IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 1

FIRE: Flexible Intra-AS Routing Environment

Craig Partridgefellow, IEEE Alex C. SnoerenStudent Member, IEEE
W. Timothy StrayerSenior Member, IEEEBeverly Schwartz, Matthew Condell, and Isidro Castira

Abstract—Current routing protocols are monolithic, specifying the algo- network nodes. Many techniques provide such flexibility by al-
rithm used to construct forwarding tables, the metric used by the algorithm lowing individual data packets to explicitly participate in routing

(generally some form of hop count), and the protocol used to distribute these LY . _
metrics as an integrated package. The Flexible Intra-AS Routing Environ- decisions [21], [22], [34], [43], creating a large range of secu

ment (FIRE) is a link-state, intra-domain routing protocol that decouples rity and stability concerns. Others limit such functionality to
these components. FIRE supports run-time-programmable algorithms and specially authorized and authenticated control traffic, but either

metrics over a secure link-state distribution protocol. By allowing the net- ; ; ; ; _ _
work operator to dynamically reprogram both the properties being adver- Severely restrict functlonallty [45]’ require per paCkEt process

tised and the routing algorithms used to construct forwarding tables, FIRE INg on the forwarding path [49], or both [39].
enables the development and deployment of novel routing algorithms with- ~ FIRE, the Flexible Intra-AS Routing Environment, is an at-

out the need for a new protocol to distribute state. FIRE supports multiple tempt to provide a more flexible routing system without sacri-

concurrent routing algorithms and metrics, each constructing separate for- fici f di f | . f
warding tables. By using operator-specified packet filters, separate classes icing forwarding performance. Operators control a variety o

of traffic may be routed using completely different routing algorithms, all key routing functions, including choosing which algorithms are
supported by a single routing protocol. used to select paths, choosing what information is used by the

This paper presents an overview of FIRE, focusing particularly on ; ; P : _
FIRE'’s novel aspects with respect to traditional routing protocols. We con- algorlthms, and |dent|fy|ng traffic classes to be forwarded ac

sider deploying several current unicast and multicast routing algorithms in ~ c0rding to the specified algorithms. Expressing these ideas a bit

FIRE, and briefly describe our Java-based implementation. more formally, FIRE splits the standard routing protocol into its
Keywords—IP Routing, Active Networks, Class-Based Forwarding, Dif- constituent parts: secure state distribution, computation of for-
ferentiated Services, Virtual Private Networks warding table(s), and the generation of state information (i.e.,
determining what values to distribute). FIRE then exposes its

I. INTRODUCTION state distribution functionality, making computation of forward-
ROUTING protocol has three constituent functions: it dé’[\g tables and the generation of state information programmable

fines a set of metrics upon which routing decisions afs run-t|me_. . . .
made: it distributes this information throughout the network; 1€ motivation for the novel aspects of FIRE springs directly
and it defines the algorithms that decide the paths packets (]88 three simple observations:
to traverse the network. Furthermore, a well-designed proto® Routing algorithms continue to evolve.
col contains security mechanisms to protect the routing infras® 10day’s simple link metrics are often insufficient to support
tructure from attack as well as from mischance or misconfigu- N€W routing algorithms. _ _ _ o
ration. In today’s routing protocols, these functions are tightly* Network providers are increasingly interested in providing
integrated and cannot be unbundled. When a network operator SPecialized routing for different classes of traffic.
chooses to use 1S-IS [10] or OSPF [30], for instance, the infor-OVver the past several years there h_ave been_ considerable fer-
mation that is distributed about each link and the algorithm tH&€ntand change in the design of multicast routing protocols [8],
is used to select paths are fixed; the operator is largely unablék8l: [23]. Potential improvements for unicast routing have
tune the system to use a new algorithm or different metrics. TASC been developed [6], [44]. Geiting any of these algorithms
operator may select a more sophisticated set of metrics and ré@¢ually deployed is difficult. Because current routing proto-
ing algorithm by moving to Cisco’s Enhanced Interior Gatewaﬁpls have m;ertwmed th_e|r algorithm Wlth their state d|§tr|bu-
Routing Protocol (EIGRP) [48], but the operator is then forcetPn mechanism, deploying new algorithms has meant, in most
also to accept EIGRP’s state distribution and security mectf®Ses implementing entirely new protocols. In short, the barrier
nisms. to deploying new routing algorithms is very high. Indeed, part

Recent work has attempted to harness the power of Actikthe motivation for FIRE came from our experience trying to

Networking [43] to provide extensible routing functionality ind®PIoy @ new unicast routing algorithm that finds approximately
optimal paths based on multiple, orthogonal link metrics [11].
This work was supported by the Defense Advanced Research Projects AgencMOSt protocols use hop counts to approximate the cost of a
(DARPA). , _ link. More sophisticated protocols like EIGRP compute the met-
Crgég‘ggﬁgcﬁﬁ)f’v'th BBN Technologies, Cambridge, MA 02138 USA (e-maili from a mix of several link properties, but the EIGRP equa-
A. C. Snoeren is with the MIT Lab for Computer Science, Cambridge, MAiON for combining metrics is fixed and represents a balance be-
02139 USA and with BBN Technologies, Cambridge, MA 02138 USA (e-maitween possibly conflicting values. FIRE distributes a rich set

snoeren@Ics.mit.edu).
W. T. Strayer, B. Schwartz, and M. Condell are with BBN Technologies, Carg-]c properties for use by routing algorithms. Properties can be

bridge, MA 02138 USA (e-mail: strayer@bbn.com; bschwart@bbn.com; mco_fﬂ]onﬁgure‘j values, extracted from _rOUter MIBs, or even dyn?m'
dell@bbn.com). ically generated by operator-provided applets. FIRE provides
I. Castifeyra was with BBN Technologies, Cambridge, MA 02138 USA. H ; ; _
is now with Pluris, Cupertino, CA 95014 USA (e-mail: isidro@pluris.com). for prOgra:jmn':able prc()jpt_arty generatlonH ar}d prop;rnes (E)?n be I‘ed
A preliminary version of this paper was presented at ACM SIGCOMM '00 igener_ate when conditions suggest that forwarding tables nee
Stockholm, Sweden, August 2000. updating.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 2

The increasing het_erogene{ty of I.nterr?et ponnectivity strong]y SAs SA :r_ I;r_o;)(;r;y"i
suggests that there is a growing diversity in path choices. Dif-_ SAs ~ Generatior] T Applets ||
ferent paths between two points will be better suited for differ- _ — |
ent applications. An obvious example is satellite links, which Flooding } Virtual -

. . . Mechanisni i\ Machine
are being used more frequently in the Internet and which of- ! !
fer high bandwidth but also high delay. Most routing protocols — Property /| Routing !
in use today forward all traffic based upon the same forward- Repository 1| Algorithms|

| Sp— ———

ing table. Traffic classes may be differentiated with respect to
resource reservation [9] and queuing priority [33], but packets pata Path
are generally routed identically. In FIRE, each packetisrouted T T/ 1T : — N
based upon a forwarding table constructed to best suit its partic——s{ berfilter Eﬁ‘t%kr‘;t - FO;‘Q’SES'”Q
ular traffic class, as determined by the contents of the packet's

header. By assigning different classes of traffic to separate f@jg. 1. Architecture of a FIRE Router. Each property applet and routing algo-
warding tables, FIRE allows network operators to optimize for rithm instance is run in a separate virtual machine.

each class. Each forwarding table is constructed with a different

algorithm, which may use its own set of metrics. . .)

This paper is organized as follows. Section Il provides a A Node is responsible for generating values for each of the
brief overview of FIRE, while sections IIl, IV, V, and VI propertles being advertised in the network. Property values
present novel aspects of FIRE that are particularly interestiffj links are generated by adjacent nodes. Network proper-
when compared to existing protocols, including configuratidifS are the responsibility of nodes called Designated Routers,
and management, programmable routing algorithms, dynaﬁlﬁEICh are selected using a distributed election process similar
properties, and our security model. Section VI describes FIREGOSPF [41]. Some property values may be configured into the
state distribution mechanism in more detail. Section VIl prdi°des (€.g., multicast support or policy-based cost values). Oth-
vides a quick tour of the programming interface to FIRE, whilgs may be readily available from the router's MIB (e.g., average
section IX demonstrates its flexibility by sketching FIRE imdueue length, CPU utilization, etc.). FIRE also allows operators
plementations of several popular routing algorithms. Sectiont® Write their own property applets. Like algorithms, property
very briefly discusses our FIRE implementation, and section RPPIets are written in Java and each is executed in its own JVM
examines the strengths and shortcomings of FIRE's design. {gtance.

survey related work in section XIl before concluding in sec- All property values are distributed to every node in the net-
tion XIII. work using reliable flooding. Each node stores these values in

a property repositoryin order to build a complete and consis-
Il. FIRE OVERVIEW tent map of the network. Updates of the values of these proper-
ties are periodically flooded throughout the network through the

A traditional routing protocol generates a single forwardingse of State Advertisements (SAs), refreshing the repositories at
table at each router, which the router then uses to determiie:h router.

where to forward incoming traffic. FIRE extends that notion

by generating a set of forwarding tables, each uniquely defingd Fijtering

by three pieces of information: the algorithm used to compute]]

the table, the properties used by the algorithm in its computaA Single instance of FIRE may manage several forwarding ta-
tions, and a packet filter that determines which classes of traffi€S, and thus serve several classes of traffic concurrently. Traf-
use the forwarding table. In FIRE, all three of these variabl@§ iS classified using operator-specified filters and forwarded

may be configured by the network operator at run time. according to the generated forwarding tables. The tables them-
selves are generated by the routing algorithms which are run on
A. Algorithms the property repository, an internal link-state database contain-

))) ing property values for each entity in the network.
Routing algorithms in FIRE are downloaded Java programs.c|pe permits multiple instances of the FIRE protocol to be

The algorithms are designed to use distributed ngtwork prOpﬁfhning concurrently in a system. Each FIRE instance is wholly
ties tp generate a local forwarding taple. Each !nstance of &-contained, propagates its own state, and maintains a sepa-
algorithm is run in a separate Java Virtual Machine (JVM) One set of forwarding tables. This feature is designed to support
the router itself. This sandboxing prevents a buggy or maliCioyg, a1 private Networks (VPNs), where overlays are used to
routing algorithm from disabling the entire router. make a single network look like several independent networks.
The internal architecture of a FIRE router is shown in Fig. 1.
In the router’s data path, all incoming traffic on the router first
A FIRE system is composed of two classes of entities: nodeasses through diberfilterthat assigns the traffic to a particu-
and links. Nodes consist of both routers and broadcast netwotks,instance of FIRE. A packet can belong to only one instance,
while links are uni-directional adjacencies between nodes. Edwnce the filters must be disjoint. (In a router with only one
entity in the FIRE system has a unique ID and a set of propertiastance of FIRE, thaiberfilter would contain a single entry
associated with its ID. The ID encoding specifies whether tligat matches all packets.) Within a FIRE instance, packet fil-
entity is a link, subnet, or router. ters determine which forwarding table the packet is to use. The

B. Properties

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 3

packet’s destination address is looked up in the indicated tableThe OCM tags each OCF with one of three directivesd,

and the packet is forwarded accordingly. advertise or run. An OCF load directive simply causes the
)) router to retrieve the files from the file repository. An OCF
D. Design philosophy advertise directive additionally forces the generation of prop-

The most basic contribution of FIRE is the ability to modifyerty values and their issuance as SAs once the OCF has finished
at runtimethe routing algorithms and property metrics used #@ading. In addition to the steps required by the loading and ad-
generate forwarding tables. This dynamism requires great c¥estising states, an OCF number tagged with the run directive
to ensure robust, reliable behavior; the sheer scope of configauses routers to run the associated routing algorithms to gen-
ration and, even more importantly, programming options mag@éate forwarding tables. The resulting forwarding tables, along
available by FIRE’s model tremendously increases the chanca\ith the specified packet filters, are installed into the router.
misconfiguration or buggy implementations. This vulnerability The list of OCFs can change from one OCM to the next. In
has guided our design of the FIRE protocol. We have soughtfést, this is precisely how the Operator introduces new OCFs
make FIRE as stable a platform as possible. into the system, and prepares the network to run them. A care-

The desire for robustness manifests itself in FIRE’s securiyl Operator will iterate a particular OCF through the loading
model, which is based on the philosophy of containment. SA8d advertising stages, ensuring the expected operation before
are signed by their creator to prevent modification in flight; agwitching it to the run state. Old OCFs that are removed in suc-
vertisements can be suppressed or damaged in flight but c@eding OCMs are purged from the system, along with any al-
not be surreptitiously modified or spoofed. Furthermore, eaghrithm files they use.

FIRE entity has an associated authorization certificate specify-

ing what information it is allowed to advertise. These certifi=" OCFO

cates are used, for example, to prevent a malicious or misconThere is one OCF that is considered immutable—OCF 0. All
figured router from advertising a route to a distant portion of trentities must advertise OCF 0 properties regardless of what other

network and “black-holing” traffic. OCFs are loaded or which one is running. This OCF contains the
minimum amount of information necessary to maintain routing
Ill. CONFIGURATION & MANAGEMENT functionality, and is always operational.

Central to the FIRE model is the notion of @perator. FIRE An OCF 0 forwarding table is always built using SPF [28]
works within a particular Autonomous System (AS)—an ard®ijkstra’s algorithm [16]) with hop count as its metric. FIRE
completely controlled by one administrative entity. That entityontrol traffic is always sent using this forwarding table. By en-
appoints one or more people (e.g., a network operations cengjng control traffic is forwarded using a straightforward, reli-
as the Operator. The Operator is authorized to configure #éigle routing table, OCFs and their associated files can be down-
network through two mechanisms: the Operator Configuratidaded regardless of the state of (in)operation of the currently
Message (OCM) and the Operator Configuration File (OCF). running OCF.

OCF 0 contains exactly four properties:
A. Configuration messages and files FIRE Metric: The hop count for this entity used to build the

The OCM is a special State Advertisement that contains the SPF routing table for FIRE management traffic.
configuration rules for the FIRE system, the set of OCFs thatP AddressesThe set of IP addresses associated with this en-
are to be loaded, and names one of them a$LthBing OCF. tlty For ”nkS, this is the set of IP addresses associated with
An OCF lists the routing algorithms to use, the properties to ad- the destination interface. For routers, this includes any stub
vertise, and the filters to map traffic classes to forwarding tables. hosts that are reachable through this node. Networks do not
Both the OCM and OCFs are cryptographically signed with the participate in this property.

Operator’s secret key. There can be only one OCM valid at any~!RE Up: This boolean value states that FIRE is currently
point in time. The OCM is injected into the network by an Op- running for this node or link. If set to false, no traffic is

erator at any FIRE node, and is distributed along with normal routed through this entity.

routing updates throughout the network by the standard flood OCFs Loaded:A list of the OCF numbers (other than zero)

ing mechanism. for which this entity is flooding SAs. Only router nodes

Upon receipt of the OCM, a node retrieves the listed OCFs Participate in this property.
from one of the file repositories specified in the OCM. File rdD addition to being used by the OCF 0 routing algorithm, these
trieval is facilitated by a special, simple file transfer protocdiroperties are also available to routing algorithms running at any
called the Large Data Transfer Protocol (LDTP) [35]. This préther OCF number.
tocol is based on the Trivial File Transfer Protocol (TFTP) [42],
enhanced to protect against insertion attacks and reduce its vul-
nerability to Denial of Service attacks. When an OCF is re- After an algorithm’s support files are downloaded, the code is
trieved from a file repository, the OCF is parsed and any adtiaded into an execution environment on the router. Our FIRE
tional support files downloaded. In particular, the OCF contaiimaplementation invokes algorithms in a Java Virtual Machine
the list of routing algorithms and property applets, along with@VM). If the algorithm is being asked to generate multiple for-
list of file repositories where these files can be obtained. LDWarding tables based on different properties, a separate JVM
is again used to retrieve these files. All files to be downloadéshch with the same algorithm code) is created for each instance.
are cryptographically signed to ensure integrity. Because we expect SPF to be a frequently used algorithm, in

IV. ALGORITHMS

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 4

addition to being an integral part of OCF 0 routing for FIRE The final protection is not on algorithms themselves, but in-
packets, SPF is implemented as a built-in function rather thastaad results from FIRE’s limits on SA frequency. Since SAs

downloadable applet. can only be issued at a specified maximum rate (which is en-
o forced by neighboring routers as part of the flooding protocol),
A. Programming interface a particular node cannot trigger system-wide algorithm runs too

The FIRE algorithm programming interface is intentionalljfrequently. This mechanism is discussed in more detail in sec-
very simple. Whenever new information is inserted into thégon VI-B.
property repository by the reception of an SA, a snapshot of the
repository is made and the routing algorithm invoked. The algo-
rithm'’s job is to generate a forwarding table from the snapshotAny information needed by routing algorithms to construct
of the repository. forwarding tables must be distributed throughout the network.

The programming interface does not explicitly support incré&IRE packages this information into typed values cafiexper-
mental updates. Our reasoning is that requiring algorithmsttes Properties differ from metrics used in traditional routing al-
support incremental updates is both unreasonable (some algrithms. Metrics are weights, assigned to a link, that influence
rithms may not have a straightforward way to do incrementtiie link’s likelihood of inclusion in forwarding paths. Proper-
updates) and, as an added complexity, subjects them to adiglis, on the other hand, are applicable not only to links, but to
tional bugs. However, FIRE does permit the JVM to preserveuters and networks as well.
state across algorithm invocations, so programmers are free tdhe OCF defines the set of properties that a node or link must
perform incremental updates if they wish. The programmiragvertise. Some of these properties will make sense for both

V. PROPERTIES

interface is discussed in more detail in section VIII-A. nodes and links, some will make sense only for nodes or links,
) and some will make sense for only some nodes or some links.
B. Algorithm frequency The OCF’s grammar allows the Operator to specify the class of

When determining how frequently to run an algorithm, thentity that should participate in advertising a particular property.
key issue is correctness of routing. The fundamental idea B participating entity is unable to generate a value for a par-
hind link-state routing is that if everyone has the same infolicular property (perhaps it does not have the required hardware
mation (the flooding protocol ensures information at all nodé@ support routing based on that property), the property’s value
will converge) and runs the same algorithms, they will get tH&@n be set tansupported
same results and routing tables will be consistent. Obviously the-inks are abstractions and cannot themselves issue SAs. The
sooner one runs algorithms in response to updates, the fastesgige is true for network nodes. The node that is the originating
convergence and the less likely that routing loops or black hoRadpoint of a link is responsible for advertising the link. For
will occur. In our view, loop freedom and black hole avoidandeetwork nodes, the Designated Router undertakes the respon-
is vital to proper operation, so FIRE runs algorithms whenewipility of advertising for the network node and, in addition, for

new information arrives. the links going from the network node to adjacent nodes as well.
_ This implies that all network properties must either be statically
C. Thrashing configured or able to be measured by an adjacent router.

Given FIRE’s predilection for invoking routing algorithms, it A Property can be generated by (a) using a configured value,

becomes important to protect against thrashing, where any f{&)obtaining informatior) from the router’s MIBs, or (c) running
piece of information could cause an algorithm to run. FIRE triéProperty applet. Configured values and MIBs are assumed to
to avoid thrashing in three ways: b_e in place prior to the circulation of an OCF containing algo-
First, algorithms cannot be stopped in mid-run. They run {§hms that rely on these values.
completion with the property snapshot they have, and if an up-
date is received while running, the algorithms are simply wg Property applets
voked again as soon as they complete. So FIRE algorithms ard he ability to generate dynamic properties is one of the most
guaranteed to generate forwarding tables, regardless of the Rg@erful aspects of FIRE, as well as its most dangerous. FIRE
of incoming property updates. borrows from the Active Networks [43] philosophy, allowing
Second, FIRE dallies slightly before invoking an algorithnflownloaded code to be executed on the router itself. Unlike al-
Rather than starting up each algorithm as soon as one new or@gyithms, however, which simply compute a function over the
dated SA arrives, FIRE waits a brief, configurable period (usRtovided property repository, property appfateed access to a
ally a few seconds) to allow additional new information to afar larger set of capabilities, possibly including file and network
rive, since routing updates tend to come in bursts. Indeed, c@gcess. Clearly this represents a potential security risk. In ad-
ventional wisdom holds that routing protocol traffic tends to b@tion to requiring all downloaded code to be cryptographically
either very heavy (lots of new SAs) or very light (very few SAsyigned by a software authority, our FIRE implementation uses
at any given momeritDallying tries to ensure that during peri-Java’s security infrastructure [20] to provide a balance between

ods of heavy traffic, algorithm runs balance responsiveness wigfle security and applet functionality. The FIRE specification,
efficiency. however, allows for implementations to provide support for ad-
ditional execution environments. The large body of work on
lwe have not found a careful study that discusses this behavior within an
autonomous system. Chinoy’s study [12] of backbone advertisements supporf®Note that neither routing algorithms nor property appletsamgletsin the
the idea that updates are bursty. strict Java sense of inheriting from tfeva.applet.Appletlass.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 5

Proof-Carrying Code [32] could be leveraged for installations AX Al
with particularly tight security constraints. Router A

Regardless of language or execution environment, property
applets are provided sufficient security permissions to interact

with the router and any directly connected links. Since routers/
need only advertise properties related to themselves, adjace tl'
links, or directly-connected networks (in the case of Designated |

|

Routers), applets have no need for multi-hop communication.| | B.2 c.2
Similarly, they are not provided with any network-level services \ ‘| e =

that would require multi-hop communication by the router, such Router B Router C
as name resolution. Other than these basic restrictions, applet§+Y B.3 @ c3

are allowed to execute arbitrary Java instructions. It is left up 'go

the software signing authority to ensure that approved propert§
applets function appropriately for use in a production environ-

ment.

2. An example FIRE network model. Solid arrows represent directed
adjacencies; dashed arrows indicate router peering relationships.

FIRE builds on a considerable body of prior work [25], [30] to

B. Property updates provide mechanisms that are secure, efficient, and robust.

Scheduling property applets is another difficult task. The OR- Peering
erator schedules applets to be run at specified intervals in the
OCF. Applets must be run at discrete times, however, and thefopologically, FIRE models a network as a meshnoties
processes the applets are trying to capture may not be discastenected bylinks. Besides all participating routers in the
in nature. Furthermore, even if applets were run continuoushgtwork, broadcast subnets are also treated as nodes, as in
some control must be placed on the advertisement of new V@SPF [30], thereby reducing the number of links between
ues. FIRE cannot, in general, determine when properties h&@eters on a broadcast subnet frérn?) to O(n).
changed materially, since property values and types are arbinlike OSPF, however, FIRE explicitly supports uni-
trary. Therefore property applets themselves are charged wditectional links. Links are defined as uni-directional, so a bi-
notifying FIRE when their generated values have changed, aticectionally connected pair of nodes has two links between
to what degree. For instance, noisy properties such as CPU thtem, one in each direction. Two nodes are considered neigh-
lization or queue length may be too variable to advertise at edmdrs if some combination of adjacencies (that does not pass
update; instead the applet may chose to advertise only sigrifirough another router node) supports bi-directional communi-
cant deviations from recent history. cation between the two nodes—a two-way link is not required.

FIRE uses the applet notification mechanism to determine
when to issue new SAs. In the absence of explicit notificA-1 Neighbor discovery
Fion, FIRE issues new SAs periodically, ajc some configurable,\|eighbor discovery in FIRE is handled by the Peering Pro-
interval, usually on the order of tens of minutes. If, howevegco| [41], which is based largely upon OSPF’s Hello Proto-
one or more property values have changed recently, FIRE wilj| [30]. Fig. 2 depicts the peering relationships formed in a
schedule new SAs to be issued at a rate commensurate withdhgple internetwork containing six nodes: three routers and
configured maximum SA rate. If an applet has indicated thatgee proadcast networks. The solid arrows represent directed
property value has changed dramatically enough to warrant ifjacencies. Since FIRE models links as uni-directional, there
mediate notification, an SA is issued immediately, subject to thea two links between Router A and Network 1, as opposed to

flapping rules discussed in section VI-B.3. the single, directed link from Router B to Router A. The links
between Router A and Network 2, Router B and Network 3,
VI. PEERING & STATE DISTRIBUTION and Network 3 and Router C are similarly represented as two

Every routing protocol needs a mechanism to discover REparate links. Suppo.se Networks 1 a_nd 3 were Ethernets, and
jacent routers, termedeighborsor peers and to reliably dis- Network 2 was a satellite network. In this example Router_A has
tribute state information to all other routers in the system. DE1€ only uplink to Network 2, while all routers have downlinks.
veloping secure, robust mechanisms to support these functiéh§ dashed lines depict the peering relationships that would be
can be quite difficult. Many previous routing protocols hav@stabllshe_d in this topology. Routers B and C peer in the stan-
been plagued by limited functionality, such as neighbor discd¥@rd fashion across Network 3. Routers A and B also form a
ery algorithms that do not support uni-directional links [30], J?€€ring relationship, even though they must use two separate
buggy implementations [38]. physical links in order to c_ommumcate. In c_ontrast, Routers A

Because of the difficulties in implementing state distributiofi"d © d0 not peer, as no single-hop path exists from C to A.
and peering protocols, we decided not to make these functi%a
programmable. Rather, FIRE fixes these essential mechanismis
as built-in (non-programmable) infrastructure. Routing algo- In addition to identifying neighbors, the Peering Protocol
rithms running on top of FIRE need not concern themselves wikso selects ®esignated RoutefDR) andBackup Designated
the subtle details involved in convergent, soft-state distributioRouter(BDR) for each broadcast subnet. Designated Routers

Designated Routers

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 6

serve two purposes. First, they are responsible for issuing prépRE. To prevent instability caused by expiring SAs, routers pe-
erty updates for the subnet and its associated links. Secormadically renew SAs they have generated before the previous
they help to limit the number of peering relationships estaliersion expires. To reissue an SA, the router first replaces the
lished over a particular subnet. Routers on a broadcast sutsigierseded SA in its own SA cache with the newly generated
peer only with the DR for the network, rather than having teersion, and then floods the new SA to each of its neighbors.
peer with all routers on the subnet.

Routers functioning as DRs in FIRE must have a bB.3 Damping

directional connection (possibly using two separate interfaces)yhenever an attached interface comes up, the router must ad-
to the network they are representing. In the case of Wirel_qfé:ftise its existence by issuing SAs. In order to prefiepping
broadcast networks, there may be no guarantee that a single apid re-issuance of SAs for the same entity, we utilize the
node can communlcate.wnh all other FIRE node; on the Wirggentic model from Autonet [37]. When a property update war-
less subnet. If there exists no node that can reliably broadcggiis a new SA, the Skeptic delays slightly before issuing the
to all the others, the wireless network must be modeled (for ta@, |t not only limits the rate of SA issuance to a fixed maximum
purposes of FIRE peering) as a mesh of point-to-point linkgyte put penalizes rapidly changing SAs by exponentially in-
rather than as a broadcast medium. The same is true for nERsasing the delay with each new request. As request frequency
broadcast multi-access networks (NBMA) networks. gecreases, the Skeptic reduces the delay penalty accordingly.
To prevent flapping of the DR (and hence repeated re-issuanceq yever, if a router determines an associated link has gone
of the network properties for which the DR is responsible), thg,n and was previously advertised as being up, it immediately
Peering Protocol also elects a Backup Designated RO”ter'cggnerates a new SA for that link indicating the link has gone

the DR ever fails, the BDR assumes the role of the DR, andigyyn_This insures inoperable links are always eliminated from
new BDR is elected. If two DRs (or BDRs) are ever present g topology.

a single subnet due to network healing, one of the candidates is
selected based upon election rules very similar to those of OSEF.Reliable flooding

B. State distribution Each FIRE router maintains a cache of all current SAs. The

Once a peering relationship has been established betwggﬁ)ose of the state distribution mechanism is to maintain a con-

. . . . stent shared view of the set of current SAs across all routing
h h h - : L
two or more neighboring routers, they begin exchanging ro odes. Reliable flooding is employed to make sure that an SA

ing information through the use of SAs. These SAs are refl nerated by one node is eventually received by all nodes in

. e
ably flooded throughout the network, thereby providing a r(%l]
bust, convergent method of distributing shared state across AS. Stated S|mpI)_/, eac_h router is responsible for forwar(_jlng
network. any new SA to all of its neighbors. To prevent SAs from being
unnecessarily flooded to neighbors that have already indicated
B.1 State Advertisements they have a copy, either by preemptively acknowledging it, or

I , . . . by actually sending the SA itself, routers maintain state for each
SAs contain information about the AS in which FIRE is runﬁeighbor associated with every SA in its cache.

ning. There are four types of SAs: configuration, certificate,

external route,. and property:onfiguration SAsalso known as ¢ 1 siate message transmission

Operator Configuration Messages (OCMs), are generated by the o .

operator and are detailed in section I@ertificate SAsas dis- Information is exchanged between FIRE nodes using State

cussed in section VI, are used to distribute public keys and d}&ssages [36]. A State Message contains either an SA or an

thority certifications. Routes managed by protocols other th@fknowledgment of the receipt of one or more SAs. State Mes-

FIRE (such as exterior routes) are advertised through the us&@ges are flow controlled using a simple windowing protocol,

External Route SAs where the transmission window is specified in terms of the num-
Property SAsadvertise an entity's metrics for a particulaper of SAs that may be transmitted without acknowledgment.

OCF. Each node and link has an associated property SA for each)
OCF being advertised. The particular properties listed are defer? State message processing

mined by the OCF and the type of the entity being advertised.Upon receipt of a State Message, a router first looks into its
The payload of a property SA is a self-parsing S-expression c@ache to see if it has already been received. If so, it simply ac-
taining values for each property. Special flag values are availaki®wledges the message and completes processing. If, on the

to define a property as being unsupported, or that a particular ether hand, the message contains an SA the router has not seen

tity is a non-participant. before, it firsts validates that the SA header is properly formed.
If the header is invalid for whatever reason, the router immedi-
B.2 SA refreshment ately sends an acknowledgment to the sender, echoing back the

An SA is uniguely identified by its type, the entity it de-header information.
scribes, and its OCF number. Every SA is also timestampedRouters receiving acknowledgments compare the enclosed
and has a sequence number, so SAs with the same type, reader with outstanding transmissions. If the SA was damaged
tity identifier, and OCF values can be ordered. In addition to transmission, the headers will not match, and the SA will be
being timestamped, each SA is also given an expiration timetransmitted as if unacknowledged. If, however, the corruption
after which it is considered invalid, and is no longer flooded byccurred in the sender itself (hence any retransmissions would

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 7

be equally useless), the acknowledgment will cause the offemdntainment: our goal is to bound the effects of misbehavior
ing router to cease its transmissions of the corrupted SA. and detect the misbehavior whenever possible.

Assuming a received SA has a well-formed header, a routeiFIRE meets this goal using three sets of mechanisms. First,
then verifies the signature before sending an acknowledgem@&MiRE employs a certificate infrastructure with a tiered authority
caching the SA, and flooding the SA to its neighbors. In thetructure. These certificates advertise the public keys of nodes,
case of a non-DR router on a broadcast subnet, it has only dinks and entities such as the Operator. All SAs are digitally
neighbor on that subnet: the DR. Only the DR floods SAs t&igned to provide end-to-end authentication and integrity. Sec-

every member of the subnet. ond, FIRE makes use of IPsec [24] to protect against certain
o hop-by-hop attacks that end-to-end security measures cannot
D. Synchronization prevent. IPsec’s authentication, data integrity, and anti-replay

Reliable Flooding distributes SAs to all routers currently corservices make it very difficult for a non-participating entity to
nected to the network. When new routers come up, howeverjmject FIRE traffic. Third, and most importantly, the FIRE pro-
disjoint portions of the network are reconnected, the SA repdscols are designed to be robust against the failure or subversion
itories must be resynchronized. This synchronization is donéan individual router or set of routers.
through theState Dumpprocess.

The State Dump process is initiated whenever a new adi- Certificates and digital signatures
cency is formed. S_lnce the adjacency may form asynchronousl)f:IRE,S basic security mechanisms are based on public key
due to the beaconing process of the Peering Protocol, the start of h : 09 ii d d af
the dump is delayed for some period or until the adjacent roufryptogrqp y. using X.509 [1] certificates, and patterned after
o . ; R existing work on Secure OSPF [31] and Secure BGP [25].
initiates it. The State Dump procedure seeks to swiftly synchrg—

nize two neighbors while generating the near minimum amoun‘FflCh FIRE node participates in a certificate hierarchy that is
9 9 9 matnaged by the FIRE system. At the top of the hierarchy is

2;:2?(;'Ng;gzaglarzsﬁz\?v?ee dtyrﬁ)]zig reTz?s?gll?)zvtsh';\g;ci;izﬁ%r% Root. Each separate FIRE instance has its own certificate
y 9 ' Ris archy, therefore different ASs will have unique Roots. Rout-

rehgble flooding mechanisms to ensure any new SA.S dlscovelrr(? information shared at border routers must be secured by the
during the State Dump process are flooded appropriately. :
exterior gateway protocol.

VIl. SECURITY The Root creates certificates for a set of principals that are
entitled to perform various actions. These principals include the

Implementing a security infrastructure for a routing prOtOC%{perator and a Software Master. The Operator is the logical en-
y

presents an Interesting problem. To provide mast security Sy that runs the network. The Software Master is the logical en-

vices, one needs a key_ mfrastruc_:tu_re. But generic key |nf_r ﬁi/ that approves algorithm and property applets (the choice of
trgctures generglly require pre-existing packet. rogtmg funCt'o\'?vhich approved programs are used is left to the Operator). Be-
ality. Our solu_tlon 'S t(.) |mplement the security mfrastructurﬁ)w the Operator sit the FIRE nodes themselves. Each node has
that FIRE requires within FIRE itself. its own public-private key pair and certificate. FIRE certificates
A. Attacks are circulated as part of the normal FIRE flooding protocols in
]) .) } special Certificate SAs. Each node is responsible for flooding
A routing protocol, FIRE in particular, is subject to attacks ofs own certificates.

two _basic type§: Each SA is signed by its creator. Thus, even though almost
Wiretapping: Attackers are assumed to have access 10 g £ 1pe messages are relayed through other nodes, messages

communications links in such a way that they may modyo nrotected from tampering in-flight. Because each message

ify, suppress, insert, or replay FIRE messages or fragmeniS,nambiguously linked to its signer, advertising of false infor-
FIRE must therefore protect against such attacks.

_ INSEiation is limited and can be traced. A node can only lie about
tion of bogus fragments could prevent a re-assembled MESs information it is entitled to advertise.

sage from being accepted at the destination; replaying old
messages might disrupt gurrent activities (such as electi@g Protocol robustness
a DR); flooding a router with bogus FIRE messages or tam-
pering with data in FIRE messages could result in a denialSome security features are implemented by the FIRE pro-
of service. tocols themselves. Most notably, FIRE implements reliable
Subversion: The routers and other FIRE nodes may be sufleoding. Reliable flooding ensures that if one uncompromised
verted, either physically such that an attacker completedath exists between a creator of a message and a consumer, the
controls a router’s behavior or by use of compromised kegonsumer will eventually see the message. Reliable flooding
ing material such that an attacker may originate messag@hieves this guarantee by (a) allocating buffering in each node
that appear to come from the router. A subverted node co@ld a peer-by-peer basis, so no one peer can consume all the
send out inaccurate data, possibly affecting a much lardeiffering in a node and cause a Denial of Service attack that
portion of the network. prevents a message from being relayed; and (b) flooding every
Many of the harmful behaviors described could also occaressage over all links.
due to bugs in software or hardware. Thus, FIRE's design ex-Unlike many previous routing protocols, FIRE’s flooding
pects that a certain amount of misbehavior (intentional or natechanism does not utilize any explicit request messages. The
will occur. FIRE'’s security model is built on a philosophy ofavoidance of sucpull mechanisms prevents Denial of Service

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 8

TABLE |

attacks launched by malevolent routers that continue to request
A PROPERTYREPOSITORY

already-received information from adjacent routers.

FIRE also limits the spread of disinformation. The informa- OCcFo ocr1
. . T . L FID FIRE IP Addresses FIRE OCFs Delay (ms) Drop %
tion t'hat a nodg may advertise is I|m|ted by a.s_lgned set of per- Metric Up | Loaded
missions contained in an X.509 attribute certificate. Thus, par- A 1 | AL A2 AXx | true 1 NP 2%
ticular routers can be restricted to advertising links only to adja#f — 1 0 Al true | NP 2 0%
cent networks, preventing a subverted router from being ablg to L n 8 NP gﬂ: HE NZP g';)
. . e
black hole arbitrary traffic. . A=z 0 A5 ttue T NP 550 Unsup
Other FIRE protocols also have protective mechanisms. 2 0 NP true | NP NP NP
LDTP has mechanisms to protect against attacks similar tg_”é 0 true EE 350 32;0
SYN-flooding, where an attacker creates multiple partial s .32: c 8 ::EZ NB 223 3%‘;
sions that tie up resources at the LDTP server. Similarly, the—g 1 B2, B3, By | true 1 NP 05%
Peering Protocol contains features that make it difficult forB — A 0 By true | NP 40 1%
routers to cause the DR to change unless the existing DR go&s— 3 0 B.3 true | NP 1 0%
down 3 0 NP true | NP NP NP
' 3-B 0 true | NP 1 0%
3—-C 0 true NP 5 0%
VIIl. PROGRAMMING INTERFACES C 1 C2,C3 true 1 NP 0%
C—3 0 C3 true | NP 5 0%

One of the key features of FIRE is the ability to dynamicall
load new routing algorithms and to define new properties using
applets. Ideally, FIRE implementations would use a language,
designed to support self-proving applets (programs that cmﬁdm g‘:d't'ogltsghlgoi%o propertletsr.] Atdjacer;mets_tcag bt(_at_de-
be verified to meet certain constraints). By making it possible cedirom FIRE S . S)I' as can the ypg ° en&ﬁés nutes
verify (within limits) how a program behaved, the risk of soft"ot part|C|p<’_:1t|ng, In a particular property are denote
ware bugs could be dramatically reduced. Our reference im-AN algorlthms. implementation has. puﬂt Into it property
plementation, however, uses Java, both because the self—prO\r/]i"P\rq”es to use as input. The OCF specifies a mapping from cur-
languages were not mature enough (not one had a stable s !y adver'u_sed property names to the names requw_ed by the
tual machine that could be embedded into the FIRE implemer uting algorithm. OCF 0, for example, mapBtRE Metric to

tation) and because Java’s popularity reduces the learning ¢ hame expected by the built-in S.PF algorithmin order FO com-
for FIRE algorithm and applet developers. pute routing tables for FLINT traffic. If the operator desires to

The choice of Java, however, forced us to pay more attddn the algorithm on a different property in another OCF, a new

tion to the design of FIRE’s programming interfaces. Writingame mapping would be used. If, on the other hand, more so-

graph algorithms is a notoriously difficult problem—bugs a histicated preprocessing is desired, such as EIGRP’s cost func-

common. This difficulty is compounded by Java’s support fct>'ron’ a wrapper function can be employed to read the existing

rep sitory and rewrite the desired metrics into the appropriate
a range of complex language features such as concurrency a

event handling, which also tend to produce programmer bu goperty, before passing the repository on to the standard rout-

FIRE's programming interface is deliberately simple, in an e g algorithm.

fort to encourage a straightforward programming style At the end of a run, a routing algorithm must generate
9 g prog g style. a forwarding table using the provided forwarding table API.

Again the interface is deliberately simple, providing only four
functions: updateentry(), deleteentry(), purgetable(), and
A routing algorithm is provided with two separate progrando_updates() The forwarding table is created before the JVM
ming interfaces: the algorithm interface and the forwarding tas invoked, so the table is always present (no initialization is re-
ble API. Every algorithm must implement a specific Java publguired). Furthermore, the interface does not distinguish between
interface containing exactly three functionsit(), run(), and modifying and adding an entry; the algorithm simply states that
cleanup() The algorithm is invoked by FIRE through calls tat needs the specified entry by callingpdateentry(), and the
this interface. API will either modify the existing entry or add a new one as
After an algorithm’s code files are loaded, a separate instaiequired. All updates are batched for efficiency, and changes
of the JVM is created for each invocation of the algorithm artd the forwarding table are only made when theupdates()
the init() function is called with an array of strings specifiednethod is called.
in the OCF. The argument strings may be used to pass arbi-)
trary operator-specified values into the algorithm (similag® B- Property appletinterface
argv), such as threshold values. The rolerf() is to do any The interface for property applets is similar to that for al-
initialization required and prepare the environment for forwardorithms. FIRE callsnit() when the property is first specified
ing table generation. by the current OCF and passes in the argument string from the
FIRE periodically invokes the algorithmtsin() method on a OCF. As with routing algorithms, when the property applet is
shapshot of the repository for the relevant OCF. Table | showsa longer in use, FIRE terminates it by calliolganup()before
sample property repository for the network in fig. 2. The reposhutting down the enclosing JVM.
itory contains two properties the operator has selected for OCRUnlike algorithms, which respond to changes, the goal of

A. Routing algorithm interfaces

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 9

public class SA_update A. SPF
/’ulgeligogta?s‘:tan;ifek JgidF'RE eport_data (Fig. 4 presents an abridged version of our (unoptimized) im-
P O{,’ject— value); plementation of an SPF routing class in FIRE; it dutifully mim-
ics Dijkstra’s algorithm as presented in [13]. In the interest of
i :)el_“ FIRE it should _Sdend an SAlin thﬁ neX; cycle brevity, some details of the algorithm (including most error han-
public static native vol value_changed dling) have been omitted in favor of code that interacts with the
/I tell FIRE to send an SA ASAP FIRE classes. For clarity, this version only builds routes to net-
public static native void force_SA (); works, ignoring routeable addresses on the router interfaces. As
} discussed in section VIII-A, the class implements the algorithm
interface, although in this case the only interesting function is
Fig. 3. Java SA API run().

We do not describe the operation of Dijkstra’s algorithm here;

)))) interested readers can find a careful treatment in [13]. We note
property applets is to detect changes. One might imagine Wi§y that the straightforward implementation of Dijkstra’s algo-

difference would resultin very different ways of invoking themyjihm can be considered in two steps: It first initializes an ad-
While it would be desirable to allow applets to Specify a oMz ency matrix data structure given a particular source (in this
plex, event-driven mechanism to trigger themselves, suchan @Mse the router for whom the table is being constructed) and

plementation proved far too complex and mistake-prone. lan conducts a series of relaxation steps to compute a prede-
stead, the applet invocation interface is essentially identical 195sor matrix for the shortest paths from the source.

that of algorithms; an applet is simply invoked periodically by 1 jnjtializeSingleSource(function performs the matrix

callingrun(). The timing and frequency of FIRE's callston() ¢nstryction here. It uses the repository’s pair-vasgacent()
are specified in the OCF. predicate to construct an initial adjacency mafriMore inter-
When an applet is run, it may choose to record an updatgsting in this case, however, is the algorithm’s interaction with
value for the property or leave the existing value alone. For &ge repository class in order to retrieve the appropriate metrics.
pecially noisy properties, it may be desirable to squelch the vahe name2index(junction is used to map the predefined string
ues within the applet itself, rather than continually issuing SA§ the index of the appropriate property as defined by the opera-
with different values. Furthermore, some changes may be sigr in the OCF. Each entity is then extracted from the repository
nificant while others are not (e.g., a change in measured quegigd stored locally for efficient access, taking note of the network
ing delay from 50 ms to 49 ms probably isn’'t very importankntities (the destinations of interest).
but a change from 50 ms to 10 ms likely is). FIRE itself has no The relaxation step is not presented here, although there is a
idea what changes in values are significant, so the API showrsjyht caveat in its implementation. Since entities may by dis-
fig. 3 allows the property applet to provide a notion of signifiyiputing State Advertisements but not (yet) be willing to route
cance. The applet can simply record a new value, in which cagsfic (as indicated by th€IRE Up property), the algorithm
the new value will be advertised only when the next SA is pefihyst make sure it does not relax through entities that are unus-
odically generated (assuming the value is not updated again 6te. Furthermore, it may be asked to build an SPF table on a
fore the SA is generated). If the change is significant, howevgfetric that not all entities participate in (latency, for example),
the applet can calfaluechanged()indicating that it would be jn which case it should consider relaxing through only those en-
desirable to send an SA with the new property value. Or thges participating in that particular property.
applet can indicate witforce.SA()that the property’s value has Finally, after constructing a predecessor matrix for the short-
changed so dramatically that an SA should be sentimmediatgl¢ paths, the routing algorithm uses the forwarding table API

(subject to SA damping rules). to insert routes for each reachable network entity in the reposi-
tory. As can be inferred from the call fuurgeTable()this SPF
IX. APPLICATIONS implementation does not support dynamic updates—it rebuilds

the entire routing table each time. In general, however, an im-

In order to validate our claim that FIRE provides a robust arglementation could consult state from previous iterations to op-
easy-to-use platform for rapid routing algorithm deploymentmize the table updates.

we have implemented several different routing protocols. First,
we present our implementation of SPF, showing that basic rost1 Augmenting existing algorithms

ing protocols can be implemented in a straightforward manner, . L .
using the API provided by FIRE. Perhaps more interesting is fig. 5, which shows all the code

) necessary to implement a policy-based derivative of SPF. By
We then present a wrapper function that shows how addfanrocessing the property repository before invoking Dijkstra’s
tional functionality can be added to previously defined rOUtiQﬂgorithm, we are able to remove all adjacencies that do not meet
algorithms in a straightforward manner. Finally, to demonstraigme requirement; in this instance, we do not allow traffic to be

that FIRE provides sufficient capabilities to implement complg¥yted over entities that cannot meet a minimum bandwidth. We
routing algorithms, we consider three of the most popular mul-
ticast routing algorithms, based on the intuition that multicagt While such a predicate allows for random access, it impose(a) over-

| ithms are likelv to be more complicated than tvpical ur]h_ead on any algorithm (such as Dukstra) that expects an adjacency matrix rep-
algor 5 a y p yp |lesentat|on, although other, more optimal representations may be available in
cast algorithms. general.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 10

public class SPF implements Algorithm
{

private FID _me;

private int[] distance;

private Entity [] node;

private Vector[] adj;

private Vector networks;

private int numNodes, metric, addr, fireUp;

public void init (FID me, String[] args) {
networks = new Vector(); _me = me; }
public void

run (Repostiory repo) {

dijkstra(repo, _me);

/I For each network in domain, find its next-
/Il hop and add it to forwarding table
ForwardingTable .purgeTable();
for (int i = 0; i < networks.size(); i++) {
Entity n = (Entity) networks.elemAt(i);
Entity nHop = nextHop(node.fid);
if(nHop != null)
ForwardingTable .addEntry(n.fid.get_locaddr(),
n.fid.locaddr_cidr_masklen(), nHop.fid);

}

ForwardingTable .doUpdates();
}
public void cleanup () {}

/I Dijkstra’s algorithm from CLR
public void dijkstra

[13, p. 527]
(Repostiory repo,
FID source) {

initializeSingleSource(repo, source);
for (int i = 0; i < numNodes; i++) {
int u = extractMin(); // closest node
for (int v = 0; v < adj[u].size(); v++)
relax(u,((Integer)adj[u].elemAt(v)).intV());
}

}

/I Initialize the working state for Dijkstra
public void initializeSingleSource
Repostiory repo, FID source) {

metric = repo.name2index("metric");
addr = repo.name2index("address");
fireUp = repo.name2index("up");

numNodes = repo.entities.length;
networks.removeAllElements();

distance = new int [numNodes J;
node = new Entity [numNodes J;

for (int v = 0; v < numNodes; v++) {
node[v] = repo.entities [v];
if(node [v].fid.equals(source)) {
distance [v] = 0;
} else distance [v] = Integer.MAX_VALUE;

if (repo.entities [v].fid.network())
networks.addElement(repo.entities [Vv]);

... Build agacency matrixadj[O0...numNodef ...] using the

Entity .adjacent(FID) predicate. ..
}
/l Edge relaxation over participating, up vertices
private void relax (int src, int dst) { .}

}

extends SPF
implements Algorithm

public class BaudRateGuarantee

{

private int min_baud;

public void init (FID me, String[] args) {
super.init(me, args);
min_baud = Integer.valueOf(args[0]).intValue();

}

public void run (Repository repo) {

int baud_index, up_index;
baud_index = repo.name2index("baudrate");
up_index = repo.name2index("up");

/I down entities whose baud rate is too low
for (int i = 0; i < repo.entities.length; i++) {
Entity e = repo.entities]i];
Value baud = e.values[baud_index];
Value up = e.values[up_index];
if(((Integer)baud.value).intValue() < min_baud)
up.value = new Boolean(false);

}

/I run SPF over the modified repository
super.run(repo);
}
}

Fig. 5. AFIRE routing class that provides a baud rate guarantee. Error checking
has been removed due to space constraints.

note, however, that this simplistic high-pass filtering mechanism
does not imply that the remaining entities could actually provide
such a guarantee; doing so would require interfacing with a re-
source reservation mechanism [9] on the routers, which is out-
side the scope of this work. FIRE could, however, help enumer-
ate the candidate paths that a resource reservation mechanism
should explore while attempting to secure resources between a
particular source/destination pair.

We find this filtering paradigm particularly applicable to
policy-based routing constraints. For instance, similar exten-
sions can be written to ensure packets intended for a private au-
dience are never transmitted over wireless or bridged networks
or shared links by exporting the appropriate properties and pre-
processing the repository in a manner similar to that shown
above.

B. Multicast

Multicast routing protocols contain some of the most com-
plicated routing algorithms currently in use today. We examine
how three different classes of algorithms—dense mode, sparse
mode, and EXPRESS [23]—could be implemented in FIRE.

We note that unlike unicast operation, when all hosts implic-
itly request service by attaching to the network, the goal of mul-
ticast (as opposed to broadcast) protocols is to deliver content
only to those end hosts explicitly requesting service. This re-
quires a signalling mechanism between end hosts and routers.
Most multicast protocols in use today use the Internet Group
Membership Protocol (IGMP) [19] for this purpose, although
some have developed their own extended protocols as well [23].
These host/router signalling mechanisms are orthogonal to the

Fig. 4. Abridged FIRE SPF Implementation. Function declarations and FIRPeration of the routing algorithm itself, hence they are not dis-

provided classes are shownhnld, elided code is denoted by."”

cussed here. Clearly for a FIRE router to support any type of

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 11

multicast routing, it would have to implement the appropriate.2 Sparse Mode
membership protocol as well. For purposes of discussion, we

assume such an implementation could store state accessibletgo[[%enﬁtv;':gg c\)l:‘/r;irt(iatiggolrJr\parTeimblleer;h;ﬁtgtizrr?sagfvrvel,-t\?e::pzct::\
property applet (perhaps through a MIB). ' yimp P

multicast algorithms become increasingly wasteful, either be-
cause they initially flood traffic to new groups throughout the
B.1 Dense Mode entire network until prune messages are received from uninter-
Most of the original multicast routing algorithms, ReversgSted routers [46], or because they must store state for currently
Path Forwarding (RPF) and its variants, Truncated Reverse P&fSed groups as discussed above. This observation lead to the
Forwarding (TRPF) and Reverse Path Multicasting (RPM), af§velopment of sparse mode algorithms that provide better scal-
best suited for domains with a large number of members @Rility properties in the wide area. While the link-state nature of
each multicast group. These algorithms are implementedfiRE limits the scalability of any algorithm it implements, we
both distance-vector (Distance Vector Multicast Routing Prot§X@mine the viability of a property-based paradigm here, and re-
col (DVMRP) [46] and Protocol Independent Multicast-Spard&™ to explore extending FIRE to distance vector in section XI-

Mode (PIM-SM) [18]) and link-state (Multicast-OSPF (MO-D-
SPF) [29]) intra-AS protocols. Core-Based Trees (CBT) [8] are one such algorithm. The

The particular link-state variant of RPM found in MOSPFSParse mode of the Protocol Independent Multicast protocol
which builds individual Shortest Path Trees (SPTs) for eaéﬁlM'SM) uses Repdezvous Ppmts as cores for its .dIStI'IbutIOI’I
group, can be implemented in FIRE directly by building shorffees. Selecting optimal coresina metrlc-based routing protogol
est path trees precisely as described in [29]. Similar to OSPEaN open problem; current implementations use either a sin-
FIRE already maintains a notion of a Designated Router, herfl§ Bootstrap router (BSR) to select cores for the entire domain
no additional machinery is necessary to ensure only one rod@? found in PIM-SM), or manual placement. In a property-
multicasts to each subnet. The information contained in a Grags€d system, however, routers can dynamically advertise the
Membership LSA (the groups to which a router is interested fiOPerty that they are willing to be cores. Each router might
subscribing) could be implemented as an additigmalipprop- support anultlcast—.coreproperty vyhose value is a list of multlj
erty that each router would participate in. Upon receipt of st groups for which the router |s_cu_rrently acore. The routing
IGMP join message from an end host, a FIRE router would uglgpnthm would then perform a distributed computation, eval-
date its group property to contain the new multicast addreS@ting the potential cores for one that was well-placed for the
This processing could be done through a property applet tﬂg{ended set of multicast recipients (since both the potential core

monitored some list of addresses maintained by the IGMP iffformation and membership information is flooded throughout
plementation. the network). While the optimal core location remains difficult

One drawback of this implementation is that the rate of sug—/;?;girlri?m;’ ngallllgghglghanfnedsr;\gtr?]t?erfsuh? rriff?r?:;figf’e:]e
scription updates is governed by the maximum rate of SA is; yorg pology . P .
ées a reasonable heuristic, which would be an improvement

suance within the network. If an end host issues a join mess&t €, current orotocols. This computation could be enhanced b
immediately after a router has reached its SA limit for the ¢ P P : P y

renttime period, it must wait until the damping algorithm allowgav'N9 routers advertise how heavily they are loaded (e.g., the

the router to emit a new SA before it will be grafted to the dismr]umber Of. groups for which they are glready serving as cores)
nd factoring load into the core selection algorithm.

bution tree. Furthermore, if the IGMP processing simply queu%s furth . ol d b I
requests to be serviced by a property applet run by FIRE, an ad® further optimization implemented by PIM-SM allows
ditional lag is imposed until FIRE invokes the multicast proper uters to switch over to a shortest path tree rooted at the source

applet. This could be ameliorated by allowing the IGMP impl or higher performance if traffic reaches a certain level. Since
mentation to directly invoke specific property applets. FIRE distributes membership information to each router in the

Further, MOSPF builds the shortest path trees “on demangetwork, this decision could be made in a more intelligent fash-

, .)) Ion, utilizing global information about the topologies of both
when the first multicast packet for a group is received. FIRE ¢ lees. Note, however, that the rate of SA flooding is not uni-

rently only invokes routing algorithms (tree construction) on S orm throughout the network, so a race condition could exist if

arrival, not arbitrary packet arrival. Hence for proper operati(ﬁqe switch was not implemented properly. If a router suddenly

e o oot B an SA oig h shotst path vee and removng e
g » €9 rom the core-based tree, the SA may be propagated to the CBT

tually flowing or not. In some instances, this may waste rOUt?rrst, interrupting the delivery of traffic from the initial distribu-

resources on unused multicast addresses. We examine the is- 7 . . .

. . : . . -Tion tree before it resumes from the SPT, causing a disruption of
sues involved in event-driven algorithm and property invocation . ; . ;
. . . service. Hence a robust implementation would likely belong to
in detail in section XI-C.

T . . both trees for a short while before issuing a new SA resigning
Similar interactions occur with prune messages, although this,, the initial CBT.

has less impact on end hosts, as they do not notice the lag as a
disruption in service, only as wasted bandwidth. We note, how-
. i : . .3 EXPRESS
ever, that FIRE's link-state implementation obviates the need for
explicit pruning employed by distance-vector protocols such asRecently, Holbrook and Cheriton extended the multicast
DVMRP’s poison reverse messages. model to support the notion of channels, which allow for explicit

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 12

subscription control and provides membership information to - > VM m ==
the source [23]. Their EXPlicitly REquested Single Source (EX- FIRE | applet
PRESS) protocol implements a reverse path forwarding algo} 22emen | algorithm 1
rithm to build distribution trees, but extends it to allow multi- | ------ - Repository | [=
cast sources to specify an authentication key required for group| SA Cache| [™ Snapshot B N INIAPI
subscription, and to request timely estimates of channel memt------ - B ~] € Wrapper
bership. Both of these classes of information can be expressed
quite naturally in the FIRE model. — ;‘:; “““““ K‘ - 'I """ ; — 'd,' 'VT' ;I' N
In order to provide channel authentication, each router could L _' _er_s __________ © r_n'i ______ O_rW_ar_ Tg_ _a_e_s_;
participate in &eyproperty, where the property was a set of keys Fig. 6. FIRE Daemon Implementation

associated with the channels originating at that source. Since
each key is only distributed by its source, but flooded throughout
the network, this presents no additional scaling complicatiomaatches afilter installed in theberfilter, itis passed through the
To communicate subscription information, the group propergpecified secondary filter set. A matching filter in the secondary
discussed previously could be extended from a simple booles#@i specifies the appropriate forwarding table to use. If no match
value to a counter, which would indicate the number of end hostgound, the packet is dropped. Each FIRE daemon requests its
subscribed directly to that particular router. By summing ovewn filter set, and then installs a filter in thubérfilter corre-
the appropriate property entry for all routers in the network,sponding to the set of traffic it is responsible for, causing DPF
source router could compute a reasonable estimate of the ¢arroute any matching packets through the daemon’s secondary
rent channel membership, although the timeliness of this valilter set.
would be governed by the rate of SA advertisement in the net- .
work. A.2 Forwarding tables
Once the correct forwarding table has been selected, FIRE
follows the standard IP forwarding mechanism and finds a best
We have implemented FIRE as a user-level daemon with supatching prefix for the destination address. Due to the addi-
porting kernel modifications for FreeBSD. Multiple FIRE daetional performance cost of filtering, we replaced the standard
mons may coexist to support separate FIRE instances on B8D radix-trie lookup tables [40)J(W') performance, where
same router . Each FIRE daemon, however, must be respBniis the length of an address) with the ETH-WASHU lookup
sible for a disjoint set of traffic. This section discusses some afjorithm [47]. This algorithm both reduces the worst-case
the more interesting features of the implementation. lookup toO(log W) and is more space efficient than the BSD
algorithm.

X. IMPLEMENTATION

A. Forwarding

FIRE places two new requirements on the IP forwardir%’ Sandboxing
mechanism. First, it requires every packet to be filtered. SecEach algorithm or applet is run in its own Java Virtual Ma-
ond, it requires support for multiple forwarding tables. Botbhine (JVM), interfacing with FIRE through the use of the pro-

changes were novel for a BSD kerrel. vided Java Native Interface (IJNI) API discussed in section VIII.
- The JNI functions are supported by a thin C wrapper that inter-
A.1 Packet filtering faces with both the FIRE daemon and the kernel. Forwarding

FIRE packet filters are specified using the Berkeley Packable updates are communicated directly to the kernel by the
Filter (BPF) [27] syntax, which provides a well-known andvrapper. In the case of algorithms associated with OCFs that
highly portable specification language. For performance reafe onlyadvertised and not yetrunning, the forwarding table
sons, we restrict FIRE BPF filters to the IP header. Even witinctions are stubbed, and requested updates are logged, but not
this limitation, however, the BPF kernel implementation is natet installed into the kernel forwarding tables.
adequate for filtering at line speed. We chose to implement Dy-Communicating property values is a bit trickier, however.
namic Packet Filtering (DPF) [17] in the FreeBSD kernel witBince the Property Repository is constantly in a state of flux,

a device driver interface similar to BPF. Our kernel DPF implé static snapshot is provided to routing algorithms when they
mentation provides multiple filter sets, each of which is indare invoked. This snapshot is passed to the JVM through the

vidually accessible using standard UNIX file system semantiti¢ system. The C wrapper reads the repository snapshot files
(and permissions). and marshals them into appropriate Java structures as required

One particular filter set is known as tligerfilter. All IP by the algorithm. The FIRE daemon passes control messages to
packets forwarded by the router (liyy_forward()) are passed the JVM through a UNIX pipe. Results of property applets are
through theuberfilter. If no match is found, the packet is forcommunicated back to the FIRE daemon in a similar fashion.
warded according to the default kernel forwarding table (the deig. 6 depicts the interaction of the various parts of our FIRE
fault kernel table exits to support legacy applications that negaplementation.

access to the old kernel routing table). If, however, the packet
C. Performance

4We note that in-kernel packet filtering itself is not new, and is used for effi- We h £ d limi f IVsi
cient protocol demultiplexing in the Nemesis [26] and Scout [7] operating sys- € have periormed a preliminary perrormance analysis on

tems, among others. our prototype implementation. Because FIRE is implemented

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 13

in a FreeBSD kernel rather than a commercial router platforproperty invocation messages described above, it has similar pit-
the forwarding performance results are not particularly intere$tlls. The inability to issue SAs at a rapid rate is one of the prime
ing. Our implementation forwards packets ab88% slower motivations for additional inter-router communication like that
than stock FreeBSD, mostly due to deficiencies in our prototypgescribed above, hence limiting its rate in a similar fashion is
code. We believe this performance gap would be almost entirelyunter productive.
eliminated in an optimized implementation. o

Of more import is the performance of the routing protocd$- Synchronization
itself, measured in packet exchanges. Our FIRE implementain a similar vein, properties are bundled together in a sin-
tion generates at most 2 packets (ignoring retransmissions gigadvertisement that is issued sporadically. An alternative ap-
to packet loss) on a subnet for each entity advertised (one pagietach, the logical consequence of the previous discussion, is to
from the creating entity to the DR, and one multicast packefiow properties to be advertised individually, thereby enabling
from the DR to the other nodes). ACKs are bundled togethéfie update rate of certain volatile properties such as multicast
hence the exact ACK count varies dramatically based on #@&up membership to be decoupled from properties involved in
precise timing of events. At OCF 0, which provides SPF fungmicast routing.
tionality, our message count is a small multiple of OSPF (ap-In the general case, however, it becomes difficult to reason
proximately a factor oB, since, unlike OSPF, we count linksabout the freshness of property data for any particular neighbor
and networks as separate entities). Each additional advertiggéén each property is updated at its own rate. Associating dif-
OCF generates a similar number of packets, resulting in a lferent rates with individual properties would require multiple,
ear growth in traffic. Note, however, that one OCF may contageparate damping policies. It seems dubious to assume that the
properties for generating multiple forwarding tables, hence tperator has a sufficient understanding of the various require-
incremental cost of additional forwarding tables is only in theyents of each routing algorithm to appropriately set the damp-

size of the messages, not the packet count. ing threshold for every property individually. Additionally, it is
not clear how FIRE could determine when it has a sufficiently
Xl. DiscussIoN fresh version of the link-state database to invoke particular rout-

FIRE allows for the rapid deployment of novel routing aling algorithms. If routing algorithms depend on multiple proper-
gorithms, and the dynamic reconfiguration of operational ndtes, invoking an update on each new individual property arrival
works. In order to provide such a high level of flexibility whilewould result in a rapid increase in computational expense.
maintaining reasonable levels of security, performance, and roFundamentally, each of these limitations stems from the fact
bustness, several architectural aspects of FIRE impact its #&t FIRE specifies arigid flooding mechanism. As the multicast
plicability to certain classes of routing. We re-examine thes&les demonstrate, hardwiring state distribution can con-
design decisions here, and comment on the plausibility of altgtibute to less-efficient implementations of certain algorithms.

native schemes. We believe this is only one symptom of a basic tradeoff be-
_ _ _ tween security and efficiency, and that the robustness guarantees
A. Event-driven invocation FIRE’s flooding mechanism provides, both in terms of security

While FIRE allows property applets great freedom in the typ’tnd prqtection_ against misconfiguration, outweigh the perfor-
of computation they can perform, the multicast algorithms di§&nce impact in most cases.
cussed in section 1X-B highlight the additional flexibility thatC
could be gained by allowing applets to be invoked based upon
an event-driven model. As discussed in section VI1I-B, however, The granularity of FIRE's properties allows not only for
such a mechanism proved difficult to implement in a secure alifditers to advertise their state, but for links to advertise differ-
robust fashion. In general, consuming resources based upor@hproperties in different directions, and properties of networks
external event presents an opportunity for Denial of Service gistinct from links. As discussed in section X-C, making nodes,
tacks. In the particular instance of invoking property appleksth link directions, and networks all first-class entities in the
upon the receipt of a certain type of packet, attackers spoofiifgting system imposes a substantial overhead on the number of
the appropriate packet could cause FIRE routers to invoke préputing messages flooded throughout the network. The exam-
erty applets arbitrarily. ples in section IX clearly demonstrate how router properties can

While invocation messages could be authenticated usipg leveraged to ease the implementation of sophisticated algo-
FIRE’s certificate hierarchy, such a mechanism would violatéhms, but the utility of property advertisements for the remain-
FIRE’s security model, which is based on containment. A sulf*g entities bears closer examination.
verted router could issue properly authenticated messages which .
would cause adjacent routers to begin invoking property appl&éL Links
at an uncontrolled rate, possibly issuing similar invocation mes-It is clear that links are asymmetric in reality, and it is impor-
sages to next hop routers, allowing one subverted router to ctant to advertise them separately. The upstream and downstream
sume resources throughout the entire network. traffic for many stub networks’ border routers vary dramatically,

Related issues arise when a router issues SAs too frequelttince any properties that attempt to capture attributes of the link
FIRE implements a damping mechanism (described in sd¢bat are dependent on traffic need to be handled independently.
tion VI-B.3) that limits the rate of SA generation at any on&ven properties that are not traffic related may benefit from the
router. While the Skeptic model could be extended to handle tegparation. For instance, an operator could annotate links with

Property fidelity

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001 14

a conduit property, exposing the physical co-location of various TABLE Il
network links. ACTIVE NETWORKING COMPARISON
System Technique Layer Domain Language
C.2 Networks Active Bridging [3] | Device Bridging Caml
. . . . |, Router Plugins [15]| Device Services C
The ewde_nce in support of network properties is somewh_ t—ANTS [43] Capsule General Java
less conclusive, although there are specific instances for whi¢h— PLANet [22] Capsule General PLAN
network properties are distinct from adjacent links. For examt PAN [34] Capsule General Javad
ple, each router connected to a heavily-loaded gigabit Etherngt___Joust [21] Capsule General Java
dverti link bandwidth of 1Gb A ti | ith Smart Packets [39]| Capsule Management| Sprocket
may a _ver IS€ a _m an W! 0 PS' routing aigorithm NetScript [49 Control | NVN | Management| NetScript
searching for a high-bandwidth path might select such a router; Tempest [45] Control | ATM | Management| Ariel
only to find that only a fraction of the bandwidth was actually FIRE Control | 1P Routing Java

available across the Ethernet. If, on the other hand, the network
was advertising anediaproperty, the algorithm could recognize

that despite the high link speed, the network media is sharg
hence the available bandwidth across the network may be S
stantially less.

ch AS will differ, based upon the diverse interests of adjacent
s. Hence the summarization process would be further com-
plicated by the need to translate or map the traffic classes and
D. Distance vector advertised properties in each AS to the adjacent ones.

FIRE is a link-state protocol; an interesting question is Xl
whether one could develop a FIRE-like distance-vector proto-
col. The major difference between distance-vector and link-There has been considerable work over the past decade on
state protocols is that distance-vector protocols summarize gwgpporting different types of service. The focus of the vast ma-
state information at each hop in a path. So rather than receivjagty of this work has been on queueing disciplines such as Fair
property advertisements of each network entity, a router simgueueing [14], and techniques such as Guaranteed Service and
learns the properties of a path to each destination, as seen biifferentiated Services [33] that use these queueing schemes to
neighbor. In bandwidth-constrained and highly-connected nstpport different service levels. This work, however, has not ex-
works (e.g., some wireless networks) distance vector’s ability amnined routing system support. FIRE is, therefore, complemen-
summarize the data at each hop is an advantage because it litaitg to these schemes, in that FIRE provides support for routing
the spread of topology updates, reducing bandwidth usage. according to different requirements, but does not specify queue-
One approach to distance vector would retain multiple projng regimes.
erties and property applets while replacing routing algorithmsOther routing protocols have sought to be extensible.
with summarization algorithmswyhose job it would be to re- OSPF [30] allows the definition of new state advertisement
ceive and process each received routing advertisement and geessages (this feature was used for both Secure and Multicast
erate the new advertisement to transmit. (Presumably differ@8PF). 1S-IS [10] has similarly flexible features. The major
portions of an advertisement would be summarized by differadistinction between these protocols and FIRE is that both pro-
summary applets in order to support multiple properties.) tocols require recoding of existing implementations to generate
Unfortunately, we are aware of at least two serious problerasd use the new information being advertised, while FIRE pro-
with the summarization approach. First, robustness is sacides run-time support. FIRE’s dynamism also contrasts with
ficed; the failure of a summarization applet means a router eitiMulti-Protocol Label Switching (MPLS) [4], where an operator
stops advertising information or advertises incorrect informaan manually configure paths through the network for specific
tion about its neighbors. Second, there is a conflict with FIRE$asses of traffic. The MPLS solution is static, while FIRE, like
security model—in FIRE, a node’s advertisements are digitaltyost routing protocols, offers a completely dynamic solution.
signed by the node. In a distance-vector system, a node’s inforwhile FIRE provides the ability to download and execute ar-
mation is only transmitted to its neighbors, which then summpitrary code on production routers, FIRE is not a traditional Ac-
rize the information in their advertisements. As a result, in digive Network—unlike capsule-based techniques [22], [34], [43]
tance vector, a router must trust its neighbor to correctly summgser generated traffic cannot affect routing behavior in FIRE.
rize. Adding a complete verification trail of all changes wouldhe separation of operator-initiated control flow and forwarded
effectively undo the summarization process; rather, some sh@dta traffic allows FIRE to sidestep many of the difficult per-
verification must be achieved, which remains an open problésimance and security issues associated with Active Network-
in general. ing, although not all. In particular, FIRE’s authentication and
authorization scheme addresses similar problems as those dealt
with in SANE [2]. In addition, resource isolation between rout-
The task facing an inter-AS protocol is even more dauntingng algorithms, property applets, and individual FIRE instances
Not only does it need to summarize the routes internal to the AS,crucial for deployment in production environments. In the
but an inter-AS variant of FIRE would need to somehow equatarticular instance of JVMs, these issues have been addressed
its internal, class-based routes to routes advertised by other A8sently in the KaffeOS [5].
Unfortunately, as routing information crosses AS boundaries, it
is likely that the traffic classes and advertised properties withirtNative (i386) object code was also explored, but is not platform-independent.

. RELATED WORK

E. Inter-AS operation

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001

Many aspects of FIRE grow out of its particular choice of do-
main. Table Il presents a taxonomy of Active Networking sys-
tems, categorizing each according to its general technique
application domain. For informational purposes we also inclu
the language used to encode the “active” components. We
vide the systems into three general classes: those that func
via direct interaction with the components (device), those t
distribute code in data traffic (capsule), and those that use sp
cial control traffic to alter node behavior (control). Note thaﬁ1
most systems focusing on network management, configuration,
or routing, share FIRE'’s separation of control and data traffic.
By limiting the domain scope, FIRE can provide greater lev

15

ACKNOWLEDGEMENTS

\We are indebted to David Andersen, Robert Morris, Ram Ra-

gnathan, Robert Shirey and the anonymous reviewers for their
valuable comments on previous versions of this paper. Steve
REnt provided expert guidance on several security issues. Ben-
"Ehen assisted with the performance measurement of our pro-
ttype. Ayan Banerjee, Rahul Biswas, Matt Fredette, Fabrice
Ehakountio, Laurie Thompson, and Greg Troxel contributed to
e reference FIRE implementation.

REFERENCES

C. Adams and S. Farrell. Internet x.509 public key infrastructure certificate

of assurance and performance than more general-purpose Active management protocols. RFC 2510, IETF, Mar. 1999.

Networking techniques. [2]
For those systems that expose networking control interfaces,
we classify them in terms of their layer of operation. NetScrijg]
provides a scripting language for constructing an overlay net-
work, called a NetScript Virtual Network (NVN), for handling[4]
specified classes of packets. While sufficiently general to per-
form routing functionality, the design of NetScript requires ad?l
tive processing of packets by NetScript agents to perform spe-
cific forwarding tasks. FIRE’s avoidance of such per-packsi
computation provides a fundamental performance advantage.
Indeed, the previous work most closely aligned with FIREg;
goals is Tempest [45], which, like FIRE, focuses on so-called
“out-of-band” control functions, such as forwarding policies ang]
resource reservation. As an implementation, however, Tempest
partitions an ATM switch into multiple virtuadwitchlets each
of which can be configured by different administrators. In mar@J
ways, FIRE is a generalization of the Tempest approach, provid-
ing enhanced forwarding capabilities at the IP level, where thEY!
are most commonly implemented in today’s networks. [11]

XI1I. CONCLUSION [12]

FIRE significantly increases the control network operatorss]
have over how their network routes traffic. Operators can change
routing algorithms and metrics at run time and dynamically coh!
figure which traffic classes are forwarded by the various algo-
rithms. By enabling network operators to change the routiff
algorithms employed by the protocol, FIRE significantly lowers
the barrier to deploying new algorithms in an AS. [16]

The fine granularity of FIRE properties allows routing alg 37]
rithms to make highly-informed decisions. We have demon-
strated that FIRE supports the implementation of existing rout-
ing algorithms, and provides a straightforward mechanism foF!
extending them to support novel policy-based routing con-
straints. It remains to be seen, however, whether routing al-
gorithms can be developed to take full advantage of FIREY)
property-based routing paradigm. [20]

As opposed to capsule-based Active Networking techniques
which provide general execution environments to mobile cod%l,]
or restrictive remote router configuration mechanisms, FIRE at-
tempts to strike a balance of flexibility, performance, and sedé?]
rity that is appropriate for a dynamic routing infrastructure. By
focusing on the particular domain of IP routing, FIRE providega]
much of the convenience and expressiveness of Active Network-
ing while ensuring the level of robustness and forwarding P85z
formance required of a production routing protocol.

D. S. Alexander, W. Arbaugh, A. Keromytis, and J. M. Smith. A secure ac-
tive network environment architectureEEE Network 12(3):37—-45, May
1998.

D. S. Alexander, M. Shaw, S. M. Nettles, and J. M. Smith. Active bridging.
In Proc. ACM SIGCOMM ’97pages 101-111, Sept. 1997.

D. O. Awduche, J. Malcolm, J. Agogbua, M. O'Dell, and J. McManus.
Requirements for traffic engineering over MPLS. RFC 2702, IETF, Sept.
1999.

G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation,
resource management, and sharing in JavaPrbt. USENIX OSDI '00
pages 333-346, Oct. 2000.

S. Bahk and M. E. Zarki. Dynamic multi-path routing and how it compares
with other dynamic routing algorithms for high speed wide area network.
In Proc. ACM SIGCOMM ’92pages 53-64, Aug. 1992.

M. Bailey, B. Gopal, M. Pagels, L. Peterson, and P. Sarkar. Pathfinder: A
pattern-based packet classifier. Rroc. USENIX OSDI '94pages 115—
123, Nov. 1994.

A. Ballardie, P. Francis, and J. Crowcroft. Core based trees (CBT): An
architecture for scalable multicast routing.Rroc. ACM SIGCOMM '93
pages 85-95, Sept. 1993.

B. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reser-
vation protocol (RSVP) — version 1 functional specification. RFC 2205,
IETF, Sept. 1997.

R. Callon. Use of OSI IS-IS for routing TCP/IP and dual environments.
RFC 1195, IETF, Dec. 1990.

I. Castineyra. Hop-spec: specifying the capabilities of the hop within an
internetwork. Technical report BBN-TR-7813, BBN Technologies, 1992.
B. Chinoy. Dynamics of Internet routing information. Pioc. ACM SIG-
COMM '93, pages 45-52, Sept. 1993.

T. H. Cormen, C. E. Leiserson, and R. L. Rivesatroduction to Algo-
rithms MIT Press, Cambridge, Massachusetts, 1990.

A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithmInternetwork: Research and Experiendg1):3-26,
Jan. 1990.

D. Descaper, Z. Dittia, G. Parulkar, and B. Plattner. Router plugins: A soft-
ware architecture for next generation routers.Phoac. ACM SIGCOMM

‘98, pages 229-240, Aug. 1998.

E. Dijkstra. A note on two problems in connexion with graphSu-
merische Mathematjkl:269-271, 1959.

D. Engler and M. F. Kaashoek. DPF: Fast, flexible message demultiplexing
using dynamic code generation. fmoc. ACM SIGCOMM ’'96pages 53—

59, Aug. 1996.

D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Hand-
ley, V. Jacobson, C. Liu, P. Sharma, and L. Wei. Protocol indepen-
dent multicast-sparse mode (PIM-SM): Protocol specification. RFC 2362,
IETF, June 1998.

W. Fenner. Internet group membership protocol, version 2. RFC 2236,
IETF, Nov. 1997.

J. Gosling, B. Joy, and G. Steel€he Java language specificatioAddi-

son Wesley, Reading, Massachusetts, 1996.

J. Hartman, L. Peterson, A. Bavier, P. Bigot, P. Bridges, B. Montz, R. Piltz,
T. Proebsting, and O. Spatscheck. Joust: A platform for liquid software.
IEEE Networks12(4):50-56, July 1998.

M. Hicks, J. Moore, D. S. Alexander, C. Gunter, and S. Nettles. PLANet:
An active internetwork. IrProc. IEEE Infocom '99 pages 1124-1133,
Mar. 1999.

H. Holbrook and D. Cheriton. IP multicast channels: EXPRESS support
for large-scale single source applications.Phoc. ACM SIGCOMM '99
pages 65—79, Sept. 1999.

S. Kent and R. Atkinson. Security architecture for the Internet protocol.
RFC 2401, IETF, Nov. 1998.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. Y, MONTH 2001

[25] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (S-BGPJ:
IEEE J. Select. Areas Commu8(4), Apr. 2000.

[26] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fair-
bairns, and E. Hyden. The design and implementation of an operating
system to support distributed multimedia applicatioliEE J. Select. Ar-
eas Communl14(7):1280-1297, Sept. 1996.

[27] S. McCanne and V. Jacobson. The BSD packet filter: A new architecture
for user-level packet capture. Rroc. USENIX Technical Conference
pages 259-269, Jan. 1993.

[28] J. McQuillan, I. Richer, and E. Rosen. The new routing algorithm for the

~}

arpanet.|EEE Trans. Commun28(5):711-719, May 1980.
[29] J. Moy. Multicast extensions to OSPF. RFC 1584, IETF, Mar. 1994.

[30] J. Moy. OSPF version 2. RFC 2328, IETF, Apr. 1998.

[31] S. Murphy, M. Badger, and B. Wellington. OSPF with digital signatures.
RFC 2154, IETF, June 1997.

[32] G. Necula. Proof-carrying code. Rroc. ACM POPL '97 pages 106-119,
Jan. 1997.

[33] K. Nichols, V. Jacobson, and L. Zhang. A two-bit differentiated services
architecture for the Internet. RFC 2638, IETF, July 1999.

[34] E. Nygren, S. J. Garland, and M. F. Kaashoek. PAN: A high-performang
active network node supporting multiple code systems.Pioc. IEEE
OPENARCH '99pages 78-89, Mar. 1999.

(0]

[35] C. Partridge, I. Castineyra, B. Schwartz, and F. Tchakountio. Large dat
transfer protocol. Technical memo BBN-TM-1265, BBN TechnologlesmOb”e computing.
Nov. 2000.

[36] C. Partridge, I. Castineyra, W. T. Strayer, A. C. Snoeren, and B. Schwartz.

FIRE state message protocol specification. Technical memo BBN-TM-

1245, BBN Technologies, July 2000.

[37] T. Rodeheffer and M. Schroeder. Automatic reconfiguration in Autonet.
In Proc. ACM SOSP '9lpages 183-197, Oct. 1991.

[38] E. Rosen. Vulnerabilities of network control protocols: An exampleM
CCR 11(3):10-16, July 1981.

[39] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D. Rockwell, and
C. Partridge. Smart packets for active networlE&EE Trans. Comp. Sys.
18(1):67—88, Feb. 2000.

[40] K. Sklower. A tree-based routing table for Berkeley Unix. Technical re
port, University of California, Berkeley, 1993.

[41] A.C. Snoeren, C. Partridge, W. T. Strayer, and |. Castineyra. FIRE peerifrg
protocol specification. Technical memo BBN-TM-1244, BBN Technolo-
gies, July 2000.

[42] K. Sollins. The TFTP protocol (revision 2). RFC 1350, IETF, July 1992.

[43] D. Tennenhouse and D. Wetherall. Towards an active network architecture-
ACM CCR 26(2), Apr. 1996.

[44] M. Thorup. Undirected single-source shortest paths with positive integer
weights in linear timeJ. ACM 46(3):362—-394, May 1999.

[45] J. E. van der Merwe, S. Rooney, |. M. Leslie, and S. A. Crosby. The
Tempest — a practical framework for network programmabilitEEE
Network 12(3):20-28, May 1998.

[46] D. Waitzman, C. Partridge, and S. Deering. Distance vector multicgst
routing protocol. RFC 1075, IETF, Nov. 1988.

[47] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high speed

[]

IP routing lookups. InProc. ACM SIGCOMM '97 pages 25-36, Sept.
1997.
[48] R. White, A. Retana, and D. SlicEIGRP for IP. Addison Wesley, Read-

ing, Massachusetts.

[49] Y. Yemini and S. da Silva. Towards programmable networks.Pioc.
IFIP/IEEE Intl. Work. on Dist. Systems: Operations and Managemeni
Oct. 1996.

16

Craig Partridge (Fellow) is a Chief Scientist with
BBN Technologies, Cambridge, MA, where he does
research on various aspects of internetworking. He
is chair of ACM SIGCOMM and the former editor in
chief of IEEE Network Magazine and ACM Computer
Communication Review. He is co-consulting editor of
the Addison Wesley Professional Computing Series.
He received the A.B., M.S., and Ph.D. degrees from
Harvard University, Cambridge, MA.

Alex C. Snoeren(Student Member) received the B.S.
degrees in computer science and applied mathemat-
ics from the Georgia Institute of Technology, Atlanta,
GA, in 1996 and 1997, respectively, and the M.S. de-
gree in computer science in 1997. He is currently a
Ph.D. candidate in the Department of Electrical En-
gineering and Computer Science at the Massachusetts
Institute of Technology, Cambridge, MA. He is also
with BBN Technologies, Cambridge, MA, as a Scien-
tist in the Internetworking Research Department. His
research interests include systems, networking, and

W. Timothy Strayer (Senior Member) received the
B.S. degree in mathematics and computer science
from Emory University, Atlanta, GA, in 1985 and the
M.S. and Ph.D. degrees in computer science from the
University of Virginia, Charlottesville, VA, in 1988
and 1992, respectively. He joined BBN Technolo-
gies, Cambridge, MA, in 1997, where he is a Senior
Scientist in the Internetworking Research Department.
His research interests include transport protocols, ac-
tive networks, satellite packet switching, virtual pri-
vate networks, and routing systems.

Beverly Schwartzis a Scientist at BBN Technologies,
Cambridge, MA, in the Internetworking Research De-
partment where she works on applying Active Net-
working technology to network management and rout-
ing protocols. She received the B.S. degree in elec-
trical engineering from Tufts University, Somerville,
MA, in 1985, and the M.S. degree in computer science
from Harvard University, Cambridge, MA, in 1989.
She designed and implemented much of the state dis-
tribution mechanism in FIRE.

Matthew Condell received the B.S. and M.Eng. de-
grees in computer science from the Massachusetts In-
stitute of Technology, Cambridge, MA in 1996. He
joined BBN Technologies, Cambridge, MA in 1996
where he is a Scientist in the Internetworking Re-
search Department. His interests include network se-
curity, active networking, and policy.

Isidro Castifieyra received the M.Sc. and Ph.D. de-
grees in electrical engineering from the Massachusetts
Institute of Technology, Cambridge, MA. The work
described in this paper was conducted while he was
Division Scientist in the Internetwork Research de-
partment of BBN Technologies, Cambridge, MA. He
is presently with Pluris, Cupertino, CA. His research
interests center around system resource management
and routing. He has conducted research on routing for
Quality of Service (QoS) applications; on scalable, se-
cure, mobile communication; and on scalable routing

architectures for QoS (NIMROD).

