
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 1

FIRE: Flexible Intra-AS Routing Environment
Craig Partridge,Fellow, IEEE, Alex C. Snoeren,Student Member, IEEE,

W. Timothy Strayer,Senior Member, IEEE, Beverly Schwartz, Matthew Condell, and Isidro Casti˜neyra

Abstract—Current routing protocols are monolithic, specifying the algo-
rithm used to construct forwarding tables, the metric used by the algorithm
(generally some form of hop count), and the protocol used to distribute these
metrics as an integrated package. The Flexible Intra-AS Routing Environ-
ment (FIRE) is a link-state, intra-domain routing protocol that decouples
these components. FIRE supports run-time-programmable algorithms and
metrics over a secure link-state distribution protocol. By allowing the net-
work operator to dynamically reprogram both the properties being adver-
tised and the routing algorithms used to construct forwarding tables, FIRE
enables the development and deployment of novel routing algorithms with-
out the need for a new protocol to distribute state. FIRE supports multiple
concurrent routing algorithms and metrics, each constructing separate for-
warding tables. By using operator-specified packet filters, separate classes
of traffic may be routed using completely different routing algorithms, all
supported by a single routing protocol.

This paper presents an overview of FIRE, focusing particularly on
FIRE’s novel aspects with respect to traditional routing protocols. We con-
sider deploying several current unicast and multicast routing algorithms in
FIRE, and briefly describe our Java-based implementation.

Keywords—IP Routing, Active Networks, Class-Based Forwarding, Dif-
ferentiated Services, Virtual Private Networks

I. I NTRODUCTION

AROUTING protocol has three constituent functions: it de-
fines a set of metrics upon which routing decisions are

made; it distributes this information throughout the network;
and it defines the algorithms that decide the paths packets use
to traverse the network. Furthermore, a well-designed proto-
col contains security mechanisms to protect the routing infras-
tructure from attack as well as from mischance or misconfigu-
ration. In today’s routing protocols, these functions are tightly
integrated and cannot be unbundled. When a network operator
chooses to use IS-IS [10] or OSPF [30], for instance, the infor-
mation that is distributed about each link and the algorithm that
is used to select paths are fixed; the operator is largely unable to
tune the system to use a new algorithm or different metrics. The
operator may select a more sophisticated set of metrics and rout-
ing algorithm by moving to Cisco’s Enhanced Interior Gateway
Routing Protocol (EIGRP) [48], but the operator is then forced
also to accept EIGRP’s state distribution and security mecha-
nisms.

Recent work has attempted to harness the power of Active
Networking [43] to provide extensible routing functionality in

This work was supported by the Defense Advanced Research Projects Agency
(DARPA).

C. Partridge is with BBN Technologies, Cambridge, MA 02138 USA (e-mail:
craig@bbn.com).

A. C. Snoeren is with the MIT Lab for Computer Science, Cambridge, MA
02139 USA and with BBN Technologies, Cambridge, MA 02138 USA (e-mail:
snoeren@lcs.mit.edu).

W. T. Strayer, B. Schwartz, and M. Condell are with BBN Technologies, Cam-
bridge, MA 02138 USA (e-mail: strayer@bbn.com; bschwart@bbn.com; mcon-
dell@bbn.com).

I. Castiñeyra was with BBN Technologies, Cambridge, MA 02138 USA. He
is now with Pluris, Cupertino, CA 95014 USA (e-mail: isidro@pluris.com).

A preliminary version of this paper was presented at ACM SIGCOMM ’00 in
Stockholm, Sweden, August 2000.

network nodes. Many techniques provide such flexibility by al-
lowing individual data packets to explicitly participate in routing
decisions [21], [22], [34], [43], creating a large range of secu-
rity and stability concerns. Others limit such functionality to
specially authorized and authenticated control traffic, but either
severely restrict functionality [45], require per-packet process-
ing on the forwarding path [49], or both [39].

FIRE, the Flexible Intra-AS Routing Environment, is an at-
tempt to provide a more flexible routing system without sacri-
ficing forwarding performance. Operators control a variety of
key routing functions, including choosing which algorithms are
used to select paths, choosing what information is used by the
algorithms, and identifying traffic classes to be forwarded ac-
cording to the specified algorithms. Expressing these ideas a bit
more formally, FIRE splits the standard routing protocol into its
constituent parts: secure state distribution, computation of for-
warding table(s), and the generation of state information (i.e.,
determining what values to distribute). FIRE then exposes its
state distribution functionality, making computation of forward-
ing tables and the generation of state information programmable
at run-time.

The motivation for the novel aspects of FIRE springs directly
from three simple observations:

• Routing algorithms continue to evolve.
• Today’s simple link metrics are often insufficient to support

new routing algorithms.
• Network providers are increasingly interested in providing

specialized routing for different classes of traffic.
Over the past several years there have been considerable fer-

ment and change in the design of multicast routing protocols [8],
[18], [23]. Potential improvements for unicast routing have
also been developed [6], [44]. Getting any of these algorithms
actually deployed is difficult. Because current routing proto-
cols have intertwined their algorithm with their state distribu-
tion mechanism, deploying new algorithms has meant, in most
cases, implementing entirely new protocols. In short, the barrier
to deploying new routing algorithms is very high. Indeed, part
of the motivation for FIRE came from our experience trying to
deploy a new unicast routing algorithm that finds approximately
optimal paths based on multiple, orthogonal link metrics [11].

Most protocols use hop counts to approximate the cost of a
link. More sophisticated protocols like EIGRP compute the met-
ric from a mix of several link properties, but the EIGRP equa-
tion for combining metrics is fixed and represents a balance be-
tween possibly conflicting values. FIRE distributes a rich set
of properties for use by routing algorithms. Properties can be
configured values, extracted from router MIBs, or even dynam-
ically generated by operator-provided applets. FIRE provides
for programmable property generation, and properties can be re-
generated when conditions suggest that forwarding tables need
updating.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 2

The increasing heterogeneity of Internet connectivity strongly
suggests that there is a growing diversity in path choices. Dif-
ferent paths between two points will be better suited for differ-
ent applications. An obvious example is satellite links, which
are being used more frequently in the Internet and which of-
fer high bandwidth but also high delay. Most routing protocols
in use today forward all traffic based upon the same forward-
ing table. Traffic classes may be differentiated with respect to
resource reservation [9] and queuing priority [33], but packets
are generally routed identically. In FIRE, each packet is routed
based upon a forwarding table constructed to best suit its partic-
ular traffic class, as determined by the contents of the packet’s
header. By assigning different classes of traffic to separate for-
warding tables, FIRE allows network operators to optimize for
each class. Each forwarding table is constructed with a different
algorithm, which may use its own set of metrics.

This paper is organized as follows. Section II provides a
brief overview of FIRE, while sections III, IV, V, and VII
present novel aspects of FIRE that are particularly interesting
when compared to existing protocols, including configuration
and management, programmable routing algorithms, dynamic
properties, and our security model. Section VI describes FIRE’s
state distribution mechanism in more detail. Section VIII pro-
vides a quick tour of the programming interface to FIRE, while
section IX demonstrates its flexibility by sketching FIRE im-
plementations of several popular routing algorithms. Section X
very briefly discusses our FIRE implementation, and section XI
examines the strengths and shortcomings of FIRE’s design. We
survey related work in section XII before concluding in sec-
tion XIII.

II. FIRE OVERVIEW

A traditional routing protocol generates a single forwarding
table at each router, which the router then uses to determine
where to forward incoming traffic. FIRE extends that notion
by generating a set of forwarding tables, each uniquely defined
by three pieces of information: the algorithm used to compute
the table, the properties used by the algorithm in its computa-
tions, and a packet filter that determines which classes of traffic
use the forwarding table. In FIRE, all three of these variables
may be configured by the network operator at run time.

A. Algorithms

Routing algorithms in FIRE are downloaded Java programs.
The algorithms are designed to use distributed network proper-
ties to generate a local forwarding table. Each instance of an
algorithm is run in a separate Java Virtual Machine (JVM) on
the router itself. This sandboxing prevents a buggy or malicious
routing algorithm from disabling the entire router.

B. Properties

A FIRE system is composed of two classes of entities: nodes
and links. Nodes consist of both routers and broadcast networks,
while links are uni-directional adjacencies between nodes. Each
entity in the FIRE system has a unique ID and a set of properties
associated with its ID. The ID encoding specifies whether the
entity is a link, subnet, or router.

überfilter
Packet
Filters

Forwarding
Tables

Data Path

Routing
Algorithms

Property
Applets

Virtual
Machine

SA
Generation

SAs

Property
Repository

Flooding
Mechanism

SAs

SAs

Fig. 1. Architecture of a FIRE Router. Each property applet and routing algo-
rithm instance is run in a separate virtual machine.

A node is responsible for generating values for each of the
properties being advertised in the network. Property values
for links are generated by adjacent nodes. Network proper-
ties are the responsibility of nodes called Designated Routers,
which are selected using a distributed election process similar
to OSPF [41]. Some property values may be configured into the
nodes (e.g., multicast support or policy-based cost values). Oth-
ers may be readily available from the router’s MIB (e.g., average
queue length, CPU utilization, etc.). FIRE also allows operators
to write their own property applets. Like algorithms, property
applets are written in Java and each is executed in its own JVM
instance.

All property values are distributed to every node in the net-
work using reliable flooding. Each node stores these values in
a property repositoryin order to build a complete and consis-
tent map of the network. Updates of the values of these proper-
ties are periodically flooded throughout the network through the
use of State Advertisements (SAs), refreshing the repositories at
each router.

C. Filtering

A single instance of FIRE may manage several forwarding ta-
bles, and thus serve several classes of traffic concurrently. Traf-
fic is classified using operator-specified filters and forwarded
according to the generated forwarding tables. The tables them-
selves are generated by the routing algorithms which are run on
the property repository, an internal link-state database contain-
ing property values for each entity in the network.

FIRE permits multiple instances of the FIRE protocol to be
running concurrently in a system. Each FIRE instance is wholly
self-contained, propagates its own state, and maintains a sepa-
rate set of forwarding tables. This feature is designed to support
Virtual Private Networks (VPNs), where overlays are used to
make a single network look like several independent networks.

The internal architecture of a FIRE router is shown in Fig. 1.
In the router’s data path, all incoming traffic on the router first
passes through an̈uberfilter that assigns the traffic to a particu-
lar instance of FIRE. A packet can belong to only one instance,
hence the filters must be disjoint. (In a router with only one
instance of FIRE, the ¨uberfilter would contain a single entry
that matches all packets.) Within a FIRE instance, packet fil-
ters determine which forwarding table the packet is to use. The

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 3

packet’s destination address is looked up in the indicated table,
and the packet is forwarded accordingly.

D. Design philosophy

The most basic contribution of FIRE is the ability to modify
at runtimethe routing algorithms and property metrics used to
generate forwarding tables. This dynamism requires great care
to ensure robust, reliable behavior; the sheer scope of configu-
ration and, even more importantly, programming options made
available by FIRE’s model tremendously increases the chance of
misconfiguration or buggy implementations. This vulnerability
has guided our design of the FIRE protocol. We have sought to
make FIRE as stable a platform as possible.

The desire for robustness manifests itself in FIRE’s security
model, which is based on the philosophy of containment. SAs
are signed by their creator to prevent modification in flight; ad-
vertisements can be suppressed or damaged in flight but can-
not be surreptitiously modified or spoofed. Furthermore, each
FIRE entity has an associated authorization certificate specify-
ing what information it is allowed to advertise. These certifi-
cates are used, for example, to prevent a malicious or miscon-
figured router from advertising a route to a distant portion of the
network and “black-holing” traffic.

III. C ONFIGURATION & MANAGEMENT

Central to the FIRE model is the notion of anOperator. FIRE
works within a particular Autonomous System (AS)—an area
completely controlled by one administrative entity. That entity
appoints one or more people (e.g., a network operations center)
as the Operator. The Operator is authorized to configure the
network through two mechanisms: the Operator Configuration
Message (OCM) and the Operator Configuration File (OCF).

A. Configuration messages and files

The OCM is a special State Advertisement that contains the
configuration rules for the FIRE system, the set of OCFs that
are to be loaded, and names one of them as therunning OCF.
An OCF lists the routing algorithms to use, the properties to ad-
vertise, and the filters to map traffic classes to forwarding tables.
Both the OCM and OCFs are cryptographically signed with the
Operator’s secret key. There can be only one OCM valid at any
point in time. The OCM is injected into the network by an Op-
erator at any FIRE node, and is distributed along with normal
routing updates throughout the network by the standard flood-
ing mechanism.

Upon receipt of the OCM, a node retrieves the listed OCFs
from one of the file repositories specified in the OCM. File re-
trieval is facilitated by a special, simple file transfer protocol
called the Large Data Transfer Protocol (LDTP) [35]. This pro-
tocol is based on the Trivial File Transfer Protocol (TFTP) [42],
enhanced to protect against insertion attacks and reduce its vul-
nerability to Denial of Service attacks. When an OCF is re-
trieved from a file repository, the OCF is parsed and any addi-
tional support files downloaded. In particular, the OCF contains
the list of routing algorithms and property applets, along with a
list of file repositories where these files can be obtained. LDTP
is again used to retrieve these files. All files to be downloaded
are cryptographically signed to ensure integrity.

The OCM tags each OCF with one of three directives:load,
advertise, or run. An OCF load directive simply causes the
router to retrieve the files from the file repository. An OCF
advertise directive additionally forces the generation of prop-
erty values and their issuance as SAs once the OCF has finished
loading. In addition to the steps required by the loading and ad-
vertising states, an OCF number tagged with the run directive
causes routers to run the associated routing algorithms to gen-
erate forwarding tables. The resulting forwarding tables, along
with the specified packet filters, are installed into the router.

The list of OCFs can change from one OCM to the next. In
fact, this is precisely how the Operator introduces new OCFs
into the system, and prepares the network to run them. A care-
ful Operator will iterate a particular OCF through the loading
and advertising stages, ensuring the expected operation before
switching it to the run state. Old OCFs that are removed in suc-
ceeding OCMs are purged from the system, along with any al-
gorithm files they use.

B. OCF 0

There is one OCF that is considered immutable—OCF 0. All
entities must advertise OCF 0 properties regardless of what other
OCFs are loaded or which one is running. This OCF contains the
minimum amount of information necessary to maintain routing
functionality, and is always operational.

An OCF 0 forwarding table is always built using SPF [28]
(Dijkstra’s algorithm [16]) with hop count as its metric. FIRE
control traffic is always sent using this forwarding table. By en-
suring control traffic is forwarded using a straightforward, reli-
able routing table, OCFs and their associated files can be down-
loaded regardless of the state of (in)operation of the currently
running OCF.

OCF 0 contains exactly four properties:
FIRE Metric: The hop count for this entity used to build the

SPF routing table for FIRE management traffic.
IP Addresses:The set of IP addresses associated with this en-

tity. For links, this is the set of IP addresses associated with
the destination interface. For routers, this includes any stub
hosts that are reachable through this node. Networks do not
participate in this property.

FIRE Up: This boolean value states that FIRE is currently
running for this node or link. If set to false, no traffic is
routed through this entity.

OCFs Loaded:A list of the OCF numbers (other than zero)
for which this entity is flooding SAs. Only router nodes
participate in this property.

In addition to being used by the OCF 0 routing algorithm, these
properties are also available to routing algorithms running at any
other OCF number.

IV. A LGORITHMS

After an algorithm’s support files are downloaded, the code is
loaded into an execution environment on the router. Our FIRE
implementation invokes algorithms in a Java Virtual Machine
(JVM). If the algorithm is being asked to generate multiple for-
warding tables based on different properties, a separate JVM
(each with the same algorithm code) is created for each instance.
Because we expect SPF to be a frequently used algorithm, in

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 4

addition to being an integral part of OCF 0 routing for FIRE
packets, SPF is implemented as a built-in function rather than a
downloadable applet.

A. Programming interface

The FIRE algorithm programming interface is intentionally
very simple. Whenever new information is inserted into the
property repository by the reception of an SA, a snapshot of the
repository is made and the routing algorithm invoked. The algo-
rithm’s job is to generate a forwarding table from the snapshot
of the repository.

The programming interface does not explicitly support incre-
mental updates. Our reasoning is that requiring algorithms to
support incremental updates is both unreasonable (some algo-
rithms may not have a straightforward way to do incremental
updates) and, as an added complexity, subjects them to addi-
tional bugs. However, FIRE does permit the JVM to preserve
state across algorithm invocations, so programmers are free to
perform incremental updates if they wish. The programming
interface is discussed in more detail in section VIII-A.

B. Algorithm frequency

When determining how frequently to run an algorithm, the
key issue is correctness of routing. The fundamental idea be-
hind link-state routing is that if everyone has the same infor-
mation (the flooding protocol ensures information at all nodes
will converge) and runs the same algorithms, they will get the
same results and routing tables will be consistent. Obviously the
sooner one runs algorithms in response to updates, the faster the
convergence and the less likely that routing loops or black holes
will occur. In our view, loop freedom and black hole avoidance
is vital to proper operation, so FIRE runs algorithms whenever
new information arrives.

C. Thrashing

Given FIRE’s predilection for invoking routing algorithms, it
becomes important to protect against thrashing, where any new
piece of information could cause an algorithm to run. FIRE tries
to avoid thrashing in three ways:

First, algorithms cannot be stopped in mid-run. They run to
completion with the property snapshot they have, and if an up-
date is received while running, the algorithms are simply in-
voked again as soon as they complete. So FIRE algorithms are
guaranteed to generate forwarding tables, regardless of the rate
of incoming property updates.

Second, FIRE dallies slightly before invoking an algorithm.
Rather than starting up each algorithm as soon as one new or up-
dated SA arrives, FIRE waits a brief, configurable period (usu-
ally a few seconds) to allow additional new information to ar-
rive, since routing updates tend to come in bursts. Indeed, con-
ventional wisdom holds that routing protocol traffic tends to be
either very heavy (lots of new SAs) or very light (very few SAs)
at any given moment.1 Dallying tries to ensure that during peri-
ods of heavy traffic, algorithm runs balance responsiveness with
efficiency.

1We have not found a careful study that discusses this behavior within an
autonomous system. Chinoy’s study [12] of backbone advertisements supports
the idea that updates are bursty.

The final protection is not on algorithms themselves, but in-
stead results from FIRE’s limits on SA frequency. Since SAs
can only be issued at a specified maximum rate (which is en-
forced by neighboring routers as part of the flooding protocol),
a particular node cannot trigger system-wide algorithm runs too
frequently. This mechanism is discussed in more detail in sec-
tion VI-B.

V. PROPERTIES

Any information needed by routing algorithms to construct
forwarding tables must be distributed throughout the network.
FIRE packages this information into typed values calledproper-
ties. Properties differ from metrics used in traditional routing al-
gorithms. Metrics are weights, assigned to a link, that influence
the link’s likelihood of inclusion in forwarding paths. Proper-
ties, on the other hand, are applicable not only to links, but to
routers and networks as well.

The OCF defines the set of properties that a node or link must
advertise. Some of these properties will make sense for both
nodes and links, some will make sense only for nodes or links,
and some will make sense for only some nodes or some links.
The OCF’s grammar allows the Operator to specify the class of
entity that should participate in advertising a particular property.
If a participating entity is unable to generate a value for a par-
ticular property (perhaps it does not have the required hardware
to support routing based on that property), the property’s value
can be set tounsupported.

Links are abstractions and cannot themselves issue SAs. The
same is true for network nodes. The node that is the originating
endpoint of a link is responsible for advertising the link. For
network nodes, the Designated Router undertakes the respon-
sibility of advertising for the network node and, in addition, for
the links going from the network node to adjacent nodes as well.
This implies that all network properties must either be statically
configured or able to be measured by an adjacent router.

A property can be generated by (a) using a configured value,
(b) obtaining information from the router’s MIBs, or (c) running
a property applet. Configured values and MIBs are assumed to
be in place prior to the circulation of an OCF containing algo-
rithms that rely on these values.

A. Property applets

The ability to generate dynamic properties is one of the most
powerful aspects of FIRE, as well as its most dangerous. FIRE
borrows from the Active Networks [43] philosophy, allowing
downloaded code to be executed on the router itself. Unlike al-
gorithms, however, which simply compute a function over the
provided property repository, property applets2 need access to a
far larger set of capabilities, possibly including file and network
access. Clearly this represents a potential security risk. In ad-
dition to requiring all downloaded code to be cryptographically
signed by a software authority, our FIRE implementation uses
Java’s security infrastructure [20] to provide a balance between
code security and applet functionality. The FIRE specification,
however, allows for implementations to provide support for ad-
ditional execution environments. The large body of work on

2Note that neither routing algorithms nor property applets areappletsin the
strict Java sense of inheriting from thejava.applet.Appletclass.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 5

Proof-Carrying Code [32] could be leveraged for installations
with particularly tight security constraints.

Regardless of language or execution environment, property
applets are provided sufficient security permissions to interact
with the router and any directly connected links. Since routers
need only advertise properties related to themselves, adjacent
links, or directly-connected networks (in the case of Designated
Routers), applets have no need for multi-hop communication.
Similarly, they are not provided with any network-level services
that would require multi-hop communication by the router, such
as name resolution. Other than these basic restrictions, applets
are allowed to execute arbitrary Java instructions. It is left up to
the software signing authority to ensure that approved property
applets function appropriately for use in a production environ-
ment.

B. Property updates

Scheduling property applets is another difficult task. The op-
erator schedules applets to be run at specified intervals in the
OCF. Applets must be run at discrete times, however, and the
processes the applets are trying to capture may not be discrete
in nature. Furthermore, even if applets were run continuously,
some control must be placed on the advertisement of new val-
ues. FIRE cannot, in general, determine when properties have
changed materially, since property values and types are arbi-
trary. Therefore property applets themselves are charged with
notifying FIRE when their generated values have changed, and
to what degree. For instance, noisy properties such as CPU uti-
lization or queue length may be too variable to advertise at each
update; instead the applet may chose to advertise only signifi-
cant deviations from recent history.

FIRE uses the applet notification mechanism to determine
when to issue new SAs. In the absence of explicit notifica-
tion, FIRE issues new SAs periodically, at some configurable
interval, usually on the order of tens of minutes. If, however,
one or more property values have changed recently, FIRE will
schedule new SAs to be issued at a rate commensurate with the
configured maximum SA rate. If an applet has indicated that a
property value has changed dramatically enough to warrant im-
mediate notification, an SA is issued immediately, subject to the
flapping rules discussed in section VI-B.3.

VI. PEERING & STATE DISTRIBUTION

Every routing protocol needs a mechanism to discover ad-
jacent routers, termedneighborsor peers, and to reliably dis-
tribute state information to all other routers in the system. De-
veloping secure, robust mechanisms to support these functions
can be quite difficult. Many previous routing protocols have
been plagued by limited functionality, such as neighbor discov-
ery algorithms that do not support uni-directional links [30], or
buggy implementations [38].

Because of the difficulties in implementing state distribution
and peering protocols, we decided not to make these functions
programmable. Rather, FIRE fixes these essential mechanisms
as built-in (non-programmable) infrastructure. Routing algo-
rithms running on top of FIRE need not concern themselves with
the subtle details involved in convergent, soft-state distribution.

Router A Network 1

Network 2

Router B
Network 3

Router C

B.3 C.3

A.1

B.2 C.2

A.2

A.x

B.y

Fig. 2. An example FIRE network model. Solid arrows represent directed
adjacencies; dashed arrows indicate router peering relationships.

FIRE builds on a considerable body of prior work [25], [30] to
provide mechanisms that are secure, efficient, and robust.

A. Peering

Topologically, FIRE models a network as a mesh ofnodes
connected bylinks. Besides all participating routers in the
network, broadcast subnets are also treated as nodes, as in
OSPF [30], thereby reducing the number of links between
routers on a broadcast subnet fromO(n2) to O(n).

Unlike OSPF, however, FIRE explicitly supports uni-
directional links. Links are defined as uni-directional, so a bi-
directionally connected pair of nodes has two links between
them, one in each direction. Two nodes are considered neigh-
bors if some combination of adjacencies (that does not pass
through another router node) supports bi-directional communi-
cation between the two nodes—a two-way link is not required.

A.1 Neighbor discovery

Neighbor discovery in FIRE is handled by the Peering Pro-
tocol [41], which is based largely upon OSPF’s Hello Proto-
col [30]. Fig. 2 depicts the peering relationships formed in a
sample internetwork containing six nodes: three routers and
three broadcast networks. The solid arrows represent directed
adjacencies. Since FIRE models links as uni-directional, there
are two links between Router A and Network 1, as opposed to
the single, directed link from Router B to Router A. The links
between Router A and Network 2, Router B and Network 3,
and Network 3 and Router C are similarly represented as two
separate links. Suppose Networks 1 and 3 were Ethernets, and
Network 2 was a satellite network. In this example Router A has
the only uplink to Network 2, while all routers have downlinks.
The dashed lines depict the peering relationships that would be
established in this topology. Routers B and C peer in the stan-
dard fashion across Network 3. Routers A and B also form a
peering relationship, even though they must use two separate
physical links in order to communicate. In contrast, Routers A
and C do not peer, as no single-hop path exists from C to A.

A.2 Designated Routers

In addition to identifying neighbors, the Peering Protocol
also selects aDesignated Router(DR) andBackup Designated
Router(BDR) for each broadcast subnet. Designated Routers

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 6

serve two purposes. First, they are responsible for issuing prop-
erty updates for the subnet and its associated links. Second,
they help to limit the number of peering relationships estab-
lished over a particular subnet. Routers on a broadcast subnet
peer only with the DR for the network, rather than having to
peer with all routers on the subnet.

Routers functioning as DRs in FIRE must have a bi-
directional connection (possibly using two separate interfaces)
to the network they are representing. In the case of wireless
broadcast networks, there may be no guarantee that a single
node can communicate with all other FIRE nodes on the wire-
less subnet. If there exists no node that can reliably broadcast
to all the others, the wireless network must be modeled (for the
purposes of FIRE peering) as a mesh of point-to-point links,
rather than as a broadcast medium. The same is true for non-
broadcast multi-access networks (NBMA) networks.

To prevent flapping of the DR (and hence repeated re-issuance
of the network properties for which the DR is responsible), the
Peering Protocol also elects a Backup Designated Router. If
the DR ever fails, the BDR assumes the role of the DR, and a
new BDR is elected. If two DRs (or BDRs) are ever present on
a single subnet due to network healing, one of the candidates is
selected based upon election rules very similar to those of OSPF.

B. State distribution

Once a peering relationship has been established between
two or more neighboring routers, they begin exchanging rout-
ing information through the use of SAs. These SAs are reli-
ably flooded throughout the network, thereby providing a ro-
bust, convergent method of distributing shared state across the
network.

B.1 State Advertisements

SAs contain information about the AS in which FIRE is run-
ning. There are four types of SAs: configuration, certificate,
external route, and property.Configuration SAs, also known as
Operator Configuration Messages (OCMs), are generated by the
operator and are detailed in section III.Certificate SAs, as dis-
cussed in section VII, are used to distribute public keys and au-
thority certifications. Routes managed by protocols other than
FIRE (such as exterior routes) are advertised through the use of
External Route SAs.

Property SAsadvertise an entity’s metrics for a particular
OCF. Each node and link has an associated property SA for each
OCF being advertised. The particular properties listed are deter-
mined by the OCF and the type of the entity being advertised.
The payload of a property SA is a self-parsing S-expression con-
taining values for each property. Special flag values are available
to define a property as being unsupported, or that a particular en-
tity is a non-participant.

B.2 SA refreshment

An SA is uniquely identified by its type, the entity it de-
scribes, and its OCF number. Every SA is also timestamped
and has a sequence number, so SAs with the same type, en-
tity identifier, and OCF values can be ordered. In addition to
being timestamped, each SA is also given an expiration time,
after which it is considered invalid, and is no longer flooded by

FIRE. To prevent instability caused by expiring SAs, routers pe-
riodically renew SAs they have generated before the previous
version expires. To reissue an SA, the router first replaces the
superseded SA in its own SA cache with the newly generated
version, and then floods the new SA to each of its neighbors.

B.3 Damping

Whenever an attached interface comes up, the router must ad-
vertise its existence by issuing SAs. In order to preventflapping,
the rapid re-issuance of SAs for the same entity, we utilize the
Skeptic model from Autonet [37]. When a property update war-
rants a new SA, the Skeptic delays slightly before issuing the
SA. It not only limits the rate of SA issuance to a fixed maximum
rate, but penalizes rapidly changing SAs by exponentially in-
creasing the delay with each new request. As request frequency
decreases, the Skeptic reduces the delay penalty accordingly.

However, if a router determines an associated link has gone
down and was previously advertised as being up, it immediately
generates a new SA for that link indicating the link has gone
down. This insures inoperable links are always eliminated from
the topology.

C. Reliable flooding

Each FIRE router maintains a cache of all current SAs. The
purpose of the state distribution mechanism is to maintain a con-
sistent shared view of the set of current SAs across all routing
nodes. Reliable flooding is employed to make sure that an SA
generated by one node is eventually received by all nodes in
the AS. Stated simply, each router is responsible for forwarding
any new SA to all of its neighbors. To prevent SAs from being
unnecessarily flooded to neighbors that have already indicated
they have a copy, either by preemptively acknowledging it, or
by actually sending the SA itself, routers maintain state for each
neighbor associated with every SA in its cache.

C.1 State message transmission

Information is exchanged between FIRE nodes using State
Messages [36]. A State Message contains either an SA or an
acknowledgment of the receipt of one or more SAs. State Mes-
sages are flow controlled using a simple windowing protocol,
where the transmission window is specified in terms of the num-
ber of SAs that may be transmitted without acknowledgment.

C.2 State message processing

Upon receipt of a State Message, a router first looks into its
cache to see if it has already been received. If so, it simply ac-
knowledges the message and completes processing. If, on the
other hand, the message contains an SA the router has not seen
before, it firsts validates that the SA header is properly formed.
If the header is invalid for whatever reason, the router immedi-
ately sends an acknowledgment to the sender, echoing back the
header information.

Routers receiving acknowledgments compare the enclosed
header with outstanding transmissions. If the SA was damaged
in transmission, the headers will not match, and the SA will be
retransmitted as if unacknowledged. If, however, the corruption
occurred in the sender itself (hence any retransmissions would

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 7

be equally useless), the acknowledgment will cause the offend-
ing router to cease its transmissions of the corrupted SA.

Assuming a received SA has a well-formed header, a router
then verifies the signature before sending an acknowledgement,
caching the SA, and flooding the SA to its neighbors. In the
case of a non-DR router on a broadcast subnet, it has only one
neighbor on that subnet: the DR. Only the DR floods SAs to
every member of the subnet.

D. Synchronization

Reliable Flooding distributes SAs to all routers currently con-
nected to the network. When new routers come up, however, or
disjoint portions of the network are reconnected, the SA repos-
itories must be resynchronized. This synchronization is done
through theState Dumpprocess.

The State Dump process is initiated whenever a new adja-
cency is formed. Since the adjacency may form asynchronously
due to the beaconing process of the Peering Protocol, the start of
the dump is delayed for some period or until the adjacent router
initiates it. The State Dump procedure seeks to swiftly synchro-
nize two neighbors while generating the near minimum amount
of traffic. No special message types are used by the process; it
sends only SAs and acknowledgments. This allows the standard
reliable flooding mechanisms to ensure any new SAs discovered
during the State Dump process are flooded appropriately.

VII. SECURITY

Implementing a security infrastructure for a routing protocol
presents an interesting problem. To provide most security ser-
vices, one needs a key infrastructure. But generic key infras-
tructures generally require pre-existing packet routing function-
ality. Our solution is to implement the security infrastructure
that FIRE requires within FIRE itself.

A. Attacks

A routing protocol, FIRE in particular, is subject to attacks of
two basic types:

Wiretapping: Attackers are assumed to have access to the
communications links in such a way that they may mod-
ify, suppress, insert, or replay FIRE messages or fragments.
FIRE must therefore protect against such attacks. Inser-
tion of bogus fragments could prevent a re-assembled mes-
sage from being accepted at the destination; replaying old
messages might disrupt current activities (such as electing
a DR); flooding a router with bogus FIRE messages or tam-
pering with data in FIRE messages could result in a denial
of service.

Subversion: The routers and other FIRE nodes may be sub-
verted, either physically such that an attacker completely
controls a router’s behavior or by use of compromised key-
ing material such that an attacker may originate messages
that appear to come from the router. A subverted node could
send out inaccurate data, possibly affecting a much larger
portion of the network.

Many of the harmful behaviors described could also occur
due to bugs in software or hardware. Thus, FIRE’s design ex-
pects that a certain amount of misbehavior (intentional or not)
will occur. FIRE’s security model is built on a philosophy of

containment: our goal is to bound the effects of misbehavior
and detect the misbehavior whenever possible.

FIRE meets this goal using three sets of mechanisms. First,
FIRE employs a certificate infrastructure with a tiered authority
structure. These certificates advertise the public keys of nodes,
links and entities such as the Operator. All SAs are digitally
signed to provide end-to-end authentication and integrity. Sec-
ond, FIRE makes use of IPsec [24] to protect against certain
hop-by-hop attacks that end-to-end security measures cannot
prevent. IPsec’s authentication, data integrity, and anti-replay
services make it very difficult for a non-participating entity to
inject FIRE traffic. Third, and most importantly, the FIRE pro-
tocols are designed to be robust against the failure or subversion
of an individual router or set of routers.

B. Certificates and digital signatures

FIRE’s basic security mechanisms are based on public key
cryptography, using X.509 [1] certificates, and patterned after
the existing work on Secure OSPF [31] and Secure BGP [25].
Each FIRE node participates in a certificate hierarchy that is
managed by the FIRE system. At the top of the hierarchy is
the Root. Each separate FIRE instance has its own certificate
hierarchy, therefore different ASs will have unique Roots. Rout-
ing information shared at border routers must be secured by the
exterior gateway protocol.

The Root creates certificates for a set of principals that are
entitled to perform various actions. These principals include the
Operator and a Software Master. The Operator is the logical en-
tity that runs the network. The Software Master is the logical en-
tity that approves algorithm and property applets (the choice of
which approved programs are used is left to the Operator). Be-
low the Operator sit the FIRE nodes themselves. Each node has
its own public-private key pair and certificate. FIRE certificates
are circulated as part of the normal FIRE flooding protocols in
special Certificate SAs. Each node is responsible for flooding
its own certificates.

Each SA is signed by its creator. Thus, even though almost
all FIRE messages are relayed through other nodes, messages
are protected from tampering in-flight. Because each message
is unambiguously linked to its signer, advertising of false infor-
mation is limited and can be traced. A node can only lie about
the information it is entitled to advertise.

C. Protocol robustness

Some security features are implemented by the FIRE pro-
tocols themselves. Most notably, FIRE implements reliable
flooding. Reliable flooding ensures that if one uncompromised
path exists between a creator of a message and a consumer, the
consumer will eventually see the message. Reliable flooding
achieves this guarantee by (a) allocating buffering in each node
on a peer-by-peer basis, so no one peer can consume all the
buffering in a node and cause a Denial of Service attack that
prevents a message from being relayed; and (b) flooding every
message over all links.

Unlike many previous routing protocols, FIRE’s flooding
mechanism does not utilize any explicit request messages. The
avoidance of suchpull mechanisms prevents Denial of Service

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 8

attacks launched by malevolent routers that continue to request
already-received information from adjacent routers.

FIRE also limits the spread of disinformation. The informa-
tion that a node may advertise is limited by a signed set of per-
missions contained in an X.509 attribute certificate. Thus, par-
ticular routers can be restricted to advertising links only to adja-
cent networks, preventing a subverted router from being able to
black hole arbitrary traffic.

Other FIRE protocols also have protective mechanisms.
LDTP has mechanisms to protect against attacks similar to
SYN-flooding, where an attacker creates multiple partial ses-
sions that tie up resources at the LDTP server. Similarly, the
Peering Protocol contains features that make it difficult for
routers to cause the DR to change unless the existing DR goes
down.

VIII. P ROGRAMMING INTERFACES

One of the key features of FIRE is the ability to dynamically
load new routing algorithms and to define new properties using
applets. Ideally, FIRE implementations would use a language
designed to support self-proving applets (programs that could
be verified to meet certain constraints). By making it possible to
verify (within limits) how a program behaved, the risk of soft-
ware bugs could be dramatically reduced. Our reference im-
plementation, however, uses Java, both because the self-proving
languages were not mature enough (not one had a stable vir-
tual machine that could be embedded into the FIRE implemen-
tation) and because Java’s popularity reduces the learning curve
for FIRE algorithm and applet developers.

The choice of Java, however, forced us to pay more atten-
tion to the design of FIRE’s programming interfaces. Writing
graph algorithms is a notoriously difficult problem—bugs are
common. This difficulty is compounded by Java’s support for
a range of complex language features such as concurrency and
event handling, which also tend to produce programmer bugs.
FIRE’s programming interface is deliberately simple, in an ef-
fort to encourage a straightforward programming style.

A. Routing algorithm interfaces

A routing algorithm is provided with two separate program-
ming interfaces: the algorithm interface and the forwarding ta-
ble API. Every algorithm must implement a specific Java public
interface containing exactly three functions:init(), run(), and
cleanup(). The algorithm is invoked by FIRE through calls to
this interface.

After an algorithm’s code files are loaded, a separate instance
of the JVM is created for each invocation of the algorithm and
the init() function is called with an array of strings specified
in the OCF. The argument strings may be used to pass arbi-
trary operator-specified values into the algorithm (similar toC’s
argv), such as threshold values. The role ofinit() is to do any
initialization required and prepare the environment for forward-
ing table generation.

FIRE periodically invokes the algorithm’srun() method on a
snapshot of the repository for the relevant OCF. Table I shows a
sample property repository for the network in fig. 2. The repos-
itory contains two properties the operator has selected for OCF

TABLE I

A PROPERTYREPOSITORY

OCF 0 OCF 1

FID FIRE IP Addresses FIRE OCFs Delay (ms) Drop %

Metric Up Loaded

A 1 A.1, A.2, A.x true 1 NP 2%
A → 1 0 A.1 true NP 2 0%

1 0 NP true NP NP NP
1 → A 0 true NP 2 0%
A → 2 0 A.2 true NP 250 unsup

2 0 NP true NP NP NP
2 → A 0 true NP 250 3%
2 → B 0 true NP 250 3%
2 → C 0 true NP 250 3%

B 1 B.2, B.3, B.y true 1 NP 0.5%
B → A 0 B.y true NP 40 1%
B → 3 0 B.3 true NP 1 0%

3 0 NP true NP NP NP
3 → B 0 true NP 1 0%
3 → C 0 true NP 5 0%

C 1 C.2, C.3 true 1 NP 0%
C → 3 0 C.3 true NP 5 0%

1, in addition to the OCF 0 properties. Adjacencies can be de-
duced from FIRE IDs (FIDs), as can the type of entity. Entities
not participating in a particular property are denoted asNP.

An algorithm’s implementation has built into it property
names to use as input. The OCF specifies a mapping from cur-
rently advertised property names to the names required by the
routing algorithm. OCF 0, for example, mapsFIRE Metric to
the name expected by the built-in SPF algorithm in order to com-
pute routing tables for FLINT traffic. If the operator desires to
run the algorithm on a different property in another OCF, a new
name mapping would be used. If, on the other hand, more so-
phisticated preprocessing is desired, such as EIGRP’s cost func-
tion, a wrapper function can be employed to read the existing
repository and rewrite the desired metrics into the appropriate
property, before passing the repository on to the standard rout-
ing algorithm.

At the end of a run, a routing algorithm must generate
a forwarding table using the provided forwarding table API.
Again the interface is deliberately simple, providing only four
functions: updateentry(), deleteentry(), purgetable(), and
do updates(). The forwarding table is created before the JVM
is invoked, so the table is always present (no initialization is re-
quired). Furthermore, the interface does not distinguish between
modifying and adding an entry; the algorithm simply states that
it needs the specified entry by callingupdateentry(), and the
API will either modify the existing entry or add a new one as
required. All updates are batched for efficiency, and changes
to the forwarding table are only made when thedo updates()
method is called.

B. Property applet interface

The interface for property applets is similar to that for al-
gorithms. FIRE callsinit() when the property is first specified
by the current OCF and passes in the argument string from the
OCF. As with routing algorithms, when the property applet is
no longer in use, FIRE terminates it by callingcleanup()before
shutting down the enclosing JVM.

Unlike algorithms, which respond to changes, the goal of

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 9

public class SA_update
{

// report data back to FIRE
public static native void report_data (

Object value);

// tell FIRE it should send an SA in the next cycle
public static native void value_changed ();

// tell FIRE to send an SA ASAP
public static native void force_SA ();

}

Fig. 3. Java SA API

property applets is to detect changes. One might imagine this
difference would result in very different ways of invoking them.
While it would be desirable to allow applets to specify a com-
plex, event-driven mechanism to trigger themselves, such an im-
plementation proved far too complex and mistake-prone. In-
stead, the applet invocation interface is essentially identical to
that of algorithms; an applet is simply invoked periodically by
calling run(). The timing and frequency of FIRE’s calls torun()
are specified in the OCF.

When an applet is run, it may choose to record an updated
value for the property or leave the existing value alone. For es-
pecially noisy properties, it may be desirable to squelch the val-
ues within the applet itself, rather than continually issuing SAs
with different values. Furthermore, some changes may be sig-
nificant while others are not (e.g., a change in measured queue-
ing delay from 50 ms to 49 ms probably isn’t very important,
but a change from 50 ms to 10 ms likely is). FIRE itself has no
idea what changes in values are significant, so the API shown in
fig. 3 allows the property applet to provide a notion of signifi-
cance. The applet can simply record a new value, in which case
the new value will be advertised only when the next SA is peri-
odically generated (assuming the value is not updated again be-
fore the SA is generated). If the change is significant, however,
the applet can callvaluechanged(), indicating that it would be
desirable to send an SA with the new property value. Or the
applet can indicate withforce SA()that the property’s value has
changed so dramatically that an SA should be sent immediately
(subject to SA damping rules).

IX. A PPLICATIONS

In order to validate our claim that FIRE provides a robust and
easy-to-use platform for rapid routing algorithm deployment,
we have implemented several different routing protocols. First,
we present our implementation of SPF, showing that basic rout-
ing protocols can be implemented in a straightforward manner
using the API provided by FIRE.

We then present a wrapper function that shows how addi-
tional functionality can be added to previously defined routing
algorithms in a straightforward manner. Finally, to demonstrate
that FIRE provides sufficient capabilities to implement complex
routing algorithms, we consider three of the most popular mul-
ticast routing algorithms, based on the intuition that multicast
algorithms are likely to be more complicated than typical uni-
cast algorithms.

A. SPF

Fig. 4 presents an abridged version of our (unoptimized) im-
plementation of an SPF routing class in FIRE; it dutifully mim-
ics Dijkstra’s algorithm as presented in [13]. In the interest of
brevity, some details of the algorithm (including most error han-
dling) have been omitted in favor of code that interacts with the
FIRE classes. For clarity, this version only builds routes to net-
works, ignoring routeable addresses on the router interfaces. As
discussed in section VIII-A, the class implements the algorithm
interface, although in this case the only interesting function is
run().

We do not describe the operation of Dijkstra’s algorithm here;
interested readers can find a careful treatment in [13]. We note
only that the straightforward implementation of Dijkstra’s algo-
rithm can be considered in two steps: It first initializes an ad-
jacency matrix data structure given a particular source (in this
case, the router for whom the table is being constructed) and
then conducts a series of relaxation steps to compute a prede-
cessor matrix for the shortest paths from the source.

The initializeSingleSource()function performs the matrix
construction here. It uses the repository’s pair-wiseadjacent()
predicate to construct an initial adjacency matrix.3 More inter-
esting in this case, however, is the algorithm’s interaction with
the repository class in order to retrieve the appropriate metrics.
Thename2index()function is used to map the predefined string
to the index of the appropriate property as defined by the opera-
tor in the OCF. Each entity is then extracted from the repository
and stored locally for efficient access, taking note of the network
entities (the destinations of interest).

The relaxation step is not presented here, although there is a
slight caveat in its implementation. Since entities may by dis-
tributing State Advertisements but not (yet) be willing to route
traffic (as indicated by theFIRE Up property), the algorithm
must make sure it does not relax through entities that are unus-
able. Furthermore, it may be asked to build an SPF table on a
metric that not all entities participate in (latency, for example),
in which case it should consider relaxing through only those en-
tities participating in that particular property.

Finally, after constructing a predecessor matrix for the short-
est paths, the routing algorithm uses the forwarding table API
to insert routes for each reachable network entity in the reposi-
tory. As can be inferred from the call topurgeTable(), this SPF
implementation does not support dynamic updates—it rebuilds
the entire routing table each time. In general, however, an im-
plementation could consult state from previous iterations to op-
timize the table updates.

A.1 Augmenting existing algorithms

Perhaps more interesting is fig. 5, which shows all the code
necessary to implement a policy-based derivative of SPF. By
preprocessing the property repository before invoking Dijkstra’s
algorithm, we are able to remove all adjacencies that do not meet
some requirement; in this instance, we do not allow traffic to be
routed over entities that cannot meet a minimum bandwidth. We

3While such a predicate allows for random access, it imposes anO(n2) over-
head on any algorithm (such as Dijkstra) that expects an adjacency matrix rep-
resentation, although other, more optimal representations may be available in
general.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 10

public class SPF implements Algorithm
{

private FID _me;
private int[] distance;
private Entity [] node;
private Vector[] adj;
private Vector networks;
private int numNodes, metric, addr, fireUp;

public void init (FID me, String[] args) {
networks = new Vector(); _me = me; }

public void run (Repostiory repo) {

dijkstra(repo, _me);

// For each network in domain, find its next-
// hop and add it to forwarding table
ForwardingTable .purgeTable();
for (int i = 0; i < networks.size(); i++) {

Entity n = (Entity) networks.elemAt(i);
Entity nHop = nextHop(node.fid);
if(nHop != null)

ForwardingTable .addEntry(n.fid.get_locaddr(),
n.fid.locaddr_cidr_masklen(), nHop.fid);

}
ForwardingTable .doUpdates();

}

public void cleanup () { }

// Dijkstra’s algorithm from CLR [13, p. 527]
public void dijkstra (Repostiory repo,

FID source) {

initializeSingleSource(repo, source);
for (int i = 0; i < numNodes; i++) {

int u = extractMin(); // closest node
for (int v = 0; v < adj[u].size(); v++)

relax(u,((Integer)adj[u].elemAt(v)).intV());
}

}

// Initialize the working state for Dijkstra
public void initializeSingleSource (

Repostiory repo, FID source) {

metric = repo.name2index("metric");
addr = repo.name2index("address");
fireUp = repo.name2index("up");

numNodes = repo.entities.length;
networks.removeAllElements();

distance = new int [numNodes];
node = new Entity [numNodes];

for (int v = 0; v < numNodes; v++) {
node[v] = repo.entities [v];
if(node [v].fid.equals(source)) {

distance [v] = 0;
} else distance [v] = Integer.MAX_VALUE;

if (repo.entities [v].fid.network())
networks.addElement(repo.entities [v]);

. . . Build adjacency matrix adj[0. . . numNodes][. . .] using the
Entity .adjacent(FID) predicate. . .

}

// Edge relaxation over participating, up vertices
private void relax (int src, int dst) { . . .}

}

Fig. 4. Abridged FIRE SPF Implementation. Function declarations and FIRE-
provided classes are shown inbold, elided code is denoted by “. . . ”

public class BaudRateGuarantee extends SPF
implements Algorithm

{
private int min_baud;

public void init (FID me, String[] args) {
super.init(me, args);
min_baud = Integer.valueOf(args[0]).intValue();

}

public void run (Repository repo) {

int baud_index, up_index;
baud_index = repo.name2index("baudrate");
up_index = repo.name2index("up");

// down entities whose baud rate is too low
for (int i = 0; i < repo.entities.length; i++) {

Entity e = repo.entities[i];
Value baud = e.values[baud_index];
Value up = e.values[up_index];
if(((Integer)baud.value).intValue() < min_baud)

up.value = new Boolean(false);
}

// run SPF over the modified repository
super.run(repo);

}
}

Fig. 5. A FIRE routing class that provides a baud rate guarantee. Error checking
has been removed due to space constraints.

note, however, that this simplistic high-pass filtering mechanism
does not imply that the remaining entities could actually provide
such a guarantee; doing so would require interfacing with a re-
source reservation mechanism [9] on the routers, which is out-
side the scope of this work. FIRE could, however, help enumer-
ate the candidate paths that a resource reservation mechanism
should explore while attempting to secure resources between a
particular source/destination pair.

We find this filtering paradigm particularly applicable to
policy-based routing constraints. For instance, similar exten-
sions can be written to ensure packets intended for a private au-
dience are never transmitted over wireless or bridged networks
or shared links by exporting the appropriate properties and pre-
processing the repository in a manner similar to that shown
above.

B. Multicast

Multicast routing protocols contain some of the most com-
plicated routing algorithms currently in use today. We examine
how three different classes of algorithms—dense mode, sparse
mode, and EXPRESS [23]—could be implemented in FIRE.

We note that unlike unicast operation, when all hosts implic-
itly request service by attaching to the network, the goal of mul-
ticast (as opposed to broadcast) protocols is to deliver content
only to those end hosts explicitly requesting service. This re-
quires a signalling mechanism between end hosts and routers.
Most multicast protocols in use today use the Internet Group
Membership Protocol (IGMP) [19] for this purpose, although
some have developed their own extended protocols as well [23].
These host/router signalling mechanisms are orthogonal to the
operation of the routing algorithm itself, hence they are not dis-
cussed here. Clearly for a FIRE router to support any type of

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 11

multicast routing, it would have to implement the appropriate
membership protocol as well. For purposes of discussion, we
assume such an implementation could store state accessible to a
property applet (perhaps through a MIB).

B.1 Dense Mode

Most of the original multicast routing algorithms, Reverse
Path Forwarding (RPF) and its variants, Truncated Reverse Path
Forwarding (TRPF) and Reverse Path Multicasting (RPM), are
best suited for domains with a large number of members in
each multicast group. These algorithms are implemented in
both distance-vector (Distance Vector Multicast Routing Proto-
col (DVMRP) [46] and Protocol Independent Multicast-Sparse
Mode (PIM-SM) [18]) and link-state (Multicast-OSPF (MO-
SPF) [29]) intra-AS protocols.

The particular link-state variant of RPM found in MOSPF,
which builds individual Shortest Path Trees (SPTs) for each
group, can be implemented in FIRE directly by building short-
est path trees precisely as described in [29]. Similar to OSPF,
FIRE already maintains a notion of a Designated Router, hence
no additional machinery is necessary to ensure only one router
multicasts to each subnet. The information contained in a Group
Membership LSA (the groups to which a router is interested in
subscribing) could be implemented as an additionalgroupprop-
erty that each router would participate in. Upon receipt of an
IGMP join message from an end host, a FIRE router would up-
date its group property to contain the new multicast address.
This processing could be done through a property applet that
monitored some list of addresses maintained by the IGMP im-
plementation.

One drawback of this implementation is that the rate of sub-
scription updates is governed by the maximum rate of SA is-
suance within the network. If an end host issues a join message
immediately after a router has reached its SA limit for the cur-
rent time period, it must wait until the damping algorithm allows
the router to emit a new SA before it will be grafted to the distri-
bution tree. Furthermore, if the IGMP processing simply queues
requests to be serviced by a property applet run by FIRE, an ad-
ditional lag is imposed until FIRE invokes the multicast property
applet. This could be ameliorated by allowing the IGMP imple-
mentation to directly invoke specific property applets.

Further, MOSPF builds the shortest path trees “on demand,”
when the first multicast packet for a group is received. FIRE cur-
rently only invokes routing algorithms (tree construction) on SA
arrival, not arbitrary packet arrival. Hence for proper operation
FIRE should pre-construct shortest path trees for any group a
host has registered interest in, regardless of whether traffic is ac-
tually flowing or not. In some instances, this may waste router
resources on unused multicast addresses. We examine the is-
sues involved in event-driven algorithm and property invocation
in detail in section XI-C.

Similar interactions occur with prune messages, although this
has less impact on end hosts, as they do not notice the lag as a
disruption in service, only as wasted bandwidth. We note, how-
ever, that FIRE’s link-state implementation obviates the need for
explicit pruning employed by distance-vector protocols such as
DVMRP’s poison reverse messages.

B.2 Sparse Mode

In networks where group membership is small with respect
to the number of entities, many implementations of reverse path
multicast algorithms become increasingly wasteful, either be-
cause they initially flood traffic to new groups throughout the
entire network until prune messages are received from uninter-
ested routers [46], or because they must store state for currently
unused groups as discussed above. This observation lead to the
development of sparse mode algorithms that provide better scal-
ability properties in the wide area. While the link-state nature of
FIRE limits the scalability of any algorithm it implements, we
examine the viability of a property-based paradigm here, and re-
turn to explore extending FIRE to distance vector in section XI-
D.

Core-Based Trees (CBT) [8] are one such algorithm. The
sparse mode of the Protocol Independent Multicast protocol
(PIM-SM) uses Rendezvous Points as cores for its distribution
trees. Selecting optimal cores in a metric-based routing protocol
is an open problem; current implementations use either a sin-
gle Bootstrap router (BSR) to select cores for the entire domain
(as found in PIM-SM), or manual placement. In a property-
based system, however, routers can dynamically advertise the
property that they are willing to be cores. Each router might
support amulticast-coreproperty whose value is a list of multi-
cast groups for which the router is currently a core. The routing
algorithm would then perform a distributed computation, eval-
uating the potential cores for one that was well-placed for the
intended set of multicast recipients (since both the potential core
information and membership information is flooded throughout
the network). While the optimal core location remains difficult
to determine, and likely changes with group membership, the
availability of global topology and membership information en-
ables a reasonable heuristic, which would be an improvement
over current protocols. This computation could be enhanced by
having routers advertise how heavily they are loaded (e.g., the
number of groups for which they are already serving as cores)
and factoring load into the core selection algorithm.

A further optimization implemented by PIM-SM allows
routers to switch over to a shortest path tree rooted at the source
for higher performance if traffic reaches a certain level. Since
FIRE distributes membership information to each router in the
network, this decision could be made in a more intelligent fash-
ion, utilizing global information about the topologies of both
trees. Note, however, that the rate of SA flooding is not uni-
form throughout the network, so a race condition could exist if
the switch was not implemented properly. If a router suddenly
issued an SA joining the shortest path tree and removing itself
from the core-based tree, the SA may be propagated to the CBT
first, interrupting the delivery of traffic from the initial distribu-
tion tree before it resumes from the SPT, causing a disruption of
service. Hence a robust implementation would likely belong to
both trees for a short while before issuing a new SA resigning
from the initial CBT.

B.3 EXPRESS

Recently, Holbrook and Cheriton extended the multicast
model to support the notion of channels, which allow for explicit

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 12

subscription control and provides membership information to
the source [23]. Their EXPlicitly REquested Single Source (EX-
PRESS) protocol implements a reverse path forwarding algo-
rithm to build distribution trees, but extends it to allow multi-
cast sources to specify an authentication key required for group
subscription, and to request timely estimates of channel mem-
bership. Both of these classes of information can be expressed
quite naturally in the FIRE model.

In order to provide channel authentication, each router could
participate in akeyproperty, where the property was a set of keys
associated with the channels originating at that source. Since
each key is only distributed by its source, but flooded throughout
the network, this presents no additional scaling complications.
To communicate subscription information, the group property
discussed previously could be extended from a simple boolean
value to a counter, which would indicate the number of end hosts
subscribed directly to that particular router. By summing over
the appropriate property entry for all routers in the network, a
source router could compute a reasonable estimate of the cur-
rent channel membership, although the timeliness of this value
would be governed by the rate of SA advertisement in the net-
work.

X. I MPLEMENTATION

We have implemented FIRE as a user-level daemon with sup-
porting kernel modifications for FreeBSD. Multiple FIRE dae-
mons may coexist to support separate FIRE instances on the
same router . Each FIRE daemon, however, must be respon-
sible for a disjoint set of traffic. This section discusses some of
the more interesting features of the implementation.

A. Forwarding

FIRE places two new requirements on the IP forwarding
mechanism. First, it requires every packet to be filtered. Sec-
ond, it requires support for multiple forwarding tables. Both
changes were novel for a BSD kernel.4

A.1 Packet filtering

FIRE packet filters are specified using the Berkeley Packet
Filter (BPF) [27] syntax, which provides a well-known and
highly portable specification language. For performance rea-
sons, we restrict FIRE BPF filters to the IP header. Even with
this limitation, however, the BPF kernel implementation is not
adequate for filtering at line speed. We chose to implement Dy-
namic Packet Filtering (DPF) [17] in the FreeBSD kernel with
a device driver interface similar to BPF. Our kernel DPF imple-
mentation provides multiple filter sets, each of which is indi-
vidually accessible using standard UNIX file system semantics
(and permissions).

One particular filter set is known as theüberfilter. All IP
packets forwarded by the router (byip forward()) are passed
through the ¨uberfilter. If no match is found, the packet is for-
warded according to the default kernel forwarding table (the de-
fault kernel table exits to support legacy applications that need
access to the old kernel routing table). If, however, the packet

4We note that in-kernel packet filtering itself is not new, and is used for effi-
cient protocol demultiplexing in the Nemesis [26] and Scout [7] operating sys-
tems, among others.

FIRE
Daemon

Repository
Snapshot

C Wrapper

JNI API

JVM

algorithm

applet

Filters Forwarding TablesKernel

SA Cache

Fig. 6. FIRE Daemon Implementation

matches a filter installed in the ¨uberfilter, it is passed through the
specified secondary filter set. A matching filter in the secondary
set specifies the appropriate forwarding table to use. If no match
is found, the packet is dropped. Each FIRE daemon requests its
own filter set, and then installs a filter in the ¨uberfilter corre-
sponding to the set of traffic it is responsible for, causing DPF
to route any matching packets through the daemon’s secondary
filter set.

A.2 Forwarding tables

Once the correct forwarding table has been selected, FIRE
follows the standard IP forwarding mechanism and finds a best
matching prefix for the destination address. Due to the addi-
tional performance cost of filtering, we replaced the standard
BSD radix-trie lookup tables [40] (O(W) performance, where
W is the length of an address) with the ETH-WASHU lookup
algorithm [47]. This algorithm both reduces the worst-case
lookup toO(log W) and is more space efficient than the BSD
algorithm.

B. Sandboxing

Each algorithm or applet is run in its own Java Virtual Ma-
chine (JVM), interfacing with FIRE through the use of the pro-
vided Java Native Interface (JNI) API discussed in section VIII.
The JNI functions are supported by a thin C wrapper that inter-
faces with both the FIRE daemon and the kernel. Forwarding
table updates are communicated directly to the kernel by the
wrapper. In the case of algorithms associated with OCFs that
are onlyadvertised, and not yetrunning, the forwarding table
functions are stubbed, and requested updates are logged, but not
yet installed into the kernel forwarding tables.

Communicating property values is a bit trickier, however.
Since the Property Repository is constantly in a state of flux,
a static snapshot is provided to routing algorithms when they
are invoked. This snapshot is passed to the JVM through the
file system. The C wrapper reads the repository snapshot files
and marshals them into appropriate Java structures as required
by the algorithm. The FIRE daemon passes control messages to
the JVM through a UNIX pipe. Results of property applets are
communicated back to the FIRE daemon in a similar fashion.
Fig. 6 depicts the interaction of the various parts of our FIRE
implementation.

C. Performance

We have performed a preliminary performance analysis on
our prototype implementation. Because FIRE is implemented

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 13

in a FreeBSD kernel rather than a commercial router platform,
the forwarding performance results are not particularly interest-
ing. Our implementation forwards packets about33% slower
than stock FreeBSD, mostly due to deficiencies in our prototype
code. We believe this performance gap would be almost entirely
eliminated in an optimized implementation.

Of more import is the performance of the routing protocol
itself, measured in packet exchanges. Our FIRE implementa-
tion generates at most 2 packets (ignoring retransmissions due
to packet loss) on a subnet for each entity advertised (one packet
from the creating entity to the DR, and one multicast packet
from the DR to the other nodes). ACKs are bundled together,
hence the exact ACK count varies dramatically based on the
precise timing of events. At OCF 0, which provides SPF func-
tionality, our message count is a small multiple of OSPF (ap-
proximately a factor of3, since, unlike OSPF, we count links
and networks as separate entities). Each additional advertised
OCF generates a similar number of packets, resulting in a lin-
ear growth in traffic. Note, however, that one OCF may contain
properties for generating multiple forwarding tables, hence the
incremental cost of additional forwarding tables is only in the
size of the messages, not the packet count.

XI. D ISCUSSION

FIRE allows for the rapid deployment of novel routing al-
gorithms, and the dynamic reconfiguration of operational net-
works. In order to provide such a high level of flexibility while
maintaining reasonable levels of security, performance, and ro-
bustness, several architectural aspects of FIRE impact its ap-
plicability to certain classes of routing. We re-examine these
design decisions here, and comment on the plausibility of alter-
native schemes.

A. Event-driven invocation

While FIRE allows property applets great freedom in the type
of computation they can perform, the multicast algorithms dis-
cussed in section IX-B highlight the additional flexibility that
could be gained by allowing applets to be invoked based upon
an event-driven model. As discussed in section VIII-B, however,
such a mechanism proved difficult to implement in a secure and
robust fashion. In general, consuming resources based upon an
external event presents an opportunity for Denial of Service at-
tacks. In the particular instance of invoking property applets
upon the receipt of a certain type of packet, attackers spoofing
the appropriate packet could cause FIRE routers to invoke prop-
erty applets arbitrarily.

While invocation messages could be authenticated using
FIRE’s certificate hierarchy, such a mechanism would violate
FIRE’s security model, which is based on containment. A sub-
verted router could issue properly authenticated messages which
would cause adjacent routers to begin invoking property applets
at an uncontrolled rate, possibly issuing similar invocation mes-
sages to next hop routers, allowing one subverted router to con-
sume resources throughout the entire network.

Related issues arise when a router issues SAs too frequently.
FIRE implements a damping mechanism (described in sec-
tion VI-B.3) that limits the rate of SA generation at any one
router. While the Skeptic model could be extended to handle the

property invocation messages described above, it has similar pit-
falls. The inability to issue SAs at a rapid rate is one of the prime
motivations for additional inter-router communication like that
described above, hence limiting its rate in a similar fashion is
counter productive.

B. Synchronization

In a similar vein, properties are bundled together in a sin-
gle advertisement that is issued sporadically. An alternative ap-
proach, the logical consequence of the previous discussion, is to
allow properties to be advertised individually, thereby enabling
the update rate of certain volatile properties such as multicast
group membership to be decoupled from properties involved in
unicast routing.

In the general case, however, it becomes difficult to reason
about the freshness of property data for any particular neighbor
when each property is updated at its own rate. Associating dif-
ferent rates with individual properties would require multiple,
separate damping policies. It seems dubious to assume that the
Operator has a sufficient understanding of the various require-
ments of each routing algorithm to appropriately set the damp-
ing threshold for every property individually. Additionally, it is
not clear how FIRE could determine when it has a sufficiently
fresh version of the link-state database to invoke particular rout-
ing algorithms. If routing algorithms depend on multiple proper-
ties, invoking an update on each new individual property arrival
would result in a rapid increase in computational expense.

Fundamentally, each of these limitations stems from the fact
that FIRE specifies a rigid flooding mechanism. As the multicast
examples demonstrate, hardwiring state distribution can con-
tribute to less-efficient implementations of certain algorithms.
We believe this is only one symptom of a basic tradeoff be-
tween security and efficiency, and that the robustness guarantees
FIRE’s flooding mechanism provides, both in terms of security
and protection against misconfiguration, outweigh the perfor-
mance impact in most cases.

C. Property fidelity

The granularity of FIRE’s properties allows not only for
routers to advertise their state, but for links to advertise differ-
ent properties in different directions, and properties of networks
distinct from links. As discussed in section X-C, making nodes,
both link directions, and networks all first-class entities in the
routing system imposes a substantial overhead on the number of
routing messages flooded throughout the network. The exam-
ples in section IX clearly demonstrate how router properties can
be leveraged to ease the implementation of sophisticated algo-
rithms, but the utility of property advertisements for the remain-
ing entities bears closer examination.

C.1 Links

It is clear that links are asymmetric in reality, and it is impor-
tant to advertise them separately. The upstream and downstream
traffic for many stub networks’ border routers vary dramatically,
hence any properties that attempt to capture attributes of the link
that are dependent on traffic need to be handled independently.
Even properties that are not traffic related may benefit from the
separation. For instance, an operator could annotate links with

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 14

a conduit property, exposing the physical co-location of various
network links.

C.2 Networks

The evidence in support of network properties is somewhat
less conclusive, although there are specific instances for which
network properties are distinct from adjacent links. For exam-
ple, each router connected to a heavily-loaded gigabit Ethernet
may advertise a link bandwidth of 1Gbps. A routing algorithm
searching for a high-bandwidth path might select such a router,
only to find that only a fraction of the bandwidth was actually
available across the Ethernet. If, on the other hand, the network
was advertising amediaproperty, the algorithm could recognize
that despite the high link speed, the network media is shared,
hence the available bandwidth across the network may be sub-
stantially less.

D. Distance vector

FIRE is a link-state protocol; an interesting question is
whether one could develop a FIRE-like distance-vector proto-
col. The major difference between distance-vector and link-
state protocols is that distance-vector protocols summarize the
state information at each hop in a path. So rather than receiving
property advertisements of each network entity, a router simply
learns the properties of a path to each destination, as seen by its
neighbor. In bandwidth-constrained and highly-connected net-
works (e.g., some wireless networks) distance vector’s ability to
summarize the data at each hop is an advantage because it limits
the spread of topology updates, reducing bandwidth usage.

One approach to distance vector would retain multiple prop-
erties and property applets while replacing routing algorithms
with summarization algorithms, whose job it would be to re-
ceive and process each received routing advertisement and gen-
erate the new advertisement to transmit. (Presumably different
portions of an advertisement would be summarized by different
summary applets in order to support multiple properties.)

Unfortunately, we are aware of at least two serious problems
with the summarization approach. First, robustness is sacri-
ficed; the failure of a summarization applet means a router either
stops advertising information or advertises incorrect informa-
tion about its neighbors. Second, there is a conflict with FIRE’s
security model—in FIRE, a node’s advertisements are digitally
signed by the node. In a distance-vector system, a node’s infor-
mation is only transmitted to its neighbors, which then summa-
rize the information in their advertisements. As a result, in dis-
tance vector, a router must trust its neighbor to correctly summa-
rize. Adding a complete verification trail of all changes would
effectively undo the summarization process; rather, some short
verification must be achieved, which remains an open problem
in general.

E. Inter-AS operation

The task facing an inter-AS protocol is even more daunting.
Not only does it need to summarize the routes internal to the AS,
but an inter-AS variant of FIRE would need to somehow equate
its internal, class-based routes to routes advertised by other ASs.
Unfortunately, as routing information crosses AS boundaries, it
is likely that the traffic classes and advertised properties within

TABLE II

ACTIVE NETWORKING COMPARISON

System Technique Layer Domain Language

Active Bridging [3] Device Bridging Caml
Router Plugins [15] Device Services C

ANTS [43] Capsule General Java
PLANet [22] Capsule General PLAN

PAN [34] Capsule General Java5

Joust [21] Capsule General Java
Smart Packets [39] Capsule Management Sprocket

NetScript [49] Control NVN Management NetScript
Tempest [45] Control ATM Management Ariel

FIRE Control IP Routing Java

each AS will differ, based upon the diverse interests of adjacent
ASs. Hence the summarization process would be further com-
plicated by the need to translate or map the traffic classes and
advertised properties in each AS to the adjacent ones.

XII. R ELATED WORK

There has been considerable work over the past decade on
supporting different types of service. The focus of the vast ma-
jority of this work has been on queueing disciplines such as Fair
Queueing [14], and techniques such as Guaranteed Service and
Differentiated Services [33] that use these queueing schemes to
support different service levels. This work, however, has not ex-
amined routing system support. FIRE is, therefore, complemen-
tary to these schemes, in that FIRE provides support for routing
according to different requirements, but does not specify queue-
ing regimes.

Other routing protocols have sought to be extensible.
OSPF [30] allows the definition of new state advertisement
messages (this feature was used for both Secure and Multicast
OSPF). IS-IS [10] has similarly flexible features. The major
distinction between these protocols and FIRE is that both pro-
tocols require recoding of existing implementations to generate
and use the new information being advertised, while FIRE pro-
vides run-time support. FIRE’s dynamism also contrasts with
Multi-Protocol Label Switching (MPLS) [4], where an operator
can manually configure paths through the network for specific
classes of traffic. The MPLS solution is static, while FIRE, like
most routing protocols, offers a completely dynamic solution.

While FIRE provides the ability to download and execute ar-
bitrary code on production routers, FIRE is not a traditional Ac-
tive Network—unlike capsule-based techniques [22], [34], [43]
user generated traffic cannot affect routing behavior in FIRE.
The separation of operator-initiated control flow and forwarded
data traffic allows FIRE to sidestep many of the difficult per-
formance and security issues associated with Active Network-
ing, although not all. In particular, FIRE’s authentication and
authorization scheme addresses similar problems as those dealt
with in SANE [2]. In addition, resource isolation between rout-
ing algorithms, property applets, and individual FIRE instances
is crucial for deployment in production environments. In the
particular instance of JVMs, these issues have been addressed
recently in the KaffeOS [5].

5Native (i386) object code was also explored, but is not platform-independent.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 15

Many aspects of FIRE grow out of its particular choice of do-
main. Table II presents a taxonomy of Active Networking sys-
tems, categorizing each according to its general technique and
application domain. For informational purposes we also include
the language used to encode the “active” components. We di-
vide the systems into three general classes: those that function
via direct interaction with the components (device), those that
distribute code in data traffic (capsule), and those that use spe-
cial control traffic to alter node behavior (control). Note that
most systems focusing on network management, configuration,
or routing, share FIRE’s separation of control and data traffic.
By limiting the domain scope, FIRE can provide greater levels
of assurance and performance than more general-purpose Active
Networking techniques.

For those systems that expose networking control interfaces,
we classify them in terms of their layer of operation. NetScript
provides a scripting language for constructing an overlay net-
work, called a NetScript Virtual Network (NVN), for handling
specified classes of packets. While sufficiently general to per-
form routing functionality, the design of NetScript requires ac-
tive processing of packets by NetScript agents to perform spe-
cific forwarding tasks. FIRE’s avoidance of such per-packet
computation provides a fundamental performance advantage.

Indeed, the previous work most closely aligned with FIRE’s
goals is Tempest [45], which, like FIRE, focuses on so-called
“out-of-band” control functions, such as forwarding policies and
resource reservation. As an implementation, however, Tempest
partitions an ATM switch into multiple virtualswitchlets, each
of which can be configured by different administrators. In many
ways, FIRE is a generalization of the Tempest approach, provid-
ing enhanced forwarding capabilities at the IP level, where they
are most commonly implemented in today’s networks.

XIII. C ONCLUSION

FIRE significantly increases the control network operators
have over how their network routes traffic. Operators can change
routing algorithms and metrics at run time and dynamically con-
figure which traffic classes are forwarded by the various algo-
rithms. By enabling network operators to change the routing
algorithms employed by the protocol, FIRE significantly lowers
the barrier to deploying new algorithms in an AS.

The fine granularity of FIRE properties allows routing algo-
rithms to make highly-informed decisions. We have demon-
strated that FIRE supports the implementation of existing rout-
ing algorithms, and provides a straightforward mechanism for
extending them to support novel policy-based routing con-
straints. It remains to be seen, however, whether routing al-
gorithms can be developed to take full advantage of FIRE’s
property-based routing paradigm.

As opposed to capsule-based Active Networking techniques,
which provide general execution environments to mobile code,
or restrictive remote router configuration mechanisms, FIRE at-
tempts to strike a balance of flexibility, performance, and secu-
rity that is appropriate for a dynamic routing infrastructure. By
focusing on the particular domain of IP routing, FIRE provides
much of the convenience and expressiveness of Active Network-
ing while ensuring the level of robustness and forwarding per-
formance required of a production routing protocol.

ACKNOWLEDGEMENTS

We are indebted to David Andersen, Robert Morris, Ram Ra-
manathan, Robert Shirey and the anonymous reviewers for their
invaluable comments on previous versions of this paper. Steve
Kent provided expert guidance on several security issues. Ben-
jie Chen assisted with the performance measurement of our pro-
totype. Ayan Banerjee, Rahul Biswas, Matt Fredette, Fabrice
Tchakountio, Laurie Thompson, and Greg Troxel contributed to
the reference FIRE implementation.

REFERENCES

[1] C. Adams and S. Farrell. Internet x.509 public key infrastructure certificate
management protocols. RFC 2510, IETF, Mar. 1999.

[2] D. S. Alexander, W. Arbaugh, A. Keromytis, and J. M. Smith. A secure ac-
tive network environment architecture.IEEE Network, 12(3):37–45, May
1998.

[3] D. S. Alexander, M. Shaw, S. M. Nettles, and J. M. Smith. Active bridging.
In Proc. ACM SIGCOMM ’97, pages 101–111, Sept. 1997.

[4] D. O. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus.
Requirements for traffic engineering over MPLS. RFC 2702, IETF, Sept.
1999.

[5] G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation,
resource management, and sharing in Java. InProc. USENIX OSDI ’00,
pages 333–346, Oct. 2000.

[6] S. Bahk and M. E. Zarki. Dynamic multi-path routing and how it compares
with other dynamic routing algorithms for high speed wide area network.
In Proc. ACM SIGCOMM ’92, pages 53–64, Aug. 1992.

[7] M. Bailey, B. Gopal, M. Pagels, L. Peterson, and P. Sarkar. Pathfinder: A
pattern-based packet classifier. InProc. USENIX OSDI ’94, pages 115–
123, Nov. 1994.

[8] A. Ballardie, P. Francis, and J. Crowcroft. Core based trees (CBT): An
architecture for scalable multicast routing. InProc. ACM SIGCOMM ’93,
pages 85–95, Sept. 1993.

[9] B. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reser-
vation protocol (RSVP) — version 1 functional specification. RFC 2205,
IETF, Sept. 1997.

[10] R. Callon. Use of OSI IS-IS for routing TCP/IP and dual environments.
RFC 1195, IETF, Dec. 1990.

[11] I. Castineyra. Hop-spec: specifying the capabilities of the hop within an
internetwork. Technical report BBN-TR-7813, BBN Technologies, 1992.

[12] B. Chinoy. Dynamics of Internet routing information. InProc. ACM SIG-
COMM ’93, pages 45–52, Sept. 1993.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algo-
rithms. MIT Press, Cambridge, Massachusetts, 1990.

[14] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm.Internetwork: Research and Experience, 1(1):3–26,
Jan. 1990.

[15] D. Descaper, Z. Dittia, G. Parulkar, and B. Plattner. Router plugins: A soft-
ware architecture for next generation routers. InProc. ACM SIGCOMM
’98, pages 229–240, Aug. 1998.

[16] E. Dijkstra. A note on two problems in connexion with graphs.Nu-
merische Mathematik, 1:269–271, 1959.

[17] D. Engler and M. F. Kaashoek. DPF: Fast, flexible message demultiplexing
using dynamic code generation. InProc. ACM SIGCOMM ’96, pages 53–
59, Aug. 1996.

[18] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Hand-
ley, V. Jacobson, C. Liu, P. Sharma, and L. Wei. Protocol indepen-
dent multicast-sparse mode (PIM-SM): Protocol specification. RFC 2362,
IETF, June 1998.

[19] W. Fenner. Internet group membership protocol, version 2. RFC 2236,
IETF, Nov. 1997.

[20] J. Gosling, B. Joy, and G. Steele.The Java language specification. Addi-
son Wesley, Reading, Massachusetts, 1996.

[21] J. Hartman, L. Peterson, A. Bavier, P. Bigot, P. Bridges, B. Montz, R. Piltz,
T. Proebsting, and O. Spatscheck. Joust: A platform for liquid software.
IEEE Networks, 12(4):50–56, July 1998.

[22] M. Hicks, J. Moore, D. S. Alexander, C. Gunter, and S. Nettles. PLANet:
An active internetwork. InProc. IEEE Infocom ’99, pages 1124–1133,
Mar. 1999.

[23] H. Holbrook and D. Cheriton. IP multicast channels: EXPRESS support
for large-scale single source applications. InProc. ACM SIGCOMM ’99,
pages 65–79, Sept. 1999.

[24] S. Kent and R. Atkinson. Security architecture for the Internet protocol.
RFC 2401, IETF, Nov. 1998.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 16

[25] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (S-BGP).
IEEE J. Select. Areas Commun., 18(4), Apr. 2000.

[26] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fair-
bairns, and E. Hyden. The design and implementation of an operating
system to support distributed multimedia applications.IEEE J. Select. Ar-
eas Commun., 14(7):1280–1297, Sept. 1996.

[27] S. McCanne and V. Jacobson. The BSD packet filter: A new architecture
for user-level packet capture. InProc. USENIX Technical Conference,
pages 259–269, Jan. 1993.

[28] J. McQuillan, I. Richer, and E. Rosen. The new routing algorithm for the
arpanet.IEEE Trans. Commun., 28(5):711–719, May 1980.

[29] J. Moy. Multicast extensions to OSPF. RFC 1584, IETF, Mar. 1994.
[30] J. Moy. OSPF version 2. RFC 2328, IETF, Apr. 1998.
[31] S. Murphy, M. Badger, and B. Wellington. OSPF with digital signatures.

RFC 2154, IETF, June 1997.
[32] G. Necula. Proof-carrying code. InProc. ACM POPL ’97, pages 106–119,

Jan. 1997.
[33] K. Nichols, V. Jacobson, and L. Zhang. A two-bit differentiated services

architecture for the Internet. RFC 2638, IETF, July 1999.
[34] E. Nygren, S. J. Garland, and M. F. Kaashoek. PAN: A high-performance

active network node supporting multiple code systems. InProc. IEEE
OPENARCH ’99, pages 78–89, Mar. 1999.

[35] C. Partridge, I. Castineyra, B. Schwartz, and F. Tchakountio. Large data
transfer protocol. Technical memo BBN-TM-1265, BBN Technologies,
Nov. 2000.

[36] C. Partridge, I. Castineyra, W. T. Strayer, A. C. Snoeren, and B. Schwartz.
FIRE state message protocol specification. Technical memo BBN-TM-
1245, BBN Technologies, July 2000.

[37] T. Rodeheffer and M. Schroeder. Automatic reconfiguration in Autonet.
In Proc. ACM SOSP ’91, pages 183–197, Oct. 1991.

[38] E. Rosen. Vulnerabilities of network control protocols: An example.ACM
CCR, 11(3):10–16, July 1981.

[39] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D. Rockwell, and
C. Partridge. Smart packets for active networks.IEEE Trans. Comp. Sys.,
18(1):67–88, Feb. 2000.

[40] K. Sklower. A tree-based routing table for Berkeley Unix. Technical re-
port, University of California, Berkeley, 1993.

[41] A. C. Snoeren, C. Partridge, W. T. Strayer, and I. Castineyra. FIRE peering
protocol specification. Technical memo BBN-TM-1244, BBN Technolo-
gies, July 2000.

[42] K. Sollins. The TFTP protocol (revision 2). RFC 1350, IETF, July 1992.
[43] D. Tennenhouse and D. Wetherall. Towards an active network architecture.

ACM CCR, 26(2), Apr. 1996.
[44] M. Thorup. Undirected single-source shortest paths with positive integer

weights in linear time.J. ACM, 46(3):362–394, May 1999.
[45] J. E. van der Merwe, S. Rooney, I. M. Leslie, and S. A. Crosby. The

Tempest — a practical framework for network programmability.IEEE
Network, 12(3):20–28, May 1998.

[46] D. Waitzman, C. Partridge, and S. Deering. Distance vector multicast
routing protocol. RFC 1075, IETF, Nov. 1988.

[47] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high speed
IP routing lookups. InProc. ACM SIGCOMM ’97, pages 25–36, Sept.
1997.

[48] R. White, A. Retana, and D. Slice.EIGRP for IP. Addison Wesley, Read-
ing, Massachusetts.

[49] Y. Yemini and S. da Silva. Towards programmable networks. InProc.
IFIP/IEEE Intl. Work. on Dist. Systems: Operations and Management,
Oct. 1996.

Craig Partridge (Fellow) is a Chief Scientist with
BBN Technologies, Cambridge, MA, where he does
research on various aspects of internetworking. He
is chair of ACM SIGCOMM and the former editor in
chief of IEEE Network Magazine and ACM Computer
Communication Review. He is co-consulting editor of
the Addison Wesley Professional Computing Series.
He received the A.B., M.S., and Ph.D. degrees from
Harvard University, Cambridge, MA.

Alex C. Snoeren(Student Member) received the B.S.
degrees in computer science and applied mathemat-
ics from the Georgia Institute of Technology, Atlanta,
GA, in 1996 and 1997, respectively, and the M.S. de-
gree in computer science in 1997. He is currently a
Ph.D. candidate in the Department of Electrical En-
gineering and Computer Science at the Massachusetts
Institute of Technology, Cambridge, MA. He is also
with BBN Technologies, Cambridge, MA, as a Scien-
tist in the Internetworking Research Department. His
research interests include systems, networking, and

mobile computing.

W. Timothy Strayer (Senior Member) received the
B.S. degree in mathematics and computer science
from Emory University, Atlanta, GA, in 1985 and the
M.S. and Ph.D. degrees in computer science from the
University of Virginia, Charlottesville, VA, in 1988
and 1992, respectively. He joined BBN Technolo-
gies, Cambridge, MA, in 1997, where he is a Senior
Scientist in the Internetworking Research Department.
His research interests include transport protocols, ac-
tive networks, satellite packet switching, virtual pri-
vate networks, and routing systems.

Beverly Schwartzis a Scientist at BBN Technologies,
Cambridge, MA, in the Internetworking Research De-
partment where she works on applying Active Net-
working technology to network management and rout-
ing protocols. She received the B.S. degree in elec-
trical engineering from Tufts University, Somerville,
MA, in 1985, and the M.S. degree in computer science
from Harvard University, Cambridge, MA, in 1989.
She designed and implemented much of the state dis-
tribution mechanism in FIRE.

Matthew Condell received the B.S. and M.Eng. de-
grees in computer science from the Massachusetts In-
stitute of Technology, Cambridge, MA in 1996. He
joined BBN Technologies, Cambridge, MA in 1996
where he is a Scientist in the Internetworking Re-
search Department. His interests include network se-
curity, active networking, and policy.

Isidro Castiñeyra received the M.Sc. and Ph.D. de-
grees in electrical engineering from the Massachusetts
Institute of Technology, Cambridge, MA. The work
described in this paper was conducted while he was
Division Scientist in the Internetwork Research de-
partment of BBN Technologies, Cambridge, MA. He
is presently with Pluris, Cupertino, CA. His research
interests center around system resource management
and routing. He has conducted research on routing for
Quality of Service (QoS) applications; on scalable, se-
cure, mobile communication; and on scalable routing

architectures for QoS (NIMROD).

