Cooperative Packet Scheduling via Pipelining in 802.11
Wireless Networks

Ramana Rao Kompella, Sriram Ramabhadran, Ishwar Ramani, Alex C. Snoeren
University of California, San Diego
La Jolla, CA 92093

{ramana,sriram,ishwar,snoereni@cs.ucsd.edu

ABSTRACT

The proliferation of 802.11a/b/g based wireless devices has
fueled their adoption in many domains — some of which
are unforseen. Yet, these devices lack native support for
some of the advanced features (such as service differentia-
tion, etc.) required in specific application domains. A subset
of these features relies on cooperative scheduling whereby
nodes cooperate among each other to effectively manage re-
sources such as power, throughput and interference in wire-
less networks. The trajectory of evolution in these devices
has been primarily through new extension standards (such
as 802.11e/s etc.) that offer support for these features.
Plagued with long design cycles and cost overhead to up-
grade, this process of upgrading creates an uphill task to
users who want to use their wireless devices for different
applications. In this paper, we argue that such coopera-
tive scheduling extensions can be supported using a new
layer on top of the existing MAC layer. We propose a 2%—
stage pipeline architecture as a generic mechanism to create
such domain specific extensions and propose two such proto-
cols, SPARTA (power conservation) and ARGOS (through-
put guarantees) over the native 802.11/b/g MAC layer. Us-
ing a prototype we built over open source 802.11 wireless
device driver, we present some preliminary evaluation of the
architecture.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Network Ar-
chitecture and Design — Wireless communication

General Terms
Algorithms, Design

Keywords

Cooperative scheduling, 802.11 wireless networks, Quality
of Service, streaming video, proportional allocation, power
conservation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

S GCOMM’ 05 Workshops, August 22-26, 2005, Philadelphia, PA, USA.
Copyright 2005 ACM 1-59593-026-4/05/0008 ...$5.00.

1. INTRODUCTION

Wireless networks based on the 802.11 suite of protocols
are increasingly becoming commonplace in different comput-
ing environments ranging from enterprises to homes. The
total WLAN equipment market comprising of 802.11a/b/g
is forecast to grow from 26 million devices shipped in 2003
to more than 160 million devices by 2006 [3]. These three
protocols operate in exactly the same fashion, differing only
in the supported set of transmission rates, channel codes,
and frequency band. Together, these protocols are by far
the most popular among the 802.11 family and, hence, form
the de facto standard in wireless technology.

The explosive growth in 802.11-based wireless devices has
resulted in their application to a rich set of scenarios—each
with its own set of challenges and requirements. For exam-
ple, wireless devices are increasingly finding place in home
networks to support emerging streaming multimedia ser-
vices as well as traditional broadband-access applications.
In these scenarios, providing throughput guarantees to mul-
timedia applications such as video-on-demand, VolP, etc., is
an important challenge that remains to be addressed. An-
other application of 802.11-based devices is in community
networks and other mesh networks [11]. In these multi-hop
situations, reducing the interference caused by individual
nodes is a key challenge. In general, power is an extremely
critical resource in wireless networks. This is true especially
in ad hoc wireless networks or sensor networks, where the
nodes are left unmanaged for extended periods of time.

Hence, the long-term success of 802.11-based wireless de-
vices in varying application domains hinges on the develop-
ment of novel mechanisms to manage three critical elements:
throughput, interference and power. Effectively managing
these three aspects requires cooperation from participating
nodes. Service differentiation in wireless networks, for ex-
ample, requires cooperation from nodes transmitting low-
priority traffic to allow faster access by nodes transmit-
ting high priority traffic. Reducing interference requires
nodes to schedule medium accesses to avoid collisions so that
channel can be utilized more efficiently. Similarly, many
distributed power-saving mechanisms require cooperation
among the participating wireless nodes [10]. In essence, each
of these domain-specific mechanisms are instances of cooper-
ative scheduling: this collaboration between wireless nodes
to achieve a particular goal is the main subject of our paper.

One way to provide cooperative scheduling in different
domains is to update the protocol at the firmware level.
Indeed, such an approach has been taken by the emerging
802.11e standard to support service differentiation, 802.11s

for mesh networks, and so on. However, designing new MAC
protocols to support advanced features is both

e non-trivial: Every new protocol requires extensive de-
sign cycles, costs and a huge turn-around-time; and

e non-exhaustive: 1t is difficult to devise a protocol that
can cater to all applications or anticipate future re-
quirements.

Regardless, new protocols do not address the shortcomings
of the existing installed base of legacy devices, leaving them
unsuitable for the new application domains.

In this paper, we posit that, in order to fill this divide
between existing technology and new requirements, cooper-
ative scheduling functionality needs to be implemented as far
as possible in software. The reason is that software upgrades
are much faster to implement and can interoperate with the
existing install base, resulting in a much cheaper evolution-
ary path. On the other hand, implementing MAC proto-
col features in software requires support from the operating
system (such as fine-grained timers, low kernel scheduling
overheads, etc.) and, hence, can potentially limit the granu-
larity of these features. This particular philosophy of imple-
menting features as far as possible in software has been pro-
posed before in many different scenarios. For example, soft-
ware defined radios [6] attempt to shift critical functionality
performed by typical wireless devices into software leaving
only bare minimum baseband processing—signal amplifica-
tion and modulation—to the hardware. To the best of our
knowledge, we are the first to apply this philosophy along
with a concrete mechanism to perform cooperative schedul-
ing over 802.11a/b/g based wireless networks.

We propose to implement cooperative scheduling proto-
col extensions using an 802.11 extension layer interposed
between the network layer and the 802.11 MAC layer in the
wireless card device driver. This extension layer enables the
implementation of many advanced medium access mecha-
nisms that may be required in specific application domains.
In this paper, we describe a novel 2%-stage pipeline imple-
mented in our 802.11 extension layer that supports the de-
ployment of two different domain-specific cooperative sched-
ulers. We briefly outline the implementation of SPARTA (to
achieve power conservation) and ARGOS (to provide service
differentiation) to demonstrate the broad applicability of our
pipeline design.

2. ARCHITECTURE

In this section, we formalize the notion of cooperative
scheduling in the 802.11 extension layer architecture. Fun-
damentally, cooperative scheduling involves three steps:

e [stimation. Each node must independently identify
their own medium access requirements by estimating
their current and future traffic demands.

e Load exchange. This local knowledge is propagated
to each other via explicit or implicit mechanisms so
each participating wireless node has global knowledge
about the requirements of other nodes.

e Scheduling. Finally, using this global knowledge, each
node can individually compute a global schedule and
schedule packets accordingly.

At first glance, it might appear that cooperative schedul-
ing can be best implemented at an access point (at least in
wireless infrastructure networks). Indeed, the 802.11 PCF
(Point Coordination Function) is a form of centralized schedul-
ing that allows the access point to arbitrate the channel
amongst participating nodes. However, there are many rea-
sons why this might not be entirely desirable. First, access
points are dedicated devices with specific features and it is
not always easy to upgrade these access points. Second,
the access points are not present in all scenarios such as
multi-hop mesh networks or in ad hoc networks. Hence, our
approach is to perform distributed scheduling using cooper-
ation amongst participating nodes.

2.1 802.11 extension layer

The abstraction of cooperative scheduling is intertwined
with the regular MAC layer functions as it shares the wire-
less medium between various nodes. Of course, in theory,
cooperative scheduling can be performed at the applica-
tion layer or through a generic interposition mechanism (us-
ing, say, TESLA [12], WRAPI [2]), as coordination packets
themselves could be injected at any layer. That means, how-
ever, that each application would have to be re-written with
an API that can support cooperative scheduling among ap-
plications. Besides, the MAC layer multiplexes packets from
disparate applications before transmitting them on the wire-
less medium. This makes it the ideal layer to implement
globally consistent scheduling disciplines amongst all par-
ticipating wireless nodes.

One of our main objectives is to implement new schedul-
ing algorithms (and other network functions that require
scheduling) with minimal requirements on the device itself.
Thus, the assumptions we make about the firmware of com-
modity 802.11 Wireless cards can be summarized as follows.

o Wireless cards support setting the transmit parame-
ters of a card such as transmit rate, power, etc.

e Wireless cards implement the basic 802.11 DCF (Dis-
tributed Coordination Function) using CSMA /CA pro-
tocol.

e The MAC layer performs framing of the packets and
implements the basic 802.11 state machine [7] (MAC
level retransmissions, ACK generation etc.).

A typical wireless driver exports the following API for
interaction with the network layer of the protocol stack:
packet_tx() for transmission of a packet by the upper layer,
packet_rx() for upper-layer packet reception, and, finally,
stop_queue() and wake_queue() for transmit flow control.

Architecturally, our 802.11 extension layer is implemented
as a sub-layer within the 802.11 MAC layer as shown in
Figure 1. The packet transmit and receive calls from the
upper layers to the MAC layer pass through the 802.11 ex-
tension layer where appropriate cooperative scheduling pro-
tocol (such as ARGOS or SPARTA) can be implemented. In
order to perform scheduling, the 802.11 extension layer can
optionally inject new control packets into the transmit path
and receive control packets from other nodes through the
receive path. Hence, both the packet_tx() and packet_rx()
calls are trapped by the 802.11 extension layer to perform
scheduling. The 802.11 extension layer also interacts with
the upper layers to implement back-pressure mechanism to
throttle the rate of packets sent by the upper layers.

| Network Layer |

packet packet stop wake
tx rx queue queue

|

v | |
| 802.11 Extension Layer |
I

Firmware
Configuration

v

| 802.11 MAC Layer |

| CARD FIRMWARE |

Figure 1: 802.11 extension layer architecture.

Usually, the device driver performs configuration of pa-
rameters such as rate of transmission, and transmit power
on a per-packet basis taking into account the channel condi-
tions such as signal strength. It normally selects the fastest
rate code available subject to a maximum bit error rate and
the minimum power required to transmit a packet at that
rate. Given that scheduling is typically dependent on the
rate and power of transmission, the 802.11 extension layer
assumes control of these parameters. However, it controls
these parameters while adhering to bounds identified by the
device driver.

2.2 A2l-stage pipeline for cooperative
scheduling

The three steps in cooperative scheduling (estimation,
load exchange and scheduling) are implemented as a 2%—
stage pipeline. All participating nodes are time-synchronized
(we discuss time synchronization in Section 4.1) to advance
in a globally synchronized pipeline. Figure 2 shows the
pipelined architecture for scheduling packets. In the esti-
mation stage, each node estimates its traffic requirements
using either explicit buffering (hence, delaying packets using
a buffer) or through other history-based estimation methods
(suitable for non-abrupt changes in traffic). This informa-
tion is then communicated in the load exchange stage explic-
itly by injecting a “broadcast” packet into the transmit path.
In the scheduling stage, each node has obtained knowledge
about each node’s requirement in order to arrive at a global
schedule according to that particular cooperative scheduling
policy.

The three stages of the pipeline are equal in duration.
However, as can be seen from Figure 2, the first half of the
load exchange stage overlaps with the estimation stage. The
purpose of the load exchange stage is to exchange state infor-
mation among participating nodes. Thus, a node broadcasts
its load exchange packet at the end of the estimation stage.
However, due to queuing delays and imperfect time synchro-
nization, it may receive load exchange packets from other
nodes, either sometime earlier or later than this. Therefore,
the load exchange phase actually starts midway through the
estimation phase and continues till the start of the schedul-
ing stage. Due to the overlap with the estimation stage,
the load exchange stage contributes only a half a stage to

Estimation

| Load exchange

Cyclel T
Scheduling
Broadcast |oad exchange packet
Estimation
Cycle2 | Load exchange
Scheduling
Figure 2: 2%-stage pipeline architecture. Each

pipeline stage is equal in duration, but estimation
stage and load exchange stage for a given cycle over-
lap with each other.

the total latency of the pipeline; hence the name 2%-stage
pipeline. We note that the maximum delay experienced by a
packet that arrives at the beginning of the estimation stage
(if estimation is done using buffering) is 13 stages.

2.3 Prototype implementation

We have implemented the extension layer on a Linux plat-
form running 2.4.28 kernel. For the 802.11 interface, we
chose to use the Netgear WAG511 a/b/g card using the
Atheros chipset. This chipset is well supported by a popu-
lar open source driver (madwifi [4]). The madwifi driver has
been modified to make the necessary calls to the extension
layer. Asshown in Figure 1, the packet send and receive calls
and the queue management functions were modified to be
routed through the extension layer. This minimal modifica-
tion makes the extension layer code portable across different
device drivers.

We implemented the 2%—stage pipeline (shown in Figure 2)
using Linux kernel timers. The implementation consists of
a core handler that can both schedule as well as process
various events. Upon a packet transmit call from the up-
per layer, the core handler buffers the packet and activates
the pipeline (if inactive) by scheduling two timers — estima-
tion timer and load exchange timer that signify the com-
pletion of estimation stage and load exchange stage respec-
tively. When the estimation timer expires, control returns
back to the core handler where it performs two actions; first,
it broadcasts a load exchange packet containing information
about its own load and second, if there are packets to send
this cycle, it keeps the pipeline active by scheduling both
these timers again, otherwise stops the pipeline. In the
receive path, load exchange packets broadcast from other
nodes in the radio range are processed by the core handler.
On the expiry of load exchange timer, the pipeline enters
the scheduling stage and the core handler computes a global
schedule based on load exchange packets received so far, and
schedules packets accordingly.

3. APPLICATIONS

The goal of our 802.11 extension layer is to implement
many different applications easily in the 2%—stage pipelined
architecture. In this section, we discuss how two different
applications, SPARTA and ARGOS, can be implemented in
this architecture.

3.1 SPARTA

In many ad hoc and sensor networks, power is the most
critical resource for wireless devices as they are usually left
unmanaged for extended periods of time. In many of these
devices, transmit power is a significant fraction of the total
power consumption of the device. In such devices, the en-
ergy required to transmit a packet increases exponentially
with the rate of transmission. This observation can be ex-
ploited to conserve power by scheduling packet transmis-
sions at the lowest possible rate [15]. We previously pro-
posed SPARTA, a distributed MAC protocol that harnesses
this tradeoff [10]. SPARTA uses a pipeline architecture sim-
ilar to our 2%—stage pipeline to first estimate the rate at
which a node is generating traffic by buffering packets and
then scheduling packet transmissions at an appropriate rate.

SPARTA’s basic online distributed algorithm has one seri-
ous implementation challenge: the number of packets buffered
in a pipeline stage is inferred by other nodes based on the
transmission duration. However, such a scheme can suffer
from inaccuracy when there are only a small set of discrete
bandwidth levels available, as is the case in many 802.11b-
based networks. Besides, SPARTA requires setting the cards
in promiscuous mode to obtain all the packets on the wireless
medium. Finally, the algorithm itself takes atleast n packets
to be transmitted in order for the total rate to converge (n
is the number of participating nodes). Using our 2%-stage
pipeline, however, we can share the load information by ex-
plicit transmit messages that increases the accuracy of the
estimates (of course leading to higher overheads due to ex-
plicit broadcast packets) and does not require the cards to
be configured in promiscuous mode.

3.2 ARGOS

To provide service differentiation among various applica-
tions, we propose a protocol called ARGOS that can be
implemented using our 2%—stage pipeline architecture. AR-
GOS provides proportional fair queuing between compet-
ing wireless nodes. For example, a wireless Video on De-
mand streaming server can be provisioned to receive twice
the bandwidth that a laptop user receives. Other applica-
tions, like proportional fair queuing between types of traffic,
are equally straightforward.

ARGOS works as follows. In the load exchange stage, each
node broadcasts it weight and its current backlog of pack-
ets. This, along with an estimate of available bandwidth,
enables each node to compute its fair share, i.e., how many
bytes it is eligible to send in the corresponding scheduling
interval. Available bandwidth is dynamically estimated in
order to account for variations in channel capacity due to,
for example, noisy environments and non-compliant nodes.
This is done using a simple backpressure mechanism — feed-
back from the hardware layer as to how many packets it was
actually able to transmit over the air in the previous schedul-
ing interval. In the absence of backpressure, the estimate of
available bandwidth is increased, and conversely, in the pres-
ence of backpressure, it is decreased. To ensure a consistent
system-wide estimate of available bandwidth, nodes also ex-
change their estimates during the load exchange stage and
use a average value to compute their fair shares.

We present some preliminary results using our implemen-
tation of ARGOS over the 802.11 extension layer. In our im-
plementation, we provisioned the wireless video-on-demand
streaming server (gold node) to receive twice the bandwidth

Effect of interfering traffic

35 ‘ ‘ ‘ ‘ ‘
video stream bw w/o contention ——
video stream bw with contention -------

30 4

25]

bandwidth (Mbps)

0 10 20 30 40 50 60 70 80 90
time (sec)

Figure 3: Video LAN experiment: streaming a VBR
(Variable Bit Rate) video clip through the wireless
medium with and without the presence of interfer-
ence from another node. Note that for ease of com-
parison, the figure only shows the first 90 seconds of
the experiment although in presence of contention,
the video stream took 140 seconds to complete.

ARGOS in action
35

. T .
video stream bw —+—

25 b

bandwidth (Mbps)

time (sec)

Figure 4: Bandwidth received by the wireless video
streaming node with ARGOS.

in comparison to another node (silver node) running non-
real-time applications. We allowed the silver node to gener-
ate UDP traffic as fast as it can by continuously performing
application writes into the socket. Of course, if there is con-
gestion in the network (at the available bandwidth point),
the application writes into the socket would not go through
(or block).

In the first experiment, the gold node streamed a vari-
able bit rate encoded video stream onto a wired receiver
both with and without an interfering agent. Figure 3 shows
the aggregated bandwidth (measured as number of bytes
transfered in a unit time) with and without this compet-
ing interferer. In the absence of any other traffic, the gold
node received all the bandwidth and finished streaming of
the video clip in about 70 seconds (the duration of the ac-
tual video clip). However, in the presence of the interfering
agent, the video streaming node received only part of band-
width. In this case, the video clip took almost 140 seconds
to stream, leading to poor video quality at the receiver.

In the second experiment, we provisioned the video stream
to receive twice the bandwidth in comparison with an in-
terferer, which also implements ARGOS. The total channel
bandwidth is about 26 Mbps in the 802.11a based network
when operating in the 54 Mbps mode. Figure 4 shows the
amount of bandwidth received by the video stream. We ob-
served that the throughput received by the video stream is
virtually identical to what it received in the absence of any
interference. In addition, the total bandwidth of the video
stream and the interferer was observed to be close to the
channel capacity of 26 Mbps. This shows how ARGOS over
our 802.11 extension layer can be provisioned to isolate real-
time traffic flows such as video streams without impacting
the total throughput of the channel.

4. DISCUSSION

In this section, we briefly review implementation chal-
lenges including system tradeoffs for our 2%—stage pipeline
design.

4.1 Implementation issues

Load exchange overhead. Explicit propagation of per-node
traffic estimates using a control channel overlaid on the data
channel causes interesting tradeoffs. The more frequent the
exchange of information, the more the amount of channel
bandwidth that would be used up for explicit coordination.
Clearly, the overhead associated with coordination grows
with the total number of nodes. However, the less frequent
the exchange of information the less optimal the schedul-
ing strategy can be. Thus depending on the application,
the frequency of the load exchange needs to be chosen. For
example, if the load exchange packet consists of about 200
bytes of data and is transmitted periodically every 10ms,
then amount of bandwidth usage of this coordination stage
is 0.016 Mbps per node. If there are many nodes in the sys-
tem, coordination packets can occupy a non-trivial fraction
of the bandwidth thus reducing overall throughput. In ad-
dition, these load exchange packets consume energy when
transmitted. Thus, care must be taken to use explicit load
exchange only when the total power savings outweigh the
cost of these messages.

Time synchronization. In infrastructure networks, an ac-
cess point transmits periodic beacon packets to allow mobile
clients to sustain associativity. These beacon packets are
typically transmitted every 100 ms and can aid in time syn-
chronization. We divide the inter-beacon period into fixed
intervals so that each node can advance in the pipeline with
respect to these beacons. No special care needs to be taken
to ensure beacon packets are always received by all the nodes
as the nodes once synchronized can continue to operate syn-
chronized and periodically calibrate with the beacon pack-
ets. In ad hoc networks, time synchronization is a bigger
issue as there is no access point and hence no beacon pack-
ets. However, protocols such as NTP or RBS [5] can be run
to synchronize the clocks across nodes. Such an overhead,
of course, is not required in the infrastructure networks.

Delays and losses in load exchange packets. There can be
losses and delays in these load exchange packets during peri-
ods of congestion that can affect the accuracy of a schedule
in a given cycle. The advantage of explicit cooperation in the
load exchange stage is the ability to self-correct these losses,
as the history is completely lost and every pipeline cycle be-
gins afresh with explicit coordination. In an experiment to

0.02
0.015 9
. 0.01
) +
= .
© + v
a] B CE et
-0.005 : : : : :
0 10 20 30 40 50
Time(s)

Figure 5: Difference between the expected time and
arrived time (delta) of the load exchange packets as
observed at a sniffer.

evaluate the effect of interference on the delay experienced
by load exchange packets, we configured a wireless node to
generate packets as fast as possible to occupy all available
bandwidth in the channel. An interval size of 20ms has been
chosen for the estimation and scheduling stages of the 2%-
stage pipeline. Two other interfering nodes have also been
configured to generate traffic as fast as possible to compete
with this node. In Figure 5, we plot the difference between
the expected time and arrived time (delta) of the load ex-
change packets as observed at a sniffer. From the Figure, we
can observe that all the packets have a delta much smaller
than the load exchange stage interval of 10ms (shown as a
line in the Figure) in spite of heavy congestion in the net-
work. In fact, almost all the load exchange packets arrived
within a delta of 5ms. It can also be observed that there
is all deltas are non-negative, as congestion can only load-
exchange packets to get delayed. Note that all packets were
maximum sized frames (1400 bytes) and we used 802.11b
network for these results. In effect, this is one of the worst
possible scenarios, as large frame size and lower effective
bandwidth (in 802.11b as compared to 802.11a) can cause
maximum delay to the load exchange packets.

4.2 Application layer issues

Effect of buffering on TCP. Clearly, buffering can affect
the perceived RTT experienced by TCP. As throughput
is inversely proportional to RTT, therefore effective TCP
throughput can be affected. While this is true, it might not
immediately translate into human-perceivable delays for a
lot of applications. However, if such a delay is indeed prob-
lematic, estimation can be performed passively by observing
the rate at which packets are being generated using history.
The second option is to reduce the pipeline stage to a smaller
value thus trading off extra load propagation overheads.

Effect of buffering on real-time applications. Buffering
does not cause any problem to streaming video/audio ser-
vices as these applications usually have buffers to reduce the
effect of jitter. Buffering on the other hand, can affect in-
teractive real-time applications such as VolP. However, the
traffic characteristics of VoIP [13] have been found to be al-
most constant bit rates—thereby eliminating the need for
explicit bandwidth estimation by buffering. The pipeline
works the same for other applications that can be buffered,

but during the load exchange stage, estimated load (based
on history) for VoIP traffic and calculated load for other
applications can be transmitted to perform scheduling.

5. RELATED WORK

Currently, there are few mechanisms that can provide
throughput guarantees over existing 802.11a/b/g based wire-
less devices. Our pipelined architecture enables this func-
tionality by arbitrating the wireless channel among compet-
ing applications. Most of the approaches suggested in liter-
ature [8, 16, 1] revolve around providing faster access to the
channel by modifying the DIFS (Distributed Inter Frame
Spacing) for higher priority packets thus providing statisti-
cal throughput guarantees. Unfortunately, however, these
approaches require modifications at the firmware level. Our
cooperative scheduling pipeline inherently provides “macro”
scheduling (scheduling in sets of packets) as opposed to these
that implement micro-scheduling. Micro-scheduling requires
802.11 protocol changes that are not feasible unless through
an upgrade to new firmware. Typical scenarios, however
do not require per-packet scheduling and hence can be sus-
tained using our mechanism.

In [14], the authors propose the usage of a Time-Based
Regulator (TBR) to provide fairness in channel access among
contending nodes with different Transmit Rates. The TBR
protocol works at the AP and uses a polling mechanism
similar to PCF in arbitrating between various nodes to en-
sure high bandwidth nodes get a fairer share of the air time
rather than channel access. In our cooperative scheduling
framework, we can implement the same air-time scheduling
in a distributed fashion by allowing nodes to periodically
exchange information about the queue occupancies.

Of course, not all protocols that try to optimize power
and throughput can be handled by our cooperative schedul-
ing pipeline. For example, COMPOW [9] is a power con-
trol algorithm that tries to identify an optimal transmission
power across all nodes in multi-hop wireless networks. This
protocol operates at the network layer as it requires the en-
tire topology of the multi-hop wireless network in order to
determine an optimal transmission power.

6. CONCLUSION

Wireless networks based on 802.11a/b/g technology have
enjoyed tremendous success in terms of their penetration
into various application domains. However, they face tremen-
dous challenges in supporting application specific features
such as service differentiation—a lot of which are currently
being addressed by new MAC protocol standards. In this
paper, we identify a cooperative scheduling as a core ser-
vice required by these extensions and described a mechanism
that can allow for the seamless deployment of new coordi-
nated scheduling protocols in the current install base with-
out resorting to expensive and time consuming hardware
upgrades. Using our pipeline architecture, we implemented
scheduling in two entirely different application domains to
achieve two different goals—power conservation (SPARTA)
and service differentiation (ARGOS). We also outlined some
of the implementation challenges and how our pipeline ar-
chitecture can impact the performance of the upper layers
while satisfying the goals of the particular domain they can
be applied.

Acknowledgements

We thank Stefan Savage and Geoff Voelker for their valu-
able feedback and beneficial discussions. We also thank the
anonymous reviewers for their comments. This work was
made possible by NSF Grant ANT 0074004.

7. REFERENCES

[1] IEEE Draft Standard 802.11e. Wireless medium
access control (MAC) enhancements for quality of
service(QoS). Standard 802.11e, 2001.

[2] Wireless Research API.
http://ramp.ucsd.edu/pawn/wrapi.

[3] Forward Concepts.
http://www.analogzone.com/netp1020b.htm.

[4] Sourceforge MadWifi Driver.
http://www.sourceforge.net/madwifi.

[5] Jeremy Elson, Lewis Girod, and Deborah Estrin.
Fine-grained network time synchronization using
reference broadcasts. In Proc. 5th USENIX
Symposium on Operating Systems Design and
Implementation, pages 147-163, Boston,
Massachusetts, December 2002.

[6] Software Defined Radio Forum.
http://www.sdrforum.org.

[7] Institute of Electronic and Electrical Engineers
(IEEE). Wireless medium access control (MAC) and
physical layer (PHY) specifications. Standard 802.11,
1999.

[8] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and
E. Knightly. Distributed multi-hop scheduling with
delay and throughput constraints. In In Proceedings of
ACM MOBICOM, July 2001.

[9] Vikas Kawadia and P. R. Kumar. Power control and
clustering in ad hoc networks. In Proc. IEEE Infocom,
San Francisco, California, April 2003.

[10] Ramana Rao Kompella and Alex Snoeren. Practical
lazy scheduling in wireless sensor networks. In In
Proceedings of ACM Sensys, November 2003.

[11] MIT RoofNet. http://www.pdos.lcs.mit.edu/roofnet/.

[12] Jon Salz, Alex C. Snoeren, and Hari Balakrishnan.
TESLA: A transparent, extensible session-layer
framework for end-to-end network services. In Proc.
4th USENIX Symposium on Internet Technologies and
Systems, Seattle, Washington, March 2003.

[13] Sanaa Sharafeddine, Anton Riedl, Josef Glasmann,
and Jaargen Totzke. On traffic characteristics and
bandwidth requirements of Voice over IP applications.
In Proceedings of ISCC, 2003.

[14] Godfrey Tan and John Guttag. Time-based fairness
improves performance in multi-rate wlans. In USENIX
Annual Technical Conference, June 2004.

[15] Elif Uysal-Biyikoglu, Balaji Prabhakar, and Abbas El
Gamal. Energy-efficient packet transmission over a
wireless link. ACM/IEEE Transactions on
Networking, 10(4):487-499, August 2002.

[16] N. Vaidya, P. Bahl, and S. Gupta. Distributed fair
scheduling in a wireless lan. In ACM MOBICOM,
August 2000.

