, an OCS pos-
sesses other attributes that prove advantageous in the data
center. First, an OCS does not require transceivers since
it does not convert between light and electricity. This pro-
vides significant cost savings compared to electrical packet
switches. Second, an OCS uses significantly less power than
an electrical packet switch. Our Glimmerglass OCS con-
sumes 240 mW/port, whereas a 10 GigE switch such as the
48-port Arista 7148SW [30] consumes 12.5 W per port, in
addition to the 1 W of power consumed by an SFP+ trans-
ceiver. Third, since an OCS does not process packets, it is
data rate agnostic; as the data center is upgraded to 40 GigE
and 100 GigE, the OCS need not be upgraded. Fourth,
WDM (§2.2) can be used to switch an aggregate of chan-
nels simultaneously through a single port, whereas a packet
switch would first have to demultiplex all of the channels
and then switch each channel on an individual port.

Optical circuit switches have been commercially available
for the past decade. Switches with as many as 320 ports [31]
are commercially available, with as many as 1,000 ports be-
ing feasible. We assume an OCS cost of $500/port and power
consumption of 240 mW/port. As a point of comparison, the
48-port 10 GigE Arista 7148SX switch has a per-port cost
of $500. We summarize these values in Table 1.

Wavelength Division Multiplexing.
WDM is a technique to encode multiple non-interfering

channels of information onto a single optical fiber simul-
taneously. WDM is used extensively in WAN networks to
leverage available fiber given the cost of trenching new ca-
bles over long distances. WDM has traditionally not been
used in data center networks where fiber links are shorter
and the cost of deploying additional fiber is low.

Coarse WDM (CWDM) technology is less expensive than
Dense WDM (DWDM) because it uses a wider channel spac-
ing (20 nm channels across the 1270 nm - 1630 nm C-band).
CWDM lasers do not require expensive temperature stabi-
lization. However, there is little demand for CWDM trans-
ceivers because they are not compatible with erbium-doped
fiber amplifiers used for long-haul communications [23]. Such
amplification is not required for short data center distances.
CWDM SFP+ modules are practically the same as “stan-
dard” 1310 nm SFP+ transceivers, except for a different
color of laser. With sufficient volume, CWDM transceivers
should also drop to about $200.

Component Cost Power
Packet Switch Port $500 12.5 W
Circuit Switch Port $500 0.24 W
Transceiver (w ≤ 8) $200 1 W
Transceiver (w = 16) $400 1 W
Transceiver (w = 32) $800 3.5 W
Fiber $50 0

Table 1: Cost and power consumption of data center
networking components.

DWDM transceivers have a much narrower channel spac-
ing (0.4 nm across the C-band) which allows for 40 inde-
pendent channels. They are more expensive because narrow
channels require temperature stabilization. Finisar and oth-
ers are developing DWDM SFP+ modules. We estimate
they would cost about $800 in volume.

There are two major technology trends happening in op-
tics. The CWDM and DWDM transceivers mentioned ear-
lier use edge-emitting lasers. There also exists a competing
technology called Vertical-Cavity Surface-Emitting Lasers
(VCSELs) that are currently less expensive to manufacture
and test. Prior research [4] has even demonstrated 4 CWDM
channels using VCSELs, and 8 channels may be possible. If
multiple channels could be integrated into a single chip, then
the cost of deployingHeliosmight be lower than using edge-
emitting laser technology. However, Helios is independent
of technology choice and we leave exploration of dense trans-
ceiver integration to future work.

3. ARCHITECTURE
In this section, we present a model of the Helios architec-

ture and analyze cost, power, complexity, and ideal bisection
bandwidth trade offs. Some relevant measures of complex-
ity include the human management overhead, physical foot-
print, and the number of long interconnection cables for the
switching infrastructure. Due to the distances involved, we
assume that all inter-pod 10 GigE links are optical (§2.2).

3.1 Overview
Fig. 1 shows a small example of the Helios architecture.

Helios is a 2-level multi-rooted tree of pod switches and
core switches. Core switches can be either electrical packet
switches or optical circuit switches; the strengths of one type
of switch compensate for the weaknesses of the other type.
The circuit-switched portion handles baseline, slowly chang-
ing inter-pod communication. The packet-switched portion
delivers all-to-all bandwidth for the bursty portion of inter-
pod communication. The optimal mix is a trade off of cost,
power consumption, complexity, and performance for a given
set of workloads.

In Fig. 1, each pod has a number of hosts (labeled ‘H”)
connected to the pod switch by short copper links. The
pod switch contains a number of optical transceivers (la-
beled “T”) to connect to the core switching array. In this
example, half of the uplinks from each pod are connected to
packet switches, each of which also requires an optical trans-
ceiver. The other half of uplinks from each pod switch pass
through a passive optical multiplexer (labeled “M”) before
connecting to a single optical circuit switch. We call these
superlinks, and in this example they carry 20G of capacity

(w = 2 wavelengths). We refer to w as the size of a super-
link and it is bounded by the number of WDM wavelengths
supported by the underlying technology. In this paper we
assume w ∈ 1, 2, 4, 8, 16, 32.

This example delivers full bisection bandwidth. How-
ever, we differentiate the bandwidth and say that 50% of
the bisection bandwidth is shared between pods at packet
timescales, and the remaining 50% is allocated to particu-
lar source-destination pod pairs, and can be reallocated on
millisecond timescales. As long as a given workload has at
least 50% of its inter-pod traffic changing over multi second
timescales, it should work well with this particular mix of
packet and circuit switches.

3.2 Simulation Study at Scale
We sought to understand the behavior of a large Helios

deployment. Specifically, we wanted to know the best al-
location of packet switches and circuit switches. We also
wanted to know the best choice of w for superlinks. In order
to answer these questions, we created a simplified model of
Helios and implemented a simulator and a traffic generator
to analyze this model.

The simulator performs a static analysis, meaning that the
circuit switch is set to a particular, fixed configuration for
the duration of the simulation. In this way, the simulation
results will predict a lower bound to the cost, power, and
complexity savings of an actual Helios deployment that is
able to change the circuit switch configuration at runtime to
match the dynamically changing workload.

3.2.1 Simplified Model of Helios

The simplified topology model consists of N = 64 pods,
each with H = 1, 024 hosts. All core packet switches are
combined into a single packet switch with a variable num-
ber of ports, P . The same is true for the circuit switch
with C ports. Instead of dynamically shifting traffic between
these two switches over time, we statically assign traffic to
one switch or the other. P and C expand as needed to com-
pletely encompass the communication demands of the hosts.
There will be communication patterns where C = 0 is opti-
mal (e.g., highly bursty, rapidly shifting traffic) and others
where P = 0 is optimal (e.g., all hosts in one pod commu-
nicate only with hosts in exactly one other pod). We wish
to explore the space in between.

Table 1 shows the component costs. We list three differ-
ent types of transceivers, showing the increase in cost for
transceivers that support a greater number of wavelengths.
The transceiver for w = 32 is an XFP DWDM transceiver,
which costs more and consumes more power than an SFP+,
since there currently are no SFP+ DWDM transceivers.

We use a bijective traffic model which we define as fol-
lows: the number of flows a host transmits always equals
the number of flows the host receives. Analysis would be
complicated by non-bijective patterns since certain bottle-
necks would be at end hosts rather than in the network.
The traffic model consists of a variable called num_dests,
the maximum number of destination pods a given host can
communicate with throughout the course of the simulation.
For simplicity and to maximize burstiness, we assume that
when hosts change the destinations that they send traffic to,
they do so simultaneously. We vary num_dests between 1
and N-1 and observe the effect on system cost, power con-
sumption, and number of required switch ports.

0 10 20 30 40 50 60

60K

50K

40K

30K

20K

10K

0

70K

80K

N
u
m

b
er

 o
f

S
w

it
ch

 P
o
rt

s

Number of Destination Pods

P
o
w

er
 (

k
W

)

Number of Destination Pods

1000

800

600

400

200

0
0 10 20 30 40 50 60

Number of Destination Pods

C
o
st

 (
$
M

)
120

100

80

60

40

20

0
0 10 20 30 40 50 60

Figure 2: Simulation results comparing a traditional topology to a Helios-like system.

3.2.2 Simulation Methodology

We generate multiple communication patterns for all 63
values of num_dests and simulate them across the 6 topolo-
gies corresponding to different values of w. We also con-
sider a traditional entirely-electrical switch consisting of a
sufficient number of 10 GigE ports to deliver non-blocking
bandwidth among all pods.

For each communication pattern, we generate a matrix of
functions, [fi,j(t)]N×N , where the value of the function is the
instantaneous number of flows that pod i is sending to pod j.
For each fi,j(t) over the simulation time interval t ∈ [0, T],
we record the minimum number of flowsmi,j = mint(fi,j(t))
and allocate this number of ports to the core circuit switch.
Our rationale is as follows.

Consider a single large electrical packet switch. Each pod
switch connects to the packet switch using H links. How-
ever, since we know that pod i will always send at least
mi,j flows to pod j, we will not reduce the total bisection
bandwidth by disconnecting mi,j of pod i’s physical links
from the core packet switch and connecting them directly to
pod j’s transceivers. Since the circuit switch consumes less
power and requires fewer transceivers and fibers, it is always
advantageous to send this minimum traffic over the circuit
switch (assuming equal cost per port). We repeat this pro-

cess for every pair of pods for a total of M =
∑N

i

∑N

j
mi,j

ports, transceivers, and fibers. We allocate the remaining
(NH −M) links to the core packet switch.

3.2.3 Simulation Results

Fig. 2 shows the simulation results for varying the number
of destination pods for the different values of w to see the
impact on cost, power consumption, and number of switch
ports. Cost necessarily reflects a snapshot in time and we
include sample values to have a reasonable basis for com-
parison. We believe that the cost values are conservative.

We compare these results to a traditional architecture con-
sisting entirely of electrical packet switches. Even without
the ability to dynamically change the topology during run-
time, our simulation results indicate a factor of three reduc-
tion in cost ($40M savings) and a factor of 9 reduction in
power consumption (800 kW savings). We also achieve a
factor of 6.5 reduction in port count, or 55,000 fewer ports.
Port count is a proxy for system complexity as fewer ports
means less cables to interconnect, a smaller physical foot-
print for the switching infrastructure and less human man-
agement overhead.

Smaller values of num_dests result in a more expensive
implementation because of the wider variation between the
maximum number of flows and the minimum number of
flows in [fi,j(t)]N×N . When num_dests is large, these varia-
tions are minimized, reducing the number of links assigned
to the more expensive core packet switch.

The parameter w influences cost both positively and neg-
atively. Larger values of w reduce the number of fibers and
core circuit switch ports, reducing cost. But larger values of
w also lead to more internal fragmentation, which is unused
capacity on a superlink resulting from insufficient demand.
The effect of w on system cost is related to the number of
flows between pods. In our configuration, between w = 4
and w = 8 was optimal.

Surprisingly, if communication is randomly distributed
over a varying number of destination pods, even statically
configuring a certain number of optical circuits can deliver
bandwidth equal to a fully provisioned electric switch, but
with significantly less cost, power, and complexity. Much of
this benefit stems from our ability to aggregate traffic at the
granularity of an entire pod. Certainly this simple analysis
does not consider adversarial communication patterns, such
as when all hosts in a pod synchronously shift traffic from
one pod to another at the granularity of individual packets.

4. DESIGN AND IMPLEMENTATION
This section describes the design and implementation of

Helios, its major components, algorithms, and protocols.

4.1 Hardware
Our prototype (Figs. 3 and 4) consists of 24 servers, one

Glimmerglass 64-port optical circuit switch, three Fulcrum
Monaco 24-port 10 GigE packet switches, and one Dell 48-
port GigE packet switch for control traffic and out-of-band
provisioning (not shown). In the WDM configuration, there
are 2 superlinks from each pod and the first and second
transceivers of each superlink use the 1270 nm and 1290 nm
CWDM wavelengths, respectively. The 24 hosts are HP Pro-
Liant DL380 rackmount servers, each with two quad-core
Intel Xeon E5520 Nehalem 2.26 GHz processors, 24 GB of
DDR3-1066 RAM, and a Myricom dual-port 10 GigE NIC.
They run Debian Linux with kernel version 2.6.32.8.

The 64-port Glimmerglass crossbar optical circuit switch
is partitioned into multiple (3 or 5) virtual 4-port circuit
switches, which are reconfigured at runtime. The Monaco
packet switch is a programmable Linux PowerPC-based plat-

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5

Monaco #2

Pod 2 Pod 3

Monaco #1

H H H H H H H H H H H H

End Hosts #1-24

Pod 0 Pod 1

H H H H H H H H H H H H

Monaco #3 Glimmerglass

Figure 3: Helios prototype with five circuit switches.

Core 0 Core 1 Core 2 Core 3

Monaco #2

Pod 2 Pod 3

Monaco #1

H H H H H H H H H H H H

End Hosts #1-24

Pod 0 Pod 1

H H H H H H H H H H H H

Monaco #3 Glimmerglass

Figure 4: Helios prototype with three circuit
switches. Dotted lines are w = 2 superlinks.

form that uses an FM4224 ASIC for the fast path. We par-
titioned two Monaco switches into two 12-port virtual pod
switches each, with 6 downlinks to hosts, 1 uplink to a core
packet switch, and 5 uplinks to core circuit switches. We
used four ports of a third Monaco switch as the core packet
switch. Virtualization allowed us to construct a more bal-
anced prototype with less hardware.

4.2 Software
The Helios software consists of three cooperating compo-

nents (Fig. 5): a Topology Manager (TM), a Circuit Switch
Manager (CSM), and a Pod Switch Manager (PSM). The
TM is the heart of Helios, monitoring dynamically shift-
ing communication patterns, estimating the inter-pod traffic
demands, and calculating new topologies/circuit configura-
tions. The TM is a user-level process totalling 5,049 lines
of Python with another 1,400 lines of C to implement the
TCP fixpoint algorithm (§4.3.2) and the Edmonds maxi-
mum weighted matching algorithm (§4.3.3). In our proto-
type, it runs on a single server, but in practice it can be
partitioned and replicated across multiple servers for scala-
bility and fault tolerance. We discuss the details of the TM’s
control loop in §4.3.

The CSM is the unmodified control software provided by
Glimmerglass, which exports a TL1 command-line interface.
In synchronous mode, the RPC does not return until after
the operation has completed. In asynchronous mode, the
RPC may return before the command has completed, and a
second message may be generated after the operation finally

Pod Switch

Manager

Topology

Manager

Circuit Switch

Manager

1. Measure traffic matrix

2. Estimate demand

3. Compute optimal topology

Optional:

 4. Notify down

 5. Change topology

 6. Notify up

Figure 5: Helios control loop.

completes. We used synchronous mode for our evaluation.
Neither mode has the ability to notify when the circuit con-
figuration has begun to change or has finished changing.

The PSM runs on each pod switch, initializing the pod
switch hardware, managing the flow table, and interfacing
with the TM. We chose Layer 2 forwarding rather than Layer
3 routing for our prototype, but our design is general to both
approaches. The PSM supports multipath forwarding using
Link Aggregation Groups (LAGs). We assign each desti-
nation pod its own LAG, which can contain zero or more
physical circuit switch uplink ports. If a LAG contains zero
ports, then the PSM assigns the forwarding table entries for
that destination pod to the packet switch uplink ports. The
number of ports in a LAG grows or shrinks with topology
reconfigurations. We use the Monaco switch’s default hash-
ing over Layer 2, 3 and 4 headers to distribute flows among
ports in a LAG.

A limitation of our prototype is that a pod switch cannot
split traffic over both the packet switch port as well as the
circuit switch ports for traffic traveling to the same destina-
tion pod. This is due to a software restriction in the Monaco
where a switch port cannot be a member of multiple LAGs.

Each PSM maintains flow counters for traffic originating
from its pod and destined to a different pod. Most packet
switches include TCAMs for matching on the appropriate
packet headers, and SRAM to maintain the actual counters.
The Monaco switch supports up to 16,384 flow counters.

The PSM is a user-level process, totalling 1,184 lines of
C++. It uses the Apache Thrift RPC library to commu-
nicate with the TM. It uses Fulcrum’s software library to
communicate with the Monaco’s FM4224 switch ASIC.

4.3 Control Loop
The Helios control loop is illustrated in Fig. 5.

4.3.1 Measure Traffic Matrix

The TM issues an RPC to each PSM and retrieves a list
of flow counters. It combines them into an octet-counter
matrix and uses the previous octet-counter matrix to com-
pute the flow-rate matrix. Each flow is then classified as
either a mouse flow (<15 Mb/s) or an elephant flow and
the mice are removed from the matrix. This static cutoff
was chosen empirically for our prototype, and more sophis-
ticated mice-elephant classification methods [17] can also be

0

1

3

1 1 3

0 3 1

3 0

2 1 0

Demand Matrix i

1

2

3

4

1 2 3 4

7(4)

9(4)

1

2

3

4

In

1

2

3

4

Out

Circuit Switch i

0

1

0

1 1 0

0 0 1

0 0

2 1 0

Demand Matrix i+1

1

2

3

4

1 2 3 4

7(4)

9(4)

1

2

3

4

Out

1

2

3

4

In

Circuit Switch i+1

0

3

1

0

1 0 0

0 0 1

0 0

0 1 0

1

2

3

4

1 2 3 4

Demand Matrix i+2

5(4)

1

2

3

4

In

1

2

3

4

Out

Circuit Switch i+2

Figure 6: Example of Compute New Topology with 4 pods and w = 4.

used. Intuitively, elephant flows would grow larger if they
could, whereas mice flows probably would not; and most of
the bandwidth in the network is consumed by elephants, so
the mice flows can be ignored while allocating circuits.

4.3.2 Estimate Demand

The flow-rate matrix is a poor estimator for the true inter-
pod traffic demand since it is heavily biased by bottlenecks
in the current network topology. When used directly, we
found that the topology changed too infrequently, missing
opportunities to achieve higher throughput. A better de-
mand estimator is the max-min fair bandwidth allocation
for TCP flows on an ideal non-oversubscribed packet switch.
These computed fixpoint values are the same values that the
TCP flows would oscillate around on such an ideal switch.
We use an earlier algorithm [2] to compute these fixpoint
values. The algorithm takes the flow-rate matrix as input
and produces a modified flow-rate matrix as output, which
is then reduced down to a pod-rate (demand) matrix by
summing flow rates between pairs of pods.

4.3.3 Compute New Topology

Our goal for computing a new topology is to maximize
throughput. We formulate this problem as a series of max-
weighted matching problems on bipartite graphs, illustrated
with an example in Fig. 6. Each individual matching prob-
lem corresponds to particular circuit switch, and the bipar-
tite graph used as input to one problem is modified before
being passed as input to the next problem. The first set
of graph vertices (rows) represents source pods, the second
set (columns) represents destination pods, and the directed
edge weights represent the source-destination demand or the
superlink capacity of the current circuit switch (in paren-
theses), whichever is smaller. The sum of the edge weights
of a particular maximum-weighted matching represents the
expected throughput of that circuit switch. Note that we
configure circuits unidirectionally, meaning that having a
circuit from pod i to pod j does not imply the presence of a
circuit from pod j to pod i, as shown in Fig. 6, stage i+ 1.

We chose the Edmonds algorithm [7] to compute the max-
weighted matching because it is optimal, runs in polynomial
time (O(n3) for our bipartite graph), and because there are
libraries readily available. Faster algorithms exist; however
as we show in §5.6, the Edmonds algorithm is fast enough
for our prototype.

4.3.4 Notify Down, Change Topology, Notify Up

If the new topology is different from the current topol-
ogy, then the TM starts the reconfiguration process. First,
the TM notifies the PSMs that certain circuits will soon be
disconnected. The PSMs act on this message by removing
the affected uplinks from their current LAGs, and migrating

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5

Cisco Nexus 5020 #2

Pod 0 Pod 1 Pod 2 Pod 3

Cisco Nexus 5020 #1

H H

End Hosts #1-24

Figure 7: Traditional multi-rooted network of packet
switches.

forwarding entries to the core packet switch uplinks if re-
quired. This step is necessary to prevent pod switches from
forwarding packets into a black hole while the topology is
being reconfigured. Second, the TM instructs the CSMs to
actually change the topology. Third, the TM notifies the
PSMs that the circuits have been re-established (but to dif-
ferent destination pods). The PSMs then add the affected
uplinks to the correct LAGs and migrate forwarding entries
to the LAGs if possible.

During both Notify Down and Notify Up, it is possible
for some packets to be delivered out of order at the receiver.
However, our experiments did not show any reduction in
throughput due to spurious TCP retransmissions.

5. EVALUATION
We evaluated the performance of Helios against a fully-

provisioned electrical packet-switched network arranged in
a traditional multi-rooted tree topology (Fig. 7). We expect
this traditional multirooted network to serve as an upper
bound for our prototype’s performance, since it does not
have to pay the overhead of circuit reconfiguration. We par-
titioned one Cisco Nexus 5020 52-port 10 GigE switch into
four virtual 12-port pod switches, with one virtual switch
per untagged VLAN. All six uplinks from each pod switch
were combined into a single Link Aggregation Group (Ether-
Channel), hashing over the Layer 2 and 3 headers by default.
We partitioned a second such switch into six virtual 4-port
core switches.

5.1 Communication Patterns
In this section, we describe the communication patterns

we employed to evaluate Helios. Since no data center net-
work benchmarks have yet been established, we initially
tried running communication-intensive applications such as

Average Throughput: 43.2 Gb/s
T

h
ro

u
g
h
p
u
t

(G
b
/s

)

Time (s)

Figure 8: PStride (4s) on Helios using the baseline
Fulcrum software.

Hadoop’s Terasort. We found that Hadoop only achieved a
peak aggregate throughput of 50 Gb/s for both configura-
tions of Helios and the experimental comparison network.
We sought to stress Helios beyond what was possible using
Hadoop, so we turned our attention to synthetic communi-
cation patterns that were not CPU or disk I/O bound. Each
pattern is parameterized by its stability, the lifetime in sec-
onds of a TCP flow. After the stability period, a new TCP
flow is created to a different destination. In all communica-
tion patterns, we had the same number of simultaneous flows
from each host to minimize differences in hashing effects.

Pod-Level Stride (PStride). Each host in a source pod
i sends 1 TCP flow to each host in a destination pod j =
(i+k) mod 4 with k rotating from 1 to 3 after each stability
period. All 6 hosts in a pod i communicate with all 6 hosts
in pod j; each host sources and sinks 6 flows simultaneously.
The goal of PStride is to stress the responsiveness of the
TM’s control loop, since after each stability period, the new
flows can no longer utilize the previously established circuits.

Host-Level Stride (HStride). Each host i (numbered
from 0 to 23) sends 6 TCP flows simultaneously to host
j = (i + 6 + k) mod 24 with k rotating from 0 to 12 after
each stability period. The goal of HStride is to gradually
shift the communication demands from one pod to the next.
HStride’s pod-to-pod demand does not change as abruptly
as PStride’s and should not require as many circuits to be
reconfigured at once. Intuitively, the aggregated pod-to-pod
demand is more stable than individual flows.

Random. Each host sends 6 TCP flows simultaneously
to one random destination host in a remote pod. After the
stability period, the process repeats and different destination
hosts are chosen. Multiple source hosts can choose the same
destination host, causing a hotspot.

5.2 Debouncing and EDC
While building our prototype, our initial measurements

showed very poor performance, with throughput barely above
that of the core packet switch used in isolation, when sta-
bility is less than 4 seconds. Fig. 8 shows a PStride pattern
with a stability of 4 seconds. Upon closer inspection, we
found phases of time where individual TCP flows were idle
for more than 2 seconds.

We identified debouncing as the source of the problem.
Debouncing is the technique of cleaning up a signal gener-

Average Throughput: 87.2 Gb/s

Time (s)

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

Figure 9: PStride (4s) on Helios after disabling the
2s “debouncing” feature.

Average Throughput: 142.3 Gb/s

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

Time (s)

Figure 10: PStride (4s) on Helios after disabling
both the 2s “debouncing” feature as well as EDC.

ated from a mechanical connection. When plugging a cable
into a switch, the link goes up and down rapidly over a
short time frame. Without debouncing, there is a potential
for these rapid insertion and removal events to invoke multi-
ple expensive operations, such as causing a routing protocol
to issue multiple broadcasts.

Debouncing works by detecting a signal and then wait-
ing a fixed period of time before acting on the signal. In
case of the Monaco switch, it was waiting two seconds be-
fore actually enabling a switch port after detecting the link.
Since switch designers typically assume link insertion and
removal are rare, they do not optimize for debouncing time.
However, in Helios, we rapidly disconnect and reconnect
ports as we dynamically reconfigure circuits to match shift-
ing communication patterns.

We programmed Fulcrum’s switch software to disable this
functionality. The result was a dramatic performance im-
provement as shown in Fig. 9. The periods of circuit switch
reconfiguration were now visible, but performance was still
below our expectations.

After many measurements, we discovered that the Layer 1
PHY chip on the Monaco, a NetLogic AEL2005, took 600 ms
after a circuit switch reconfiguration before it was usable.
Most of this time was spent by an Electronic Dispersion
Compensation (EDC) algorithm, which removes the noise

introduced by light travelling over a long strand of fiber.
We disabled EDC and our system still worked correctly be-
cause we were using relatively short fibers and transceivers
with a relatively high power output. After disabling EDC,
performance again improved (Fig. 10). Now each change in
flow destinations and corresponding circuit switch reconfig-
uration was clearly visible, but the temporary periods of lost
capacity during circuit reconfigurations were much shorter.
Even with EDC disabled, the PHY still took 15ms after first
light before it was usable. In general, our work suggests op-
portunities for optimizing PHY algorithms such as EDC for
the case where physical topologies may change rapidly.

One problem with multi-rooted trees, including Helios,
is that throughput is lost due to hotspots: poor hashing
decisions over the multiple paths through the network. This
can be seen in Fig. 10 where the heights of the pillars change
after every stability period. These types of hashing effects
should be less pronounced with more flows in the network.
Additionally, complementary systems such as Hedera [2] can
be used to remap elephant flows to less congested paths.

5.3 Throughput versus Stability
Having considered some of the baseline issues that must be

addressed in constructing a hybrid optical/electrical switch-
ing infrastructure, we now turn our attention to Helios

performance as a function of communication characteristics.
The most important factor affecting Helios performance is
inter-pod traffix matrix stability, which is how long a pair of
pods sustains a given rate of communication. Communica-
tion patterns that shift too rapidly would require either too
many under-utilized circuits or circuit-switching times not
available from current technology.

Fig. 11 shows the throughput delivered by Helios for the
communication patterns in §5.1. Each bar represents the
mean across 5 trials of the average throughput over 60 sec-
ond experiments. We varied the stability parameter from
0.5 seconds up to 16 seconds. First, we observed that higher
stability leads to higher average throughput because more
stable communication patterns require fewer circuit switch
reconfigurations. Second, the throughput achieved by He-

lios with WDM is comparable to the throughput achieved
without WDM. This indicates that WDM may be a good
way to reduce the cost, power consumption, and cabling
complexity of a data center network without hurting perfor-
mance for certain communication patterns. Third, for the
same value of stability, throughput is generally better for
HStride compared to PStride since the inter-pod traffic ma-
trix is more stable. This suggests that even for low stability
of individual flows, Helios can still perform well.

5.4 Unidirectional Circuits
We designed Helios to use either unidirectional circuits

or bidirectional circuits. If port A in pod 1 connects to port
B in pod 2, then bidirectional circuits would have port B in
pod 2 connected back to port A in pod 1 through another cir-
cuit. Traditional approaches to establishing circuits employ
bidirectional circuits because of the assumption of full du-
plex communication. However, unidirectional circuits have
no such constraint and can better adapt to asymmetric traf-
fic demands. For example, when transferring a large index
from one pod to another, most of the traffic will flow in one
direction.

This is illustrated in Fig. 12, which shows throughput for

0

50

100

150

200

0

50

100

150

200

0.5s 1s 2s 4s 8s 16s

0.5s 1s 2s 4s 8s 16s

Figure 11: Throughput as a function of stability.

a PStride communication pattern with 4 seconds of stabil-
ity. Throughput with unidirectional circuits closely matches
that of the traditional network during the stable periods,
whereas bidirectional circuit scheduling underperforms when
the pod-level traffic demands are not symmetric. During
intervals with asymmetric communication patterns, bidirec-
tional circuit scheduling is only half as efficient as unidirec-
tional scheduling in this experiment. The higher throughput
of the traditional network comes from two factors: first, our
prototype does not split traffic between circuit switches and
packet switches, and second, the traditional network does
not suffer from temporary capacity reductions due to circuit
switch reconfigurations. All other Helios results in this pa-
per use unidirectional circuits.

The 10G Ethernet standard includes a feature that com-
plicates unidirectional circuits. If a Layer 1 receiver stops
receiving a valid signal, it shuts off its paired Layer 1 trans-
mitter. The assumption is that all links are bidirectional, so
the loss of signal in one direction should disable both sides of
the link in order to simplify fault management in software.
In practice, we did not see any performance degradation
from this feature since we reconfigure a set of circuits in
parallel, and since we keep all links active. However, this
feature increases the size of the failure domain: if one trans-
ceiver fails, all other transceivers in the same daisy-chained
cycle are disabled. This problem can be solved by having the
TM connect a failed transceiver in loopback, thus preventing
it from joining a cycle with other transceivers.

5.5 How Responsive is Helios?
The length of the control loop is the most important fac-

tor in determining how quickly Helios can react to changing
communication patterns. As discussed in §4.3, the control
loop is composed of three mandatory stages (1-3) executed
every cycle, and three optional stages (4-6) executed only
when changing the topology (see Fig. 5). Measurements of
our prototype, summarized in Fig. 13, show that the manda-
tory portion of a cycle takes approximately 96.5 ms, whereas
the optional portion takes an additional 168.4 ms.The two

Traditional Network: 171 Gb/s

Unidirectional Scheduler: 142 Gb/s

Bidirectional Scheduler: 100 Gb/s

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

Time (s)

Figure 12: Unidirectional circuit scheduling outper-
forms bidirectional when the pod-level traffic de-
mands are not symmetric.

Figure 13: Profile of the Helios control loop.

primary bottlenecks are stage 1 (Measure Traffic Ma-

trix) and stage 5 (Change Topology).

Analysis of Measure Traffic Matrix.
The Monaco switch uses a embedded PowerPC processor

with a single core. Since each Monaco implements two pod
switches, the 77.4 ms is actually two sequential RPCs of
38.7 ms each. Our measurements showed that it took 5 µs
to read an individual flow counter. Since each pod switch
maintains 108 flow counters, this accounts for 0.54 ms of the
38.7 ms. Most of the 38.7 ms is actually being spent serial-
izing the flow counter measurements into an RPC response
message.

Analysis of Change Topology.
The Glimmerglass switch is advertised as having a 25 ms

switching time. We were curious as to why our measure-
ments showed 168.4 ms. We connected one of the Glim-
merglass output ports to a photodetector, and connected
the photodetector to an oscilloscope. Fig. 14 shows a time
series measurement of the output power level from the Glim-
merglass switch during a reconfiguration event. The power
from a transceiver is redirected to a different output switch
port at time t = 0. At time t = 12.1, the power from a
transceiver in a different pod switch is redirected to this
output port. The 12 ms switching time was actually twice
as fast as advertised. There is an additional period of me-
chanical ringing that occurs while the MEMS motor settles
into place, but this can be taken advantage of in data center
networks since the minimum signal level during this time is
still high enough to send data.

When our PHY overhead of 15 ms (with EDC disabled)
is added to this measurement of 12 ms, the result should
be a switching time of 27 ms. Working with Glimmerglass,

-2.5

-2

-1.5

-1

-0.5

0

0.5

-1
1
.5

-9
.5

-7
.5

-5
.5

-3
.5

-1
.5

0
.5

2
.5

4
.5

6
.5

8
.5

1
0
.5

1
2
.5

1
4
.5

1
6
.5

1
8
.5

2
0
.5

2
2
.5

2
4
.5

2
6
.5

2
8
.5

3
0
.5

3
2
.5

3
4
.5

3
6
.5

Figure 14: Measurement of optical circuit switch
during reconfiguration.

Scheduler Runtime (in ms)
Number of pods Bidirectional Unidirectional

4 0.05 0.02
8 0.19 0.07
16 1.09 0.32
32 3.94 1.10
64 15.01 3.86
128 118.11 29.73

Table 2: Computation time (ms) of unidirectional
and bidirectional circuit scheduler for various num-
ber of pods.

we found that the synchronous RPC mechanism actually
takes approximately 170 ms for internal processing before
returning. We measured the asynchronous RPC mechanism
to take only 30 ms, so a higher-performance prototype could
use asynchronous RPCs.

5.6 How Scalable is Helios?
Our algorithm for demand estimation is similar to ear-

lier work [2]; its runtime has been measured to be less than
100ms for large data centers, with additional speedups avail-
able through parallelization across multiple cores or servers.
We further measured the overhead of circuit scheduling, an-
other important component of the control loop. We observe
in Table 2 that the runtime of the circuit scheduling phase
is moderate, less than 4ms for unidirectional circuits and 64
pods.

By addressing overheads in our own software as well as
existing packet switch and optical circuit switch software,
we believe it should be possible to reduce the length of the
control loop to well below 100ms. However, some interest-
ing optimizations would be required. For instance, reading
a single hardware flow counter in our Fulcrum switch takes
5 us using its embedded processor. This means that reading
the entire set of 16,384 counters would take more than 80
ms given the existing software/hardware structure. We be-
lieve that developments such as OpenFlow [19] will provide
incentives to integrate higher-speed commodity processors
into switch hardware and provide efficient APIs for collect-
ing statistics from switches.

6. LESSONS LEARNED
An important lesson we learned is that much of the net-

working equipment we used to construct our Helios proto-
type was not engineered for our particular use cases. In case
of the Fulcrum Monaco switch, the under-powered embed-
ded processor took an unreasonably long time to transfer the
flow counters to the Topology Manager (38.7 ms) compared
to the time to simply read the flow counters locally (0.5 ms).
If the Monaco’s switch ASIC could perform flow classifica-
tion locally [17] then perhaps this could cut down on the
communication overhead. Additionally, if the debouncing
feature was optional then software modifications would not
be necessary.

In case of the NetLogic PHY, the overhead of EDC is
likely acceptable if reconfigurations are only required once
every 10 seconds or so. However, more bursty communica-
tion patterns, likely to be common in data center settings,
would require a faster EDC algorithm.

In case of the Glimmerglass switch, the RPC overheads
seem to be unnecessarily long and perhaps easy to fix. The
12.1 ms switching time looks to be fast enough for the peri-
ods of stability we evaluated (500 ms and longer). But even
switching times as low as 1 ms have been demonstrated [16],
so additional optimizations might be possible.

We also learned that there is a subtle tradeoff between
performance and fairness. For example, certain communi-
cation patterns can lead to poor but fair performance, or
excellent but unfair performance when considering individ-
ual pod-level traffic demands. Striking the appropriate bal-
ance is a question of policy. The trade off is fundamentally
caused by the fact that circuit switches have large switching
times, and for certain communication patterns, fairness may
have to be sacrificed for good performance or throughput by
avoiding circuit reconfigurations.

Finally, Ethernet’s fault management features assume bidi-
rectional links, yet Helios achieves better performance us-
ing unidirectional circuits. It seems promising to extend
Ethernet to the case where an out-of-band network could be
used for endpoints to communicate their link status, thus re-
moving the bidirectional assumption. This would make fault
detection and recovery techniques in the Topology Manager
less important.

7. RELATED WORK
Combining circuit switching with packet switching to take

advantage of the relative merits of each is not new. For ex-
ample, the pioneering work on ATM Under IP [20] showed
how to amortize the cost of virtual circuit establishment over
the long flows that would most benefit from it. Relative to
this work, we consider the special characteristics of data cen-
ter deployments, optical interconnects, and flow aggregation
through WDM.

A hybrid optical electrical interconnect was previously
proposed for high performance computing [5]. The under-
lying motivation is similar in that certain HPC applications
establish regular communication with remote partners and
would benefit from circuit switching. Relative to Helios,
this effort considers circuit establishment on a host to host
basis rather than taking advantage of the available aggre-
gation available in larger deployments at the granularity of
pods. Further, the decision to switch between packet and
circuit is made in the end hosts, requiring either operating

system modification or compiler support. Helios transpar-
ently switches communication at the core layer in the net-
work based on observations of dynamically changing com-
munication patterns.

More recently, Wang et al. [28] also proposed a hybrid
electrical optical switch for data center deployments. The
fundamental difference between our efforts is that Wang et
al. consider the end hosts to be part of the routing/switching
infrastructure. End hosts perform output queuing of indi-
vidual flows, waiting to gather enough data to leverage an
available circuit to a remote host. This approach requires
modifications to the end hosts and can significantly increase
latency, an important concern for many data center applica-
tions. Similarly, they estimate the traffic matrix by observ-
ing queue lengths across all end hosts whereas we leverage
existing flow counters in commodity switches to determine
the traffic matrix. Finally, we demonstrate the benefits of
aggregation through WDM in data center environments and
have completed a full implementation of Helios using an
optical circuit switch.

In a related effort, Kandula et al. [13] propose using high-
frequency, short-distance wireless connectivity between data
center racks to deliver the necessary bandwidth among the
nodes that dynamically require it. Optical and wireless in-
terconnects provide different trade offs. For example, wired
optical interconnects can deliver fundamentally more band-
width at lower power consumption, especially when lever-
aging WDM. Wireless may be easier to deploy since it does
not require any wiring, though management and predictabil-
ity remain open questions. Our Helios implementation and
analysis suggests significant opportunity in the short term.

MDCube [29] also considers interconnects for modular
data centers. Each container uses BCube [10] internally
and MDCube interconnects the containers using electrical
packet switches. Relative to this effort, we explore the cost,
complexity, and energy benefits of a hybrid electrical op-
tical interconnect and hence our work can be considered as
potentially delivering additional benefits to MDCube.

Terabit Burst Switching (TBS) [25] also employs WDM to
increase link capacity. The primary difference is that TBS
is based on the concept of a burst, i.e., a relatively large
packet. TBS couples the control plane with the data plane
by having each Burst Switching Element decode a special
packet that includes burst length. This packet may involve
aggregation over multiple flows all headed to the same des-
tination by performing appropriate buffering at the ingress
points in the network. In contrast, Helios targets data cen-
ter deployments with small RTTs and latency-sensitive ap-
plications. A centralized Topology Manager implements the
control plane and unilaterally reconfigures the underlying
topology based on estimated traffic demands. Decoupling
the control plane from the data plane allows the network to
run with unmodified hardware and software.

Keslassy et al. [14] designed a multi-terabit, multi-chassis
Internet router using optical switching and WDM to reduce
cabling complexity and required port count. Relative to
this effort, we dynamically reconfigure the optical circuit el-
ements to match dynamically changing communication pat-
terns whereas Keslassy et al. used multiple fixed configu-
rations to perform a variant of Valiant Load Balancing to
distribute traffic among multiple parallel optical crossbars.

PIM [3] and iSLIP [18] schedule packets or cells across a
crossbar switch fabric over very short timescales. The cross-

bar topology is fixed and the goal is to maximize throughput
by finding a series of maximal matchings from input ports to
output ports. Likewise, Helios shares the same goal of max-
imizing throughput, except the technique is to modify the
underlying network topology to provide additional physical
links between pod pairs with higher traffic demands. Due to
the longer circuit switching times, the matching must neces-
sarily occur over longer timescales and with coarser-grained
information about traffic demands.

8. CONCLUSION
This paper explores the implications of two recent paral-

lel trends. First, MEMS-based optical circuit switches com-
bined with emerging commodity WDM transceivers deliver
scalable per-port bandwidth with significantly less cost and
power consumption than electrical packet switches. Second,
data centers are increasingly being constructed from pods
consisting of hundreds to thousands of servers. We present
the architecture of Helios, a hybrid electrical/optical switch.
We find that in cases where there is some inter-pod commu-
nication stability, Helios can deliver performance compa-
rable to a non-blocking electrical switch with significantly
less cost, energy, and complexity. In this paper, we explore
trade offs and architectural issues in realizing these benefits,
especially in the context of deployment with unmodified end
hosts and unmodified switch hardware.

9. ACKNOWLEDGEMENTS
The authors acknowledge the support of the Multiscale

Systems Center, HP’s Open Innovation Office, the UCSD
Center for Networked Systems, and also support from the
National Science Foundation through CIAN NSF ERC un-
der grant #EEC-0812072 and an MRI grant CNS-0923523.
We would like to thank Drs. Haw-Jyh Liaw and Cristian
Estan of NetLogic, Inc. for their help configuring the PHY
transceivers to disable EDC.

10. REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity, Data Center Network Architecture. In ACM
SIGCOMM ’08.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data Center
Networks. In NSDI ’10.

[3] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker.
High-speed Switch Scheduling for Local-area Networks. ACM
Trans. on Computer Systems (TOCS), 11(4):319–352, 1993.

[4] L. Aronson, B. Lemoff, L. Buckman, and D. Dolfi. Low-Cost
Multimode WDM for Local Area Networks up to 10 Gb/s.
IEEE Photonics Technology Letters, 10(10):1489–1491, 1998.

[5] K. J. Barker, A. Benner, R. Hoare, A. Hoisie, A. K. Jones,
D. K. Kerbyson, D. Li, R. Melhem, R. Rajamony, E. Schenfeld,
S. Shao, C. Stunkel, and P. Walker. On the Feasibility of
Optical Circuit Switching for High Performance Computing
Systems. In SC ’05.

[6] B. Canney. IBM Portable Modular Data Center Overview.
http://www-05.ibm.com/se/news/events/datacenter/pdf/PMDC_
Introducion_-_Brian_Canney.pdf, 2009.

[7] J. Edmonds. Paths, trees and flowers. Canadian Journal on
Mathematics, pages 449–467, 1965.

[8] N. Farrington, E. Rubow, and A. Vahdat. Data Center Switch
Architecture in the Age of Merchant Silicon. In IEEE Hot
Interconnects ’09.

[9] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network. In ACM
SIGCOMM ’09.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: A High Performance,
Server-Centric Network Architecture for Modular Data
Centers. In ACM SIGCOMM ’09.

[11] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: A
Scalable and Fault-Tolerant Network Structure for Data
Centers. In ACM SIGCOMM ’08.

[12] J. R. Hamilton. An Architecture for Modular Data Centers. In
CIDR ’07.

[13] S. Kandula, J. Padhye, and P. Bahl. Flyways To De-Congest
Data Center Networks. In ACM Hotnets ’09.

[14] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz,
O. Solgaard, and N. McKeown. Scaling Internet Routers Using
Optics. In ACM SIGCOMM ’03.

[15] A. V. Krishnamoorthy. The Intimate Integration of Photonics
and Electronics. In Advances in Information Optics and
Photonics. SPIE, 2008.

[16] L. Y. Lin, E. L. Goldstein, and R. W. Tkach. Free-Space
Micromachined Optical Switches for Optical Networking. IEEE
J. Selected Topics in Quantum Electronics, 5(1):4–9, 1999.

[17] Y. Lu, M. Wang, B. Prabhakar, and F. Bonomi. ElephantTrap:
A Low Cost Device for Identifying Large Flows. In IEEE Hot
Interconnects ’07.

[18] N. McKeown. The iSLIP Scheduling Algorithm for
Input-Queued Switches. IEEE/ACM Trans. on Networking,
7(2):188–201, 1999.

[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation in Campus Networks. ACM SIGCOMM
CCR, 2008.

[20] P. Newman, G. Minshall, and T. Lyon. IP Switching—ATM
under IP. IEEE/ACM Trans. on Networking, 6(2):117–129,
1998.

[21] R. F. Pierret. Semiconductor Device Fundamentals. Addison
Wesley, 1996.

[22] K. Psounis, A. Ghosh, B. Prabhakar, and G. Wang. SIFT: A
Simple Algorithm for Tracking Elephant Flows, and Taking
Advantage of Power Laws. In 43rd Allerton Conference on
Communication, Control and Computing, 2005.

[23] R. Ramaswami and K. Sivarajan. Optical Networks: a
Practical Perspective. Morgan Kaufmann, 2002.

[24] M. F. Tung. An Introduction to MEMS Optical Switches.
http://eng-2k-web.engineering.cornell.edu/engrc350/

ingenuity/Tung_MF_issue_1.pdf, 2001.

[25] J. S. Turner. Terabit Burst Switching. J. of High Speed
Networking, 8(1):3–16, 1999.

[26] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P.
Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil,
and J. H. Ahn. Corona: System Implications of Emerging
Nanophotonic Technology. In ISCA ’08.

[27] K. V. Vishwanath, A. Greenberg, and D. A. Reed. Modular
Data Centers: How to Design Them? In Proc. of the 1st ACM
Workshop on Large-Scale System and Application
Performance (LSAP), 2009.

[28] G. Wang, D. G. Andersen, M. Kaminsky, M. Kozuch, T. S. E.
Ng, K. Papagiannaki, M. Glick, and L. Mummert. Your Data
Center Is a Router: The Case for Reconfigurable Optical
Circuit Switched Paths. In ACM HotNets ’09.

[29] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. MDCube: A High
Performance Network Structure for Modular Data Center
Interconnection. In ACM CoNEXT ’09.

[30] Arista 7148SX Switch.
http://www.aristanetworks.com/en/7100_Series_SFPSwitches.

[31] Calient Networks. http://www.calient.net.

[32] Cisco Data Center Infrastructure 2.5 Design Guide.
www.cisco.com/application/pdf/en/us/guest/netsol/ns107/

c649/ccmigration_09186a008073377d.pdf.

[33] HP Performance Optimized Datacenter.
ftp://ftp.hp.com/pub/c-products/servers/pod/north_america_
pod_datasheet_041509.pdf.

[34] International Technology Roadmap for Semiconductors, 2007.

[35] SGI ICE Cube. http://www.sgi.com/pdfs/4160.pdf.

[36] Sun Modular Datacenter. http://www.sun.com/service/sunmd.

[37] Voltaire Vantage 8500 Switch. http:
//www.voltaire.com/Products/Ethernet/voltaire_vantage_8500.

